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Abstract 1 

Working memory (WM), short term maintenance of informa]on for goal directed behavior, is 2 

essen]al to human cogni]on. Iden]fying the neural mechanisms suppor]ng WM is a focal point 3 

of neuroscien]fic research. One prominent theory hypothesizes that WM content is carried in 4 

"ac]vity-silent" brain states involving short-term synap]c changes. Informa]on carried in such 5 

brain states could be decodable from content-specific changes in responses to unrelated "impulse 6 

s]muli". Here, we used single-pulse transcranial magne]c s]mula]on (spTMS) as the impulse 7 

s]mulus and then decoded content maintained in WM from EEG using mul]variate padern 8 

analysis (MVPA) with robust non-parametric permuta]on tes]ng. The decoding accuracy of WM 9 

content significantly enhanced afer spTMS was delivered to the posterior superior temporal 10 

cortex during WM maintenance. Our results show that WM maintenance involves brain states, 11 

which are ac]vity silent rela]ve to other intrinsic processes visible in the EEG signal. 12 

 13 

Keywords: Working memory, auditory working memory, transcranial magne]c s]mula]on, TMS-14 

EEG, MVPA 15 

  16 
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 3 

Introduc3on 17 

Working memory (WM), the brain system that enables maintenance and processing of recent 18 

informa]on, plays an essen]al role in daily living. The mechanisms and brain areas underlying 19 

WM maintenance have thus been prominent topics for neuroscience research.  However, 20 

research into its neuronal mechanisms has resulted in seemingly contradictory results that have 21 

led to a long-standing controversy. The prevailing hypothesis suggests that informa]on is 22 

maintained through persistent firing in the prefrontal cortex (PFC). Conversely, an alterna]ve 23 

theory posits that persistent ac]vity is not necessary for WM maintenance and rather 24 

maintenance can be dynamical in an ‘ac]vity-silent’ format via func]onal connec]vity and/or 25 

synap]c weights. [1-3]. Much of this research has been conducted in the visual modality only, 26 

leaving some of the most ecologically relevant aspects of WM in other sensory modali]es 27 

rela]vely underexplored. One such aspect is auditory WM, which enables temporary storage and 28 

manipula]on of sounds and verbal informa]on, such as spoken language or music. 29 

Ini]ally, WM maintenance was linked to persistent ac]vity of prefrontal neurons that respond to 30 

the incoming s]mulus and remain ac]vated even afer the s]muli have vanished [4-6]. However, 31 

subsequent human neuroimaging studies suggested that the content of visual WM could only be 32 

decoded from signal-change paderns in sensory and posterior brain areas where persistent 33 

ac]vity is not present during WM maintenance [7-9] (however, see also [10-13]). Studies in non-34 

human primates (NHP) have not shown persistent WM related neuronal ac]vity during the 35 

maintenance period in sensory areas [14, 15]. The iden]fica]on of content-specific persistent 36 

firing paderns at the sensory level has proven challenging in NHP studies of auditory WM as well 37 

[16-18]. At the same ]me, human studies have managed to decode auditory WM content from 38 

fMRI signals [12, 19-21] as well as intracranial EEG signals [22] from auditory cor]ces. The diverse 39 

and contras]ng findings have inspired the development of a family of alterna]ve theories 40 

sugges]ng that WM is maintained in a more distributed and dynamic fashion than ini]ally 41 

believed [23-25].  42 

In explaining possible mechanisms for ‘ac]vity-silent’ WM maintenance, a theory proposes that 43 

WM is maintained through intermident bursts of neuronal firing and intervals of short-term 44 
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synap]c plas]city (STSP) [26], i.e., transient changes in the strength of synap]c connec]ons 45 

between neurons [27]. Item-specific ac]va]on of neurons during the encoding process leads to 46 

presynap]c accumula]on of calcium, which facilitates postsynap]c connec]vity. Due to this 47 

calcium buffer, which operates on a ]me scale of seconds, even sparse bursts of firing will be 48 

sufficient to maintain the "ac]vity-silent" WM representa]ons [3, 25, 26]. The network 49 

maintaining a synap]c WM trace will respond in a content-specific fashion, even if the non-50 

specific input is completely unrelated to the maintained representa]on [3]. Hence, informa]on 51 

maintained in WM via the ac]vity-silent synap]c mechanisms should be decodable with machine 52 

learning techniques that can classify responses elicited to any unrelated s]mulus that broadly 53 

ac]vates the same neuronal popula]on [3]. To test this predic]on, recent human EEG and MEG 54 

studies presented par]cipants with "impulse s]muli", such as strong visual or auditory feature 55 

paderns unrelated to the maintained content, during WM maintenance [13, 28-31]. The content 56 

maintained in WM, which is otherwise in an ac]vity-silent (or "hidden") state, became more 57 

readily decodable from EEG or MEG responses to such impulse s]muli [13, 28-31]. A limita]on in 58 

many of these studies, however, is that it is difficult to deliver such impulse s]muli to a par]cular 59 

brain area only. 60 

A non-invasive way to probe hidden brain states that underlie human cogni]on is transcranial 61 

magne]c s]mula]on (TMS). Unlike observa]onal methods such as MEG or EEG, TMS allows us to 62 

causally interact with focal areas whose role in WM we intend to evaluate [32]. In studies of 63 

human memory processes, TMS has been used to modulate maintenance of visual WM 64 

representa]ons [33] and to enhance neuronal plas]city in visual cortex [34]. A par]cular benefit 65 

of using single-pulse TMS as opposed to task-irrelevant sensory s]muli for probing memory-66 

related brain states that its effects are both temporally and anatomically specific [35]. In a recent 67 

study that used TMS to enhance WM decoding from EEG signals [28], perturbing the WM circuits 68 

during the seemingly ac]vity-silent maintenance period yielded noteworthy results. This 69 

interven]on not only augmented the decoding of representa]ons that were stored passively in 70 

memory compared to ac]vely maintained content but also contributed to par]cipants recalling 71 

passively maintained items more effec]vely from WM. However, to our knowledge, this approach 72 
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 5 

has so far not been tested in WM studies targe]ng auditory or other earlier sensory cortex areas, 73 

or in designs applying ac]ve and sham TMS in the same par]cipants.  74 

Thanks to recent advances in MRI-guided TMS naviga]on systems and more focal s]mula]on 75 

coils, TMS pulses can be delivered to the area of interest at an exact latency. This allows one to 76 

test anatomically and temporally specific hypotheses to develop an understanding of how 77 

sensory areas might be contribu]ng to WM. Here, we inves]gated whether the content of 78 

auditory WM, which is embedded in an ac]vity silent brain state, can be decoded from cor]cal 79 

effects of single-pulse TMS, delivered to posterior non-primary auditory cortex during the WM 80 

maintenance period. This non-primary auditory cortex target was in in the lef posterior superior 81 

temporal cortex (pSTC). In our mul]variate padern analysis derived from whole-scalp EEG, the 82 

decoding accuracy increases above chance level directly afer the TMS pulse in an Ac]ve TMS 83 

condi]on, but not afer a Control TMS pulse that was too weak to ac]vate the pSTC target area. 84 

Therefore, our study provides strong evidence for the ac]vity silent theory of WM maintenance. 85 

86 
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Methods 87 

Par$cipants 88 

A total of 23 healthy right-handed [36] par]cipants (12 women, 11 men; mean age ±	standard 89 

devia]on, SD, = 32 ± 12 years) were enrolled. One par]cipant was excluded due to excessive 90 

movement ar]facts (facial movement ar]facts in more than 50% of trials) and another due to 91 

their chance-level behavioral performance, resul]ng in a final cohort of 21 par]cipants (11 92 

women, 10 men; mean age ±	SD=31±10 years) for the Ac]ve TMS session. Significantly beder 93 

than chance level performance is essen]al in WM experiments to ensure that task performance 94 

is not a result from a mere guessing. As for the Control TMS session, two par]cipants opted not 95 

to con]nue the study and one dataset was rejected due to excessive noise, resul]ng in a final 96 

sample of 18 par]cipants (9 women, 9 men; mean age ±	SD = 31 ±	11 years). The same 97 

par]cipants adended Ac]ve TMS and Control TMS condi]ons to eliminate variability in EEG 98 

responses from different par]cipants in different condi]ons. All par]cipants had normal or 99 

corrected to normal vision and self-reported normal hearing.  The par]cipants provided wriden 100 

informed consent and were informed that they could withdraw at any ]me. A monetary 101 

compensa]on was given for each visit. The study design, protocol, and consent form were 102 

approved by the Mass General Brigham Ins]tu]onal Review Board. 103 

 104 

S$muli and experimental paradigm 105 

Auditory s]muli 106 

We employed non-conceptual, parametrically varied ripple sounds as WM items (Fig. 1a). Such 107 

s]muli do not allow verbal memoriza]on strategies. The ripple-velocity pool was individualized 108 

based on each par]cipant’s pre-determined ripple-velocity discrimina]on thresholds. Just 109 

no]ceable difference (JND) values were calculated individually for each par]cipant using a 2-110 

down, 1-up staircase algorithm [12, 13, 22]. Based on these values, we created four auditory 111 

ripple sound s]muli, ensuring that each s]mulus was posi]oned 1.5 JNDs apart from its closest 112 

neighbor in velocity. We used four different ripple sounds as to-be-remembered s]muli. The same 113 
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 7 

four ripple s]muli were also presented as test s]muli. The order of the memory items was 114 

pseudo-randomized. The par]cipants were naïve to the number of memory items. The auditory 115 

s]muli were presented at a comfortable listening level through Sensimetrics S14 Insert 116 

headphones (Sensimetrics, Malden, MA) that provide high-quality acous]c s]mulus delivery 117 

while adenua]ng TMS click noise, analogous to our previous studies [37].  118 

 119 

Experimental paradigm 120 

Figure 1 shows the retro-cue experimental paradigm used during the TMS-EEG recordings. Each 121 

trial started with a “!” presented on the screen. It was followed by two different consecu]ve ripple 122 

sounds (memory items) that were presented for 750 ms with a 250 ms inters]mulus interval. 123 

Ripple sounds were followed by a visual retro-cue indica]ng whether the par]cipant had to 124 

remember the first sound (”1” on the screen) or the second sound (“2” on the screen). This was 125 

followed by a 4-second maintenance period, where a TMS pulse was delivered in the middle. We 126 

delivered the TMS pulse at the 2 s mark to have the same amount of signal before and afer the 127 

TMS pulse during maintenance for balanced comparison of results. Next, a test sound was 128 

presented. The task was to determine whether the test sound was the same or different from the 129 

memorized item. Par]cipants responded with a mouse click with their right hand. An index finger 130 

click indicated that the sounds were the same and a middle finger press indicated that they were 131 

different. Finally, the screen showed whether the par]cipant had responded correctly or 132 

incorrectly. One run of the experiment consisted of 48 trials and one session consisted of 6 runs. 133 

Thus, one session had 288 runs in total.  134 

 135 

 136 

 137 

 138 
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 139 

Figure 1. Task design. (a) Examples of the modula6on pa7erns for ripple sounds (b) The target brain area 140 

for the TMS pulse, adapted from Uluç and colleagues [21]. (c The auditory WM retro-cue paradigm. The 141 

6meline of events in one trial is depicted. 142 

 143 

Structural MRI Data Acquisi$on 144 

T1-weighted anatomical images were acquired for with a mul]-echo MPRAGE pulse sequence 145 

(TR=2510 ms; 4 echoes with TEs=1.64 ms, 3.5 ms, 5.36 ms, and 7.22 ms; 176 or 208 (to cover the 146 

ears) sagidal slices with 1×1×1 mm3 voxels, 256×256 mm2 matrix; flip angle = 7°) [38] in a 3T 147 

Siemens Trio MRI scanner (Siemens Medical Systems, Erlangen, Germany) using a 32-channel 148 

head coil.  149 

 150 

TMS-EEG Data Acquisi$on 151 

To be used as s]mulus amplitude, res]ng motor threshold (rMT) of each par]cipant was 152 

measured by sending a pulse to the lef motor cortex thumb area and measuring the response 153 

from first dorsal interosseous muscle of the dominant right hand. From peak to peak, the smallest 154 

s]mula]on intensity resul]ng in 5/10 responses with amplitudes was equal to or greater than 50 155 

uV. Afer the the rMT visit, par]cipants completed two single-blind sessions. TMS pulses were 156 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2025. ; https://doi.org/10.1101/2024.03.04.583379doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.04.583379
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

delivered either 1) at 100% of individual rMT to the posterior nonprimary auditory area pSTC in 157 

the lef hemisphere (“Ac]ve TMS”) at 45° angle rela]ve to the reference vector [0 0 -1] (A 0-158 

degree rota]on rela]ve to this reference vector means the coil handle is oriented from anterior 159 

to posterior. The rota]on angle increases counterclockwise around the superior-inferior axis) or 160 

2) at 100% of rMT at the same loca]on and same angle but with a 20 mm plas]c block between 161 

the coil and scalp (“Control TMS”). The pulses were delivered 2 s into the 4 s maintenance period. 162 

EEG, horizontal EOG, and ECG data were sampled at 25 kHz with a 64-channel ac]ve EEG system 163 

(Ac]Champ, Brain Products GmbH, Gilching, Germany). TMS was delivered with a MagPro X100 164 

w/ MagOp]on s]mulator and a C-B60 figure-of-eight coil (MagVenture, Farum, Denmark). The 165 

plas]c block used in the control sessions was built in-house and was the same shape as the TMS 166 

coil. The order of Ac]ve and Control TMS sessions was counterbalanced across the par]cipants.  167 

In both Ac]ve TMS and Control TMS condi]ons, the TMS coil clicks were masked with 8 kHz low 168 

pass filtered white noise throughout the experiment. The white noise and the sound s]muli were 169 

presented through Sensimetrics S14 Insert headphones (Sensimetrics, Malden, MA) with Comply 170 

Canal In-Ear Tips (Hearing Components, Inc., North Oakdale, MN) that have a Noise Reduc]on 171 

Ra]ng (NRR) of above 29 dB. The sound level of the noise mask was measured using Larson Davis 172 

sound level meter LXT2 with a Larson Davis RA0038 coupler (Larson Davis, New York, NY): The 173 

level of the white noise was at 73 dB SPL and auditory items was at 86 dB SPL. Addi]onally, 174 

subjec]ve report from each par]cipant was taken that they did not hear the TMS clicks or other 175 

background noise. 176 

 177 

TMS Neuronaviga$on 178 

Con]nuous recording of the head posi]on and orienta]on rela]ve to the TMS coil was achieved 179 

through a commercial TMS neuronaviga]on system (LOCALITE GmbH, Bonn, Germany) with an 180 

op]cal camera and passive trackers (Polaris Spectra, Northern Digital Inc., Waterloo, Ontario). 181 

The par]cipant’s registra]on to their anatomical data were all done in the Localite 182 
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 10 

neuronaviga]on sofware. The reconstructed MRI images were used in the Localite 183 

neuronaviga]on system (LOCALITE GmbH, Germany) to guide the TMS procedure with MRI.  184 

 185 

E-field Calcula$on 186 

Data from one par]cipant were discarded due to technical problems for Ac]ve TMS and Control 187 

TMS sessions. To confirm that we had s]mulated the intended cor]cal target, we computed the 188 

TMS-induced Electric fields (E-field) using the Boundary Element Method accelerated by Fast 189 

Mul]pole method (BEM-FMM) MATLAB toolbox implementa]on [39, 40]. The TMS coil 190 

loca]ons/orienta]ons were extracted from the TMS naviga]on sofware. The par]cipant-specific 191 

anatomically realis]c high-resolu]on head models were generated from the T1-weighted images 192 

using the SimNIBS toolbox [41]. The model included five dis]nct layers of scalp, skull, cerebro-193 

spinal fluid (CSF), grey mader, and white mader, with the assump]on of uniform conduc]vity 194 

within each layer.  The E-fields were calculated on a cor]cal surface halfway between the grey 195 

and white mader surfaces. For group-level visualiza]on, the individual E-field maps were 196 

resampled to the FreeSurfer template brain fsaverage (version 6.2) and averaged across 197 

par]cipants [42]. 198 

 199 

Basic EEG Preprocessing and Analysis 200 

EEG was preprocessed using MNE Python [43]. We used an established, rigorous preprocessing 201 

procedure [44, 45]. The data were first detrended, and afer selec]on and interpola]on of noisy 202 

channels (on average 4, channels), they were epoched to exclude any poten]al TMS pulse 203 

ar]facts. Two consecu]ve ICAs were calculated for the concatenated epochs [44, 45]. The first 204 

ICA was used to remove remaining TMS related ar]facts (3 independent components were 205 

removed), and then the second ICA was performed to exclude physiological ar]facts (on average, 206 

5 independent components). Aferwards, we applied a 60-Hz notch filter to remove line noise 207 

and a 150 Hz low pass filter. The data were then downsampled to 1 kHz. We did not use any high 208 

pass filtering as it might introduce ar]facts in the signal and tamper with later TMS-evoked 209 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2025. ; https://doi.org/10.1101/2024.03.04.583379doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.04.583379
http://creativecommons.org/licenses/by-nc-nd/4.0/


 11 

poten]al components [46]. Finally, all epochs were visually inspected for remaining ar]facts and 210 

noisy epochs were rejected. Signals from the occipital Iz electrode were excluded from all 211 

analyses due to excessive noise in most of the datasets. 212 

To display the ]me course of brain ac]vity, we calculated event-related poten]als (ERPs) 213 

separately for each memory item during the memory period as well as a grand average for the 214 

whole trial. For memory item comparison, the cleaned data were separated into four groups 215 

according to cued memory item.  Then, the separated data from all runs were concatenated and 216 

averaged across all trials for each memory item within each par]cipant. The data were then 217 

averaged across all par]cipants per memory item. For grand averages, the averages were 218 

calculated across all trials irrespec]ve of memory item. Topographical maps were calculated with 219 

a ]me window of 0.5 s with equal weights for all trials. 220 

 221 

Cross-par$cipant Mul$variate PaEern Analysis 222 

Figure 2 shows the MVPA pipeline for the cross-par]cipant classifica]on analysis. We conducted 223 

the decoding analysis by employing the support vector machine (SVM) implementa]on from 224 

libsvm [47] as provided in the MATLAB/Octave CoSMoMVPA package [48]. To help generalize the 225 

analysis results to a larger popula]on, we performed the classifica]on across the par]cipants 226 

[13]. For the MVPA analysis, to ensure that any TMS ar]facts did not bias the results, the ]me 227 

window star]ng 50 ms before and ending 50 ms afer the TMS pulse was excluded from the 228 

analysis. Using CoSMoMVPA and Fieldtrip toolboxes in each par]cipant, we first balanced the 229 

number of trials for each class and then calculated the class-specific averages for each par]cipant. 230 

Next, for spa]al feature selec]on, we used principal component analysis (PCA) in MATLAB to 231 

transform the data to "virtual channels", extrac]ng the first eight principal components (PC) (Fig. 232 

2). To keep the dimensionality constant to allow cross-valida]on, we selected the number of PCs 233 

based on the grand average of cumula]ve variance explained across all par]cipants, condi]ons, 234 

and WM classes. The number of selected PCs refers to the point where the slope of the tangent 235 

decreased below one in a normalized plot with both dimensions scaled between zero and one. 236 
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Calcula]ng these spa]al PCAs separately for each class in each par]cipant ensured that no 237 

leakage of informa]on occurred between par]cipants/classes. In each task condi]on, including 238 

periods before and afer the pulse in the TMS and Control condi]ons, this resulted in a two-239 

dimensional !𝑁!"#$%&'(	 × 	4	& × 8 feature matrix that was entered into the SVM 240 

(in	the	TMS	conditions	𝑁!"#$%&'( = 21, in the control condi]ons 𝑁!"#$%&'( = 18).  241 

The classifica]on was conducted as a temporal searchlight analysis [48] with a 300 ms sliding 242 

window at 3 ms steps, and was done separately for the periods before and afer the TMS pulse. 243 

The classifica]on was performed using a leave-one out cross-valida]on procedure:  the data sets 244 

were par]]oned to training and test sets such that the class-specific sub-averages of one 245 

par]cipant used as the test set and those from the rest of the par]cipants as the training set. The 246 

decoding accuracy was averaged across all itera]ons. For each condi]on (ac]ve TMS, Control 247 

TMS) and maintenance period (before or afer the TMS pulse), the analyses resulted in ]me series 248 

with decoding accuracies of each searchlight centroid (Fig. 2). 249 

 250 

Figure 2. MVPA pipeline. Preprocessed whole head EEG data was entered into a PCA for spa6al feature 251 

selec6on. The cut-off for the PC selec6on (nPC=8) was determined based on the elbow in the grand-average 252 

cumula6ve variance curve, calculated across all condi6ons, WM classes, and par6cipants. Then the data 253 

was entered into a searchlight analysis with cross-par6cipant 4-class SVM classifica6on. Leave-one-out 254 

method was used for cross-valida6on. The analysis resulted with a decoding accuracy (DAc) 6me series 255 
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where DAc is the value assigned to the centroid of searchlight sliding window. For sta6s6cal significance, 256 

we used maximum sta6s6cs with 500 permuta6ons. 257 

 258 

Sta$s$cal Significance, Cross-par$cipant MVPA 259 

In our cross-par]cipant MVPA approach, the data of one par]cipant were, itera]vely, used as the 260 

test set, to evaluate the model trained in the other par]cipants. This analysis yields one decoding 261 

accuracy value for the en]re group at each ]me point. Instead of conven]onal one-sample t-262 

tests, we therefore determined the sta]s]cal significance of our cross-par]cipant decoding 263 

results using robust cluster-based permuta]on tes]ng, which handles mul]ple comparison 264 

problems using a maximum-sta$s$c strategy [13]. Analogous temporal cluster-based maximum-265 

sta]s]c approaches have been widely used procedures in univariate analyses of ERP and MEG 266 

data [49]. In this procedure, we first generated 500 unique permuta]ons of the true item-content 267 

labels of the classifier. The temporal searchlight analysis was repeated with these permuted labels 268 

to generate a distribu]on of decoding accuracies for each ]me point. For each permuta]on, the 269 

]me series of decoding accuracies were converted to z-values. This was done by comparing each 270 

decoding-accuracy value to the respec]ve permuta]on distribu]on at the same ]me point. 271 

Con]nuous clusters with z>1.65 (i.e., p<0.05) were then iden]fied in each permuta]on and the 272 

respec]ve cluster sums of z-values were calculated. From each permuta]on, the largest cluster 273 

sum across all condi]ons was entered to the maximum-sta]s]c null distribu]on. Analogously to 274 

the conven]onal procedure [49], each cluster iden]fied from the analysis with true content labels 275 

was then compared to this null distribu]on, to determine their sta]s]cal significance. Clusters 276 

with pCorrected<0.05 were considered sta]s]cally significant.  277 

 278 

Within-par$cipant Mul$variate PaEern Analysis 279 

The within par]cipant analysis is conducted based on the same principle as the cross-par]cipant 280 

decoding analysis (Figure 2), by employing the SVM implementa]on from libsvm [47] and 281 

MATLAB/Octave CoSMoMVPA package [48] . The period 50 ms before and afer the TMS pulse 282 
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was not entered into the analysis. Using CoSMoMVPA and Fieldtrip toolboxes in each par]cipant, 283 

we first balanced the number of trials for each class and low-pass filtered the signals at 75 Hz. To 284 

enhance the SNR, subaverages of four trials were calculated with each class. Twenty different 285 

random itera]ons were calculated of these subaveraged samples. In each itera]on, spa]al 286 

feature selec]on was performed using a similar, yet individualized, PCA procedure to that used in 287 

the cross-par]cipant MVPA (range 5-10 PCs, group median = 8 PCs; see Suppl. Fig. 1).  288 

Similar to the cross-par]cipant MVPA, within-par]cipant classifica]on was performed using a 289 

temporal searchlight analysis [48] with a 300 ms sliding window in 3 ms steps, conducted 290 

separately for the periods before and afer the TMS pulse. A k-fold cross-valida]on procedure was 291 

used to classify the maintained WM content (k=6 in par]cipants with six runs of data; k=5 in two 292 

par]cipants with five runs of data). In each fold, the model was trained in k-1/k of the samples 293 

and tested in the remaining samples. For each searchlight dataset, the decoding accuracies were 294 

averaged across the folds and itera]ons. For each par]cipant, condi]on (ac]ve TMS, Control 295 

TMS), and maintenance period (before or afer the TMS pulse), the analyses resulted in a ]me 296 

series with decoding accuracies of each searchlight centroid. Similar to previous studies [30], each 297 

par]cipant's decoding accuracy ]me courses were smoothed over ]me with a Gaussian kernel 298 

with FWHM of 9.4 ms for significance tes]ng. 299 

 300 

Sta$s$cal Significance, Within-par$cipant MVPA 301 

The sta]s]cal significance was determined using robust cluster-based permuta]on tes]ng, which 302 

handles mul]ple comparison problems using a maximum-sta$s$c strategy [13]. For each 303 

par]cipant and TMS condi]on, we first generated 500 unique permuta]ons of the true item-304 

content labels of the classifier. The temporal searchlight analysis was repeated with these 305 

permuted labels to generate a distribu]on of decoding accuracies for each ]me point. To assign 306 

a p-value for each ]me point, the original group-mean decoding accuracy value, found from 307 

classifiers with true labels, was compared with this permuta]on distribu]on. To improve the 308 

precision, we modeled the empirical permuta]on distribu]on using a Gaussian fit. Con]nuous 309 
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clusters with p<0.05 were then iden]fied in each permuta]on and the respec]ve cluster sums 310 

decoding accuracies were calculated. From each permuta]on, the largest cluster sum across all 311 

condi]ons was entered to the maximum-sta]s]c null distribu]on. Analogous to the conven]onal 312 

procedure [49], each cluster iden]fied from the analysis with true content labels was then 313 

compared to this null distribu]on, to determine their sta]s]cal significance. Clusters with 314 

pCorrected<0.05 were considered sta]s]cally significant.  315 

  316 
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Results 317 

Behavioral performance 318 

The par]cipants’ behavioral percent corrects were 79.6 ± 6.5% (mean ± SD) in the Ac]ve TMS 319 

sessions and 78.7± 6.2% in the Control TMS sessions. Although we see a slight increase in 320 

behavioral performance in Ac]ve TMS session, the increase is not sta]s]cally significant. We 321 

addi]onally calculated the percent correct of answers as a func]on of the ripple-velocity distance 322 

from memory item to probe. This analysis revealed a consistent rela]onship between 323 

par]cipants' ability to reject non-matching probes and the difference in ripple velocity between 324 

the probe and WM item. In the TMS session, the percent correct of answers for match trials was 325 

84.5 ± 6.3%. For non-match trials with JND distance 1, the percent correct was 60.4 ± 13.9%; for 326 

JND distance 2, it was 85.7 ± 8.6%, and for non-match trials with JND distance 3, it was 93.9 ± 327 

4.9%. In the Control TMS session, match trial percent correct was 84.1 ± 5.7%. Non-match trial 328 

JND distance 1 percent correct was 58.0 ± 14.9%; JND distance 2 percent correct was 2 87.1 ± 329 

10.2%; and JND distance 3 percent correct 92.2 ± 9.0%. 330 

 331 

Mul$variate PaEern Analysis 332 

Cross-par$cipant MVPA 333 

We conducted a four-class cross-par]cipant classifica]on analysis to determine whether the 334 

single TMS pulses to lef pSTC enhanced the decoding of memorized content from the ERPs. The 335 

analysis employed a temporal searchlight approach, in which the decoding was performed based 336 

on the spa]otemporal padern of EEG ac]vity within a 300-ms sliding window. The sta]s]cal 337 

significance was verified through a robust cross-par]cipant cross-valida]on and cluster-based 338 

maximum-sta]s]c permuta]on procedure.  According to these analyses, in the Ac]ve TMS 339 

condi]on, the MVPA decoding accuracy for memory content rose significantly above chance level 340 

during the first few hundreds of milliseconds afer the TMS pulse (pCorrected <0.05, cluster-based 341 

maximum-sta]s]c permuta]on test; cluster sum of normalized accuracy = 137.2; Fig. 3d). No 342 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 31, 2025. ; https://doi.org/10.1101/2024.03.04.583379doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.04.583379
http://creativecommons.org/licenses/by-nc-nd/4.0/


 17 

sta]s]cally significant decoding results were observed in any other ]me period in the ac]ve TMS 343 

condi]on or in the Control condi]on (for an addi]onal analysis of the stability of decoding, see 344 

Suppl. Fig. 2). 345 

 346 

Figure 3. The results of E-field calcula6ons and searchlight MVPA decoding of WM content from EEG. 347 

(a) Group median E-field maps for the Ac6ve TMS condi6on.  (b) Group median E-field maps for the Control 348 

TMS condi6on. (c) Null distribu6on for 500 permuta6ons, u6lized to determine the sta6s6cal significance 349 

of decoding accuracies. From each permuta6on, the maximum cluster sum of normalized decoding 350 

accuracy was iden6fied and added to this null distribu6on. The ver6cal do7ed line illustrates the cri6cal 351 

value for pcorrected<0.05 (cluster sum(z) = 130). (d) Decoding accuracies in the cross-par6cipant four-class 352 

MVPA (% of correctly classified trials). The 6me series reflect the SVM decoding accuracies at the centroid 353 

of each sliding 300-ms searchlight. These decoding accuracies were derived from an itera6ve leave-one-354 

par6cipant out cross-valida6on procedure: In each searchlight 6me window, the data of each par6cipant 355 

was used once as the test set and those from the rest of the remaining par6cipants as the training set. The 356 
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light red line denotes the Ac6ve TMS condi6on and the light blue line the Control TMS condi6on. The 357 

do7ed horizontal line indicates the chance level of decoding-accuracy in a four-class classifica6on (25%). 358 

The 6me window when the decoding accuracy was significantly higher than chance level in the Ac6ve TMS 359 

condi6on is shown in dark red (pCorrected<0.05, non-parametric cluster-based permuta6on test). 360 

 361 

Within-par$cipant MVPA 362 

We addi]onally conducted a within-par]cipant four-class SVM searchlight to test the effect of the 363 

TMS pulse on the individual brain ac]vity. We employed a similar searchlight approach with a 364 

300-ms sliding window as in the cross-par]cipant analysis. Consistent with the cross-par]cipant 365 

results, in the Ac]ve TMS condi]on, the group average of MVPA decoding accuracy for memory 366 

content rose significantly above chance level during the first few hundreds of milliseconds afer 367 

the TMS pulse (pCorrected <0.01, cluster-based maximum-sta]s]c permuta]on test; cluster sum of 368 

decoding accuracy = 24.5; Fig. 4). No sta]s]cally significant decoding results were observed in 369 

any other ]me period in ac]ve TMS or control TMS condi]ons. 370 

 371 

 372 

Figure 4. The results of within-par6cipant searchlight MVPA decoding of WM content from EEG for Control 373 

and Ac6ve TMS condi6ons. (a) Decoding accuracies in the within-par6cipant four-class MVPA. The 6me-374 

resolved decoding reflects the accuracies at the centroid of each sliding 300-ms searchlight. The thin red 375 

line denotes the Ac6ve TMS condi6on and the thin blue line the Control TMS condi6on. The do7ed 376 

horizontal line indicates the chance level of decoding-accuracy in a four-class classifica6on (25%). The 6me 377 

window when the decoding accuracy was significantly higher than chance level in the Ac6ve TMS condi6on 378 
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is shown in dark red (pCorrected<0.05, non-parametric cluster-based permuta6on test). (b) Null distribu6on 379 

for 500 permuta6ons, u6lized to determine the sta6s6cal significance of decoding accuracies. From each 380 

permuta6on, the maximum cluster sum of decoding accuracy was iden6fied and added to this null 381 

distribu6on. The ver6cal do7ed line illustrates the cri6cal value for pcorrected<0.05 (cluster sum of decoding 382 

accuracy = 24.5).  383 

 384 

E-field Calcula$ons 385 

Figures 3 a-b depict the median of the E-field calcula]ons for Ac]ve TMS and Control TMS 386 

condi]ons, respec]vely, thresholded at 60 V/m [50]. The average E-field in the target area 387 

(Talairach -60, -38, 15) was 74.11 V/m for the Ac]ve TMS condi]on and 34.75 V/m for the Control 388 

TMS condi]on. 389 

 390 

Control Analyses 391 

To control whether MVPA results are driven by differences in ERP amplitude between different 392 

condi]ons, we averaged the response to different cued content during WM period across 393 

par]cipants. No systema]c differences were found between signals for different cued content 394 

during the maintenance period before or afer the TMS pulse. We also performed a grand average 395 

of the ERP data to observe the ERP ]me course during the task trial. Figure 5 depicts the grand 396 

average ERPs calculated for the WM maintenance period as the ]me of interest and TMS evoked 397 

responses (TEP) for Ac]ve TMS and Control TMS sessions. As expected, the ERP results revealed 398 

a N2/P3 response to the visual retro-cue at the beginning of the maintenance period. A padern 399 

of TMS-elicited ERP deflec]ons was detected 2-2.5 s into the maintenance period. The auditory 400 

component reflects a typical TEP elicited by the TMS pulse (Fig. 5c). No comparable effect is 401 

observed in the Control TMS condi]on (Fig. 5d), although the auditory click sound was iden]cal 402 

to the Ac]ve condi]on. This suggests that the click sounds were sufficiently masked by the 403 

constant noise masking used in all sessions. Finally, we did not observe any persistent eleva]on 404 
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in ERP during the WM maintenance period (Fig. 5). To control the data quality, we calculated 405 

grand averages for the item presenta]on and probe and response period (Suppl. Fig. 3-4). The 406 

averaged responses for these periods were as expected.   407 

 408 

Figure 5. Topographical and bu7erfly plots of ERP 6me courses for 6me of interest (TOI) in the ac6ve TMS 409 

condi6on. Different colors in the ERP plots refer to different electrodes. The electrode map above the 410 

figures denotes the loca6ons of electrodes. The 6meline starts from t = 0 s at the visual retro-cue. (a) TOI 411 

ERP topographical plots and 6me courses for WM before TMS pulse. The plot depicts the results for the 412 

visual retro-cue that starts the maintenance period. (b) TOI ERP topographical plots and 6me courses ader 413 

TMS pulse. The 6meline starts from t = 0 s at the TMS pulse. (c) TMS evoked response for Ac6ve TMS 414 

session. (d) TMS evoked response for Control TMS session. 415 

To control whether the decoding results were driven by a difference in TEP in different memory 416 

condi]ons due to TMS pulse, we also performed a repeated measures ANOVA across ERPs of 417 

different memory condi]ons. We did not find any significant differences in corrected or 418 

uncorrected level between averaged ERPs across different condi]ons (35-100ms: F3,60=0.65, 419 

p=0.59; 100-200ms: F3,60=0.22, p=0.88; 200-300ms: F3,60=0.36, p=0.78). We also tested the ERPs 420 

across the memory period afer the TMS pulse to test whether the auditory click ar]fact might 421 
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bias our main analysis results. We found no significant differences in the trial-averaged EEG 422 

paderns following the TMS pulses across the memory condi]ons during the whole 2-s memory 423 

period afer the TMS pulse  (F3,60=0.28, p=0.84). 424 

Finally, we also performed a control decoding analysis with the same parameters as our main 425 

analysis using the task-irrelevant (i.e., "un-cued") items, which were to be forgoden afer the 426 

retro-cue. This control MVPA showed no significant decoding for neither Ac]ve TMS nor Control 427 

TMS condi]ons at any ]me during the WM reten]on period.428 
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Discussion 429 

Here, we inves]gated auditory WM using a "perturba]on approach", which combines MRI-430 

navigated single pulse TMS with simultaneous EEG recordings, to unravel content-specific 431 

mnemonic states from EEG otherwise obscured by the much larger EEG "background" ac]vity. To 432 

decode WM content from EEG signals during the maintenance period, we employed a temporal-433 

searchlight MVPA with robust cross-par]cipant cross-valida]on and non-parametric permuta]on 434 

tes]ng. As predicted, the decoding accuracy of auditory WM content rose significantly above 435 

chance level afer a single TMS pulse was delivered to the non-primary auditory areas in the lef 436 

pSTC. Further, the Control TMS condi]on (otherwise the same as ac]ve single pulse TMS but with 437 

a 20-mm plas]c block between the coil and the par]cipant's scalp) found no significant decoding 438 

accuracy.  439 

One possible explana]on for the present finding is offered by the synap]c theory of WM [26]. 440 

According to this model, WM informa]on is coded to content-specific paderns of func]onal 441 

connec]vity, which result from ac]vity-based STSP in the synap]c terminals of neurons that are 442 

strongly ac]vated at the encoding stage [26]. Instead of persistent neuronal ac]vity, this model 443 

predicts that only sparse bursts of neuronal oscilla]ons and firing ac]vity are necessary to 444 

maintain this otherwise ac]vity-silent mnemonic brain state [3, 51-53]. Notably, although 445 

synap]c states are not directly measurable by non-invasive recordings, computa]onal modeling 446 

predicts that a circuit that maintains informa]on by content-specific changes of synap]c weights 447 

responds differently to other impulse s]muli (un]l the STSP decays) [26]. These content-specific 448 

responses to external impulses might not only provide a way for the maintained content to be 449 

read out at the recall stage, but they could also allow one to "ping" the maintained content with 450 

externally generated pulses such as single pulse TMS [13, 28-30]. 451 

Whereas the original synap]c theory refers to local circuits in prefrontal cor]ces [26], it has also 452 

been proposed that this synap]c model can also provide a way to explain how WM informa]on 453 

might be represented in sensory areas , which presumably cannot support persistent neuronal 454 

firing in the absence of sensory s]mula]on [54-56]. However, previous studies probing ac]vity-455 

silent states of WM have been limited to TMS-based perturba]on of associa]on areas [28], or to 456 
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using auditory or visual "impulse s]muli" [13, 31] that might ac]vate a wide array of brain 457 

networks beyond sensory areas involved in orien]ng to task-irrelevant s]mulus changes. TMS 458 

offers a more direct way to focally perturb cor]cal neurons [33, 57] therefore increasing the 459 

likelihood that the content-related signals originate from the targeted sensory areas rather than 460 

from higher-order brain regions. The present results suggest that WM content can be decoded at 461 

a high accuracy from EEG responses to TMS pulses directed to pSTC. They could thus offer new 462 

insights into the role of ac]vity-silent WM processes in the sensory cor]ces. 463 

Alterna]ve explana]ons for enhanced decodability of WM content, which follows an irrelevant 464 

impulse s]mulus (i.e., "pinging effects"), have been recently presented. In a recent reanalysis of 465 

previous studies [28, 30], Barbosa et al. [58] adributed "pinging effects" of visual WM content to 466 

reduced trial-to-trial variability of EEG signals, which was observed afer the strong visual impulse 467 

s]muli that had been used to facilitate the decoding of (presumably ac]vity-silent) WM content 468 

(see also [59]). Their reasoning was that such a reduc]on of variability across trials could have 469 

enhanced the performance of algorithm because of enhanced SNR, rather than a genuine WM 470 

reac]va]on effect. It is, however, important to note that there were notable differences between 471 

the pinging effects of visual impulses vs. TMS-induced perturba]ons. In contrast to the effect of 472 

strong visual impulse s]muli (reanalysis the data in [60]), TMS perturba]ons increased, rather 473 

than decreased, the variability of signals from trial-to-trial (reanalysis of [28]). These results led 474 

Barbosa et al. to conclude that TMS-induced enhancement of WM decoding from EEG data could, 475 

nonetheless, reflect an ac$vity-silent mechanism of WM. Notably, consistent with Barbosa et al., 476 

the present analyses provide no evidence of TMS-induced reduc$on of trial-to-trial variability of 477 

EEG signals, which could have explained the enhancement of the decoding accuracy of auditory 478 

WM content.  479 

Using measures such as EEG to probe synap]c processes is supported by the no]on that EEG 480 

signals primarily result from post-synap]c processes in apical dendrites of cor]cal pyramidal 481 

neurons [61-63]. These neurons cons]tute fundamental components of the canonical cor]cal 482 

circuit that presumably supports WM [25, 64-66]. An inherent limita]on of non-invasive 483 

measures, however, is that they do not conclusively rule out other alterna]ve explana]ons. In 484 
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addi]on to an ac]vity-silent synap]c state, the present enhancement of WM decoding by TMS 485 

pulses could also result from perturba]on of an ac]vity-based maintenance process. Cellular-486 

level studies demonstrate that single pulse TMS ac]vates a broad popula]on of cell bodies in the 487 

cortex [57, 67]. The rapid firing of these neurons afer the TMS pulse, which is followed by a 488 

refractory period, disrupts the cor]cal network, rese�ng the s]mulated region [57, 67]. The 489 

present results could therefore also be arguably consistent with a subthreshold adractor model 490 

[59, 68]. The subthreshold adractor model suggests that WM-related persistent ac]vity tends to 491 

be adracted to a bump state that emerges in varying loca]ons across this network [69, 70]. By 492 

interfering with such ac]va]on paderns, TMS pulses might result in content-specific signal 493 

changes that are recordable by EEG. However, a challenge for such a model in the present context 494 

is that the TMS pulse, which tends to overwrite the neuronal ac]vity in the s]mulated area, would 495 

disrupt the content-specific popula]on ac]vity in the s]mulated network. Neurophysiological 496 

studies provide experimental evidence indica]ng that distractor events disrupt content-specific 497 

firing ac]vi]es rather than amplifying them to a discernible level in the mass ac]on of neurons 498 

[71]. Therefore, while it is not en]rely incompa]ble, the subthreshold adractor model does not 499 

adequately describe our results because we found no evidence of impaired WM performance in 500 

the Ac]ve TMS vs. Control TMS condi]on.  501 

Another alterna]ve for a hidden state (whether it is due to synap]c plas]city or to other means) 502 

of WM content in sensory areas is that the WM maintenance is carried through a recurrent neural 503 

network where the PFC shapes and transforms the WM representa]ons according to task 504 

demands [54, 72]. The recurrent model is another possible explana]on for how the synap]c 505 

weights could be formed and maintained in the posterior and sensory brain areas. Indeed, it has 506 

been recently shown that the WM content can be effec]vely maintained by a neuronal behavior 507 

explained by a combina]on of ac]vity-based and ac]vity-silent models of WM [73]. 508 

Another important considera]on is that, although the ini]al E-field exceeded the s]mula]on 509 

threshold only in our targeted STG site, single-pulse TMS could influence not only local but also 510 

distant neural circuits through axonal and transsynap]c propaga]on, poten]ally affec]ng other 511 

cor]cal and subcor]cal areas star]ng already at the first tens of milliseconds afer the TMS pulse. 512 
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The ac]on poten]als generated by the TMS-induced electric field may propagate along the axons 513 

in both anterograde and retrograde direc]ons, facilita]ng forward and backward informa]on 514 

flow within the s]mulated pathway [74]. Computa]onal modeling studies of TMS-EEG effects 515 

suggest that recurrent network feedback to the target regions begins driving TEP responses 516 

already around 100 ms post-s]mula]on, whereas only the earlier TEP components can be 517 

adributed to local reverberatory ac]vity within the s]mulated region [75]. Roughly consistent 518 

with previous impulse-s]mulus and TMS studies of visual WM [28, 30], here the significant 519 

increases of decoding accuracy occurred about 200-300 ms afer the TMS pulse, peaking slightly 520 

earlier in the within-par]cipant than cross-par]cipant analyses. The observed effects may result 521 

from feedforward propaga]on of ac]vity from STG to other areas and/or subsequent feedback 522 

influences from other regions back to STG. 523 

Our cross-par]cipant decoding results indicate that the states that were revealed by the TMS 524 

pulse were stable across par]cipants[76]. This is argued to be similar to the difference between 525 

fixed- and mixed-effects analyses [77]. In the context of MVPA, this dis]nc]on allows for the 526 

iden]fica]on of differences in local computa]ons. Significant predic]on in a cross-par]cipant 527 

model indicates that the s]mulus-related informa]on encoded by a ]me-resolved neuronal 528 

ac]vity padern stays rela]vely consistent across par]cipants [78]. 529 

Some inherent limita]ons of EEG interpreta]ons during a combined TMS-EEG study include 530 

several types of ar]facts such as direct muscle/sensory nerve s]mula]on, somatosensory 531 

sensa]on related to the vibra]on of the coil, and acous]cal clicks. There is a possibility that the 532 

improved decoding following a TMS pulse is adributable not only to its neurophysiological effects 533 

on the target area but also to non-specific effects associated with unrelated physiological events. 534 

Here, we adempted to control these biases with a Control TMS condi]on. Adding a hard plas]c 535 

block provides similar tac]le and auditory sensa]on as Ac]ve TMS but with subthreshold brain 536 

s]mula]on. To mi]gate the effect of acous]cal clicks we also used a con]nuous noise masker 537 

s]mulus and TMS compa]ble insert earphones accompanied with earplugs that adenuate the 538 

background noise  [37]. It is also worth no]ng that the same TMS s]mulator output level was 539 

used for Control and Ac]ve TMS sessions for each par]cipant, resul]ng also in exactly the same 540 
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sound level of the TMS click sound. Our con]nuous noise masking should have mainly eliminated 541 

the possibility of TMS-evoked auditory effects (Fig. 5 a-b). Further, such effects should be similar 542 

across the control and ac]ve TMS condi]ons as well as between the different memory condi]ons. 543 

It is thus unlikely that the decoding results would be biased by any auditory ar]facts. The 544 

differences in WM decoding between Ac]ve and Control sessions thus cannot follow from the 545 

click sound, per se.  Finally, TMS was applied at a fixed 2-s latency, which might have created an 546 

an]cipa]on effect However, such an an]cipa]on effect should have been iden]cal in the Ac]ve 547 

TMS and Control TMS condi]ons, making it unlikely that our main results were influenced by such 548 

an effect. 549 

To conclude, using TMS-EEG and cross-par]cipant MVPA, the present study suggests 550 

maintenance of WM content involves an "ac]vity-silent" brain state in auditory brain areas. The 551 

study also demonstrates the power of TMS as a way to probe informa]on content embedded in 552 

EEG signals. 553 

  554 
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