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Abstract: Brain and retinal organoids are functional and dynamic in vitro three-dimensional (3D)
structures derived from pluripotent stem cells that spontaneously organize themselves to their in vivo
counterparts. Here, we review the main literature data of how these organoids have been developed
through different protocols and how they have been technically analyzed. Moreover, this paper
reviews recent advances in using organoids to model neurological and retinal diseases, considering
their potential for translational applications but also pointing out their limitations. Since the blood-
brain barrier (BBB) and blood-retinal barrier (BRB) are understood to play a fundamental role
respectively in brain and eye functions, both in health and in disease, we provide an overview of the
progress in the development techniques of in vitro models as reliable and predictive screening tools
for BBB and BRB-penetrating compounds. Furthermore, we propose potential future directions for
brain and retinal organoids, in which dedicated biobanks will represent a novel tool for neuroscience
and ophthalmology research.
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1. Introduction

The term “organoids” has been used to define stem cells with the capacity of self-
renewal and self-organization in three-dimensional (3D) structures, containing multiple
organ-specific cells, and resembling in vivo conditions [1,2]. The resulting organoids remain
committed to their tissue of origin. They express key structural and functional properties
of several organs, including the brain [3,4] and retina [5]. Organoid 3D cultures can be
generated via a variety of sources, from spheroids derived from adult stem cells (ASCs),
embryonic stem cells (ESCs), progenitor cells, or induced pluripotent stem cells (iPSCs) to
tissue or organ explants [6-8]. Human pluripotent stem cells (hPSCs), including human
embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs), are cells
with the ability to self-renew and develop into all cell types in a human adult body [9]. hP-
SCs can produce valid in vitro models for dissecting disease mechanisms, discovering novel
drug targets, screening drug candidates, and evaluating drug safety and efficacy [10]. ESCs
facilitate research on mammalian neuronal development, neurodegenerative disorders, and
regenerative therapies [11]. Three-dimensional technology can be used to model human
organ development and several human diseases “in a dish” [12]. In addition, evidence
indicates that patient-derived organoids can predict drug responses to cancer [13]. Indeed,
biobanks of patient-derived tumor organoids are used in drug development research, and
they are promising for evolving personalized and regenerative medicine [14-17].

The road map for our exploring the brain and the retinal organoids relies on the fact
that brain and retinal tissues, due to neuronal activity, are the main energy-demanding
systems in the body [18]. Other principles on which our reasoning is based regarding
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the common embryological origin [19-21] and the now understood intertwining between
brain disorders and eye diseases [22]. Studies of Alzheimer’s disease (AD) and glaucoma
have demonstrated neurodegenerative changes and disease traits in both brain and eye
regions [22-25]. Remarkably, anatomical and functional alterations, such as the thinning
of the ganglion cell and retinal nerve fiber layers [26], the presence of protein aggregates,
and glial activation [27-29] can be detected in the postmortem evaluation of the retina
in AD patients and animal models, thus strengthening the idea that the retina could be
exploited in early AD diagnosis. Moreover, visual deficits, including difficulty reading [30],
depth perception [31], and color recognition [32], are also reported in the early stages of AD.
Changes in retinal structure and function have been reported in other neurodegenerative
disorders, such as Parkinson’s disease (PD) [33].

We review here how the brain and retinal organoids have been developed and an-
alyzed technically. They have been used as tools for modeling neurological and eye
diseases, as well as considering their potential for translational applications. Furthermore,
this review is focused on the importance of blood-brain barrier (BBB) and blood-retinal
barrier (BRB) in vitro models as reliable and predictive screening tools for BBB, and BRB-
penetrating compounds, also discussing shortcomings, limitations, and advantages of
developed 3D cultures.

2. Brain Organoids to Investigate Brain Disorders

Protocols to generate brain organoids have already been reviewed and modified by
several studies, often with overlapping approaches, highlighting factors that are most
relevant for an effective differentiation [34,35]. The serum-free culture of embryoid bodies
(SFEBq) method to generate 2D and 3D neuronal cell types from ESCs has been widely
used [36-38]. In several brain organoid protocols, basement membrane matrices, such as
Matrigel, have been applied as it has been shown to be an effective scaffold [37]. How-
ever, these matrices show some problems: batch-to-batch variability during manufacture,
complicated imaging, risk of contamination, and high cost [34,35].

Recently, Gabriel et al. [39] have demonstrated that hiPSC-derived brain organoids
assemble forebrain-associated bilateral optic vesicles (OV), which form progressively as
visible structures. These OV-containing brain organoids (OVB-organoids) constitute a
developing OV’s cellular components, including primitive corneal epithelial and lens-like
cells, retinal pigment epithelia, retinal progenitor cells, axon-like projections, and electrically
active neuronal networks. OVB-organoids developed both neural and non-neural cell types.
Interestingly, these OVB-organoids are light-sensitive. Thus, brain organoids have the
intrinsic aptitude to self-organize forebrain-associated primitive sensory structures in a
topographically restricted way and can allow interorgan contact studies within a single
organoid. In future studies, strategies could be applied to keep the OVB-organoids viable
to examine mechanisms that cause retinal disorders [39].

Region-specific neural organoids can be created by the differentiation of hiPSC [40].
These organoids can recapitulate distinct brain regions that arise during human brain
development, as it has been shown in cortical plate [41], forebrain [42], midbrain [43], and
hypothalamic organoids [44]. These self-assembly platforms can mimic some features of
human brain development, for instance, topological organization analogous to human
tissue and can even create functionally mature brain cells synaptically connected [42].
Although human brain organoids can be used to answer many questions, there are some
limitations, related to ESCs-derived organoids, since they more closely resemble immature
brains and are not suitable to model specifically old age diseases, such as AD; nevertheless,
it is an approach to investigate an array of otherwise difficult to study conditions such as
neurodevelopmental handicaps, genetic disorders, and neurologic diseases [45]. Then, a
more specific protocol should be applied to study specific brain regions [46,47].

Brain organoids represent a powerful in vitro approach to model neurodevelopmental,
psychiatric, and neurodegenerative diseases (Table 1).
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Many researchers developed cerebral organoid models that generate functional cor-
tical neurons and can sum up forebrain, midbrain, and hindbrain areas with functional
electrophysiological properties to probe the neurodevelopmental mechanisms of autism
spectrum disorder (ASD), excessive growth of the fetal brain or macrocephaly [48], and
microencephaly (MCPH) [37,49,50]. Severe MCPH in infants born has been correlated to
prior/premature exposure to Zika virus (ZIKV). Brain organoids are a powerful tool to
analyze rapidly the effects of ZIKV on human brain development, providing insight in a
short time [49]. Several studies reported an effect of ZIKV on brain organoids [46,51-55].
ZIKV infection leads to increased cell death and reduced proliferation, resulting in de-
creased neuronal cell-layer volume resembling MCPH [46]. In addition, Garcez et al. [53]
found that ZIKV reduces cell viability and growth in neurospheres and brain organoids,
suggesting that ZIKV abrogates neurogenesis during human brain development [49]. More-
over, iPSCs-derived cerebral organoids from a patient with abnormal spindle-like primary
microcephaly (ASPM) could recapitulate neurogenesis abnormalities in the disease [50].

In addition, for studying the mechanism underlying diseases involving well-defined
brain malformations, organoids derived from hPSCs bearing causal mutations for neurode-
velopmental and psychiatric diseases [56-61] can be used to identify previously unknown
abnormalities. Brain organoid models sum up aspects of neurodegenerative diseases,
including AD [62-64] and PD [65-68], and exploring the utility of these models for thera-
peutic applications is critical. The generation of models based on disease-specific iPSCs
simplifies the progress toward studying Huntington’s disease (HD) and screening potential
treatments. However, the neurodegenerative process of HD does not affect just a single
population of cells but different tissue types. The resolution of this issue could be the
generation of brain organoids [69], which has already been successfully performed by
Conforti et al. [70].

Concerning translational applications, the use of brain organoids has been explored
only in hPSCs models of ZIKV and congenital brain malformation (CBM) [37,46,55], and
not in mice [37] or primate [71] PSCs models. This is because the translational applications
of brain organoids are limited by high heterogeneity between cell lines, prolonged culture
times, and laborious procedures. Studies attempting to standardize organoid differentiation
have found that cell line-specific variables influence differentiation efficiency during the
initial stages [72].

3. Retinal Organoids for Disease Modeling Application

Taking advantage of the original retina organoid protocol [73], retinal organoids that
closely resemble the retina using mouse and human stem cells following several differentia-
tion procedures were developed [74-78]. These organoids largely recapitulate major cellular
and molecular events of in vivo retinal morphology and retinogenesis, with appropriate
apical-basal polarity and time-dependent self-patterning of major cell types into a laminated
structure [73]. However, incomplete functional maturation of photoreceptors in culture is
still present after differentiation protocols as consequence retinal organoids are generated
with no light responses and undeveloped outer segment-like structures [74,76-80]. Recent
differentiation protocols are time consuming and labor intensive for isolating OV-like
structures from adherent cultures by dissection [81]. This impedes applications that re-
quire large-scale production of retinal organoids, for example, biochemical studies and
high-throughput drug screening. Overcoming this issue, Regent et al. [82] have reported
a simple and efficient technique for generating retinal organoids by scraping the entire
adherent cell culture and growing the resulting cell aggregates in a free-floating condition.
Following this procedure, retinal organoids were often generated with the retinal pigment
epithelium (RPE), and OV developed morphologically well-defined and was harvested
easily in a few days. A successful protocol was also designed by Cowan et al. [83], who
developed light-sensitive human retinal organoids with three nuclear and two synaptic
layers, functional synapses from iPSCs, and their production was in large quantities. Single-
cell transcriptomes from cells dissociated from developing human multilayered organoids
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revealed progressive maturation of retinal cell classes and showed that matured organoids
reached a stable “developed” state in vitro at a rate similar to human retina development
in vivo [83].

Since the retina can be defined as the window to the mind, the dysfunction of retinal
neurons in age-related macular degeneration (AMD), glaucoma, or diabetic retinopathy
(DR) is a major cause of blindness. Hereditary eye degenerative diseases, such as retinitis
pigmentosa (RP) and Leber congenital amaurosis (LCA), are genetically and clinically
heterogeneous conditions that lead to progressive loss of vision and blindness as the
outcome, which is one of the most feared disabilities, as effective treatments do not currently
exist [84]. Retinal organoids derived from hPSCs have significantly improved our tools
to study human development and eye degeneration diseases such as RP, AMD, and LCA
in the dish (Table 1), as reported by many studies [5,77,85-90]. Several studies suggest
retinal organoids with eye cup-like structures may provide insight into developmental
and regenerative processes [88]. Moreover, retinal organoids carrying eye disease-causing
mutations could potentially recapitulate disease progression in vitro and facilitate the
development of effective treatments [91].

Table 1. Human pluripotent stem cells-derived brain and retinal organoids for modeling diseases.

Tissue/Organ Source Disease Modeled References
Microcephaly primary hereditary [37,49,50]
Zika virus, congenital brain malformation [46,49,51-55]
Autism spectrum disorders/macrocephaly [48]
Rett syndrome [56]
Brain hPSCs Miller-Dieker syndrome [57,58]
Sandhoff disease [59]
Schizophrenia [60,61]
Alzheimer’s disease [62-64]
Parkinson’s disease [65-68]
Huntington’s disease [69,70]

Retinitis pigmentosa,

age-related macular degeneration [5,77,85-881

Retinal hPSC
ehna ° Leber congenital amaurosis [88,89]

Glaucoma [90]

Abbreviations: hPSCs, human pluripotent stem cells.

Currently, insufficient therapeutic possibilities are available due to the physiologic
differences between human and animal models, and the lack of efficient in vitro systems.
Regardless, retinal organoids have been used for cell replacement therapy studies [92-94].
Stem cell transplantation studies showed that this therapy is a promising approach to
restore visual function in eyes with degenerative eye diseases such as RP, AMD, and
Stargardt’s macular dystrophy. For translational applications, orthotopic transplantation of
retinal organoids has been explored both in murine [95] and in primate [96] models of eye
degeneration. However, the translational applications of retinal organoids are limited by
high heterogeneity between cell lines, prolonged culture times, and laborious procedures.
Studies attempting to standardize organoid differentiation have found that cell line-specific
variables influence differentiation efficiency during the initial stages [81]. Furthermore,
approaches to handling organoids over these prolonged culture periods determine the
efficiency of maturation at later stages [97].

Given these issues, it is of the utmost importance to ensure that the initial differentia-
tion and generation of retinal organoids are properly accomplished. The maintenance and
maturation of organoids are consistent and reproducible [98]. In accordance, other review-
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ers highlighted the limitations of retinal organoid technologies [99-101]. Despite initial
successful attempts at modeling inherited retinal dystrophies [102], the high complexity
and low yield in current protocols remain substantial technical challenges [100], and many
questions remain still open [11,99].

4. Brain and Retinal Organoid Research: Analytical Techniques

Organoid studies have mainly relied on phenotypic readouts thus far (that is, as-
pect, shape, and number of organoids) [72]. In Table 2, we summarize the analytical
techniques applied up to now to brain and retinal organoids research: image-based
analysis [37,43,46,48,65,86,103-105]; protein determination and quantification [106]; gene
analysis [103,107-109].

Table 2. Analytical techniques in brain and retinal organoids research.

Analytical Techniques PhySl;?LfiT:ﬁz‘;cshmcal Advantages Disadvantages References
Image-Based Analysis
Hi.s tochemistry Destroying technique; Consolidated Reduced thrf)ugh put
irilrﬁgoiggé ianrilig rigorous requirement for procedure; simple anij;;?crzgl:j: 1;>fn, a BOs: [37,103]
Immunofluorescence fixing and cutting of tissues maging standard stains
Only for electrically active ~ Functional valuation;  Reduced throughput BOs: [43,46,48,65]
Electrophysiology cells such as neurons or cells intrinsic and difficult sample 'ROsf [8’ o] !
(photo)receptors properties data preparation '
Concomitant imaging of Reduced throughput
. . . several organoids not Appropriate for live and difficult sample BOs: [104]
Light-sheet imaging allowed because the small imaging; 3D data preparation; restricted ROs: [105]
sample size to one condition
Protein Determination And Quantification
Functional data
(proteins amount and Reduced
Immunoassays . . interactions, PTMs); automatiza-tion; .
(ELISA, WB) Destroying technique high sensitivity labor-intensive; no 3D BOs: [106]
(ELISA) as well as data
specificity (WB)
Gene Analysis
Destructive method; Quantitative gene
qRT-PCR mRNA levels are only a expression levels, No data of protein BOs: [103]

proxy for the functional
state of a cell

high-sensitivity

quan-tities

Gene expression and
RNA sequencing

Destroying technique;
scRNAseq necessitates

pure single-cell preparation

Entire transcriptome
data; scRNAseq has
single-cell-level
resolution

Expensive; reduced
throughput; expertise
required about study

and processing

BOs: [107-109]

Abbreviations: BOs, brain organoids; ELISA, enzyme-linked immunosorbent assay; PTMs, post-translational
modifications; ROs, retinal organoids; scRNAseq, single-cell RNA sequencing; WB, Western blot.

These techniques range from optical observation, which is the most powerful and
oldest technique in biological research, to gene expression, less explored in the brain
and retinal organoid development. Collectively, the data showed different limitations,
reduced throughput, and increased cost for certain techniques that should be improved
(e.g., gene analysis).
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5. Comparison of Blood-Brain and Blood-Retina Barriers: Structure, Homeostasis,
Damages and Permeability

The BBB is a dynamic interface that plays a key role in the homeostasis maintaining
of the central nervous system (CNS) [110]. BBB defines the exceptional properties of the
microvasculature of the CNS. The cerebral blood vessel formed by ECs is an essential
element of the BBB [111]. The ECs layer has continuous intercellular tight junctions (TJs),
and it is not fenestrated. Therefore, the movements of molecules, ions, and cells are
extremely low through them and limited by a series of specific transporters, which allow
delivery of nutrients to the brain and extrusion of potential toxins and pathogens [111,112].
The development and conservation of the BBB are governed by interactions with different
vascular, immune, and neural cells [113]. Astrocytes, pericytes, and extracellular matrix
(ECM) elements offer both structural and functional support to the BBB. In addition, a
dynamic functional unit is represented by the neurovascular unit (NVU), which refers to
neurons, microglia, and peripheral immune cells that likewise participate in this cellular
interplay [114]. Even if this heavily restricting barrier capacity allows BBB ECs to regulate
CNS homeostasis, it provides an obstacle for drug delivery to the CNS, and thus, major
efforts have been made to create methods to modulate or bypass the BBB for delivering
therapeutics [115]. Experimental and clinical evidence show that BBB dysfunctions can
induce ion dysregulation, altered signaling homeostasis, as well as access of immune cells
and molecules into the CNS. These processes lead to neuronal dysfunction and degeneration
with increased susceptibility for AD, PD, HD, and amyotrophic lateral sclerosis (ALS),
brain tumors, epilepsy, stroke, and glaucoma [110-113,116-118]. Like the BBB, the BRB also
plays an essential role in maintaining the health of the CNS. These two systems have shown
partially overlapping roles in the postnatal brain and retinal vasculatures [119]. The BRB is
indispensable in maintaining an appropriate environment for optimal retinal function [120].
Indeed, vasculature and BRB alterations are extensively reported in the AD retina, and their
investigation as possible diagnostic tools is under evaluation [121-123]. Retinal tau protein
plays a key role in regulating axonal transport and signaling in the retina [124]. Reduced
clearance of retinal beta-amyloid (Af) and other neurotoxic substances contribute to BRB
dysfunction and breakdown [125], inducing a persistent inflammatory state [126,127].

BRB is composed of both an inner (iBRB) and an outer barrier (0BRB), whose key
differences were previously summarized by [128]. While the iBRB is formed by TJs between
retinal capillary endothelial cells (RCECs), the oBRB is composed of TJs and RPE, which
separate the neural retina (NR) from the fenestrated vascular system of the adjacent choroid
plexus. This oBRB regulates the molecular movements of solutes and nutrients from the
choroid to the sub-retinal space. In contrast to the oBRB, the BBB is established by ECs
rather than by epithelial cells. In the brain, ECs differentiate in a CNS-specific manner
under the stimulus of astrocytes [129], whereas RPE cells in the eye are able to produce
barrier features in the absence of astrocytes [130]. However, in both cases, the expression of
blood-barrier markers such as HT7-neurothelin and the endothelial barrier antigen (EBA)
is extremely upregulated when barrier function is established during development [131].
On the contrary, the iBRB, like the BBB, is localized in the inner retinal microvasculature
and includes the microvascular endothelium, which lines these vessels. The TJs situated
between these cells induce extremely selective diffusion of molecules from the blood to the
retina, and the barrier is crucial to preserve retinal homeostasis. The retina has the highest
oxygen consumption per weight of any tissue in the body and the BRB (both outer and
inner) is essential in providing certain nutrients to maintain this high metabolic rate [128].

TJs in both the iBRB and the oBRB are complex dynamic structures. In the context of
these barriers, the integrity of these TJs is decisive to sight [128]. Indeed, an accumulation
of blood-borne proteins and other possibly toxic solutes within the retina can be induced by
damage to either of these barriers [132]. In particular, the disruption of the 0BRB increases
the incidence of ocular pathologies, such as DR and diabetic macular edema (DMO), AMD,
central serous chorioretinopathy (CSCR), Sorsby’s fundus dystrophy, and RP [128,132].
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Even if epithelial oBRB and endothelial BBB have developed as separate entities with
many site-specific functions, their transport and permeation features show surprising simi-
larities that consist of the polarized expression of the two major efflux pumps belonging
to the ATP-binding cassette (ABC) family of transporters: multidrug resistance protein
(P-gp) and multidrug resistance-associated protein (MRP) [131]. Moreover, differences
were reported in ABC-transporter expression/function at the BBB and the BRB. The phar-
macokinetics and pharmacodynamics of drugs targeting the brain and retina may differ in
this regard [133]. As with the BBB, lipophilic substances showed high permeabilities also
across the BRB through passive diffusion [134,135]. Lipid-soluble (lipophilic) compounds
with low molecular weight (MW) and positive charge can cross the BBB [136]. MW is an
important parameter in determining the free diffusion of small molecules across the BBB
as well as the BRB. Once the MW is >400 Da, the BBB permeability of the drug does not
increase in proportion to lipid solubility; indeed, the largest (500 kDa) molecules fail to
penetrate the brain. An increase in the surface area of a drug from 52 A? (e.g., a drug with
an MW of 200 Da) to 105 A2 (e.g., a drug with an MW of 450 Da) dramatically decreases its
BBB permeation [137]. In addition, the compounds with the ability to cross the BBB should
have a log[brain]/[blood] (logBB) > 0.00 [138]. Recently, a dataset for modeling BBB per-
meability of small molecules providing some physiochemical similarities and differences
was published [139]. Several biomarkers that can help to assess the BBB permeability and
integrity in vitro or in vivo are reported [140]. Unfortunately, a very limited number of
studies have been conducted to obtain experimental data on BRB permeability. Also here,
lipophilicity, extremely small MW, and charge are the main physical-chemical parameters
that determine the highest RPE permeability [141-143]. There are few studies providing
the permeability coefficients of the RPE [131,142,144]. For instance, the smaller MW and
lipophilic drug lidocaine (288.8 Da, log P = 1.54) revealed the highest permeability, whereas
the larger molecular weight and hydrophilic drug ciprofloxacin (367.8 Da, log P = —0.54)
exhibited the lowest permeability [145]. On the contrary, larger lipophilic molecules and
hydrophilic molecules require ATP-dependent transports to cross the barrier, including
receptor-mediated vesicular transport, non-receptor-mediated pinocytosis, transporters,
and pumps [18,135]. Pharmacokinetic aspects of retinal drug delivery were reviewed
detailly by Del Amo and collaborators [146].

6. Advances in BBB In Vitro Modeling: Organoids

In vitro BBB models are crucial tools for optimizing the transport of drugs across
the BBB. They are also crucial for developing new drugs that reach the brain, and for
predicting which compounds would be effective in treating neurological diseases. In vitro
BBB modeling has been in development since the 1980s [147]. However, reproducing key
BBB properties ex vivo remains challenging.

Many researchers have widely used the static 2D Transwell because it is the simplest
system to represent the BBB. In the most commonly used Transwell system, the ECs are
usually grown in the upper (luminal) compartment of the Transwell in a cell-specific
growth medium. Additional cells, such as astrocytes or pericytes, are normally cultured
on the lower (abluminal) side of the membrane brain [148,149]. Even if this mid- to high-
throughput model offers versatility and ease of culture [148], it has been criticized because
of difficulties of preserving reproducible BBB function and properties [149]. Despite several
well-known limitations, the brain ECs grown in culture are still used to model the BBB.

As stem cell-derived brain ECs are difficult to obtain, immortalized human cell lines
such as human cerebral microvascular endothelial cells (HCMEC)/D3 are often preferred
for a human model BBB [150]. In addition, the cell line primary human brain microvas-
cular endothelial cells (HBMECs) has been shown to give the best barrier properties for
permeability studies using Transwells [151]. First, human cells should be used to diminish
species-specific answers, though they are not often used, as immortalized human cell lines
do not produce an adequately tight barrier [152,153]. Despite this limitation, HCMEC/D3
and HBMECs continue to be used to identify changes in barrier integrity by measuring
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relative values before/after treatment or disruption [151,154]. Immortalized cell lines are
an attractive option due to their low cost, ease of use, and their ability to be passaged
multiple times while retaining BBB transporter expression [150]. Urich et al. [155] re-
ported the successful assembly of human primary astrocytes, pericytes, and ECs into a
BBB spheroidal model. A similar model was investigated by Cho and collaborators [156],
co-culturing primary human astrocytes and human brain vascular pericytes (HBVPs) with
two different human brain EC types: primary HBMECs and immortalized HCMEC/D3. In
accordance, Bergmann et al. [157] described a triple co-culture of HBVPs, primary human
astrocytes, HCMEC /D3 cells, or primary HBMECs under low-adhesion conditions into
a multicellular structure to obtain BBB organoids. These organoids can accurately mimic
the BBB since they display enhanced BBB features (e.g., molecular transporters, expression
of TJs, and drug efflux pumps) as compared with those of ECs cultured in the Transwell
system [156]. Concentrating on the drawbacks of the conventional organoid in vitro BBB
model, the development of a 3D spheroid of BBB has been successfully reported by Nzou
and coworkers [158], proposing a model that closely mimics the human brain tissue since
it is comprised of six cell types found within the brain cortex. These cell types include
HBMECs, HBVPs, human astrocytes (HA), human microglia (HM), human oligodendro-
cytes (HO), and human neurons (HN), with ECs enclosing the brain parenchymal cells. In
addition, Nzou et al. [158] validated the expression of TJs, and transport proteins showed
that this model can be used in toxicity assessment studies for molecules that have the
potential to cross or open the BBB. Despite the current advances in the development of BBB
spheroids and organoids, they usually lack essential elements of the BBB cellular milieu,
including microglia, six distinct cortical layers, and endothelial vasculature. Moreover,
the limited formation of microglia and mature neurons limits its utility for specific in vitro
neurological disorders models [159].

Microfluidic devices have been developed to further improve the physiological char-
acteristics of the BBB in culture. The efforts to produce a more dynamic and realistic
representation of the BBB morphology in a living system by reproducing the microcircu-
latory environment in the brain to account for blood flow and shear stress have induced
the development of the hollow fiber dynamic in vitro BBB model [160] and microfluidic
BBB systems [161,162]. However, these devices are also incomplete in terms of through-
put, and their construction is rather complex, making them moderately unreachable to
many laboratories. One of the recent and most promising approaches is the development
of hiPSC-derived neuronal cultures that can “self-assemble” within microfluidic devices.
Therefore, they promote neurite outgrowth and interaction with other neural cell types
and enhance synaptic connections [163]. These so-called “organs-on-a-chip” (OACC) are
set to revolutionize drug discovery [164]. Park et al. [165] developed a microfluidic BBB-
chip model from hiPSCs that maintains relevant human physiological features for a week,
presents permeability restriction that lasts up to 2 weeks, has high levels of expression of
TJs proteins, and appropriate function of efflux proteins. The group confirmed that the
BBB chip was able induce transporter-mediated drug efflux, including suitable substrate
specificity, and they tested CNS-targeting peptides, nanoparticles, and antibodies crossing
the BBB, demonstrating the BBB chip could test clinically relevant compounds [165].

Finally, in vitro BBB models may be critical to the screening and development of
novel and effective therapeutics against many neurological disorders, and a valid one
to three cell type models have been described [166,167]. Recently, a summary of how
these in vitro models of the BBB can be applied to the study of human brain diseases
and their treatments was extensively reported by Williams-Medina et al. [168]. The latter
have chosen NeuroAIDS, COVID-19, multiple sclerosis, and AD as examples of in vitro
model application to neurological disorders. For modeling neurodegeneration in vitro, the
following methods could be applied in NVU/BBB models: (i) exposure of cultured cells to
Ap in vitro to reproduce amyloid-mediated acute cytotoxicity; (ii) isolation of cells from
the brain of transgenic mice with AD genotype for further co-culture and examination;
(iii) isolation of cells from the brain of animals with non-genetic in vivo models of AD
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(i.e., intrahippocampal injection of Af); (iv) establishment of mixed models consisting of
organotypic culture obtained from the animals with AD model and cells (i.e., BMECs) from
the intact animals; (v) application of genome editing or reprogramming technologies to get
the in vitro model with the desired morphological and functional modifications resembling
those in Alzheimer’s type neurodegeneration [169].

The inconsistent results across animal models of neurological diseases and their impact
on human studies [170,171] suggest that BBB organoids could provide an effective alternative.

7. Conventional In Vitro Models and Organ-on-a-Chip for Innovative BRB

Conventional in vitro models of BRB are important tools allowing us to clarify the
mechanisms involved in retinal pathophysiology as well as the tracking occurring in
the barrier [172,173]. The BRB is an interface extremely controlled that separates the
circulation from the retinal tissue [120]. To resemble this interface Transwell, as in vitro
models of BRB inserts were applied. The Transwell inserts are permeable supports on
which cells are seeded, and that include an apical and basal chamber [174]. Additionally,
these planar models allow us to quantify easily barrier properties through permeability to
fluorescent tracers and transepithelial-transendothelial electrical resistance (TEER) [175]. In
the standard use of Transwell inserts to model the BRB, retinal ECs for the iBRB or RPE for
the oBRB were seeded on the upper compartment of the Transwell to create monoculture
devices or integrated as tri-culture devices where the other cell types are sown on the
opposite side of the insert and-or at the bottom of the well [176-178]. Indeed, co-cultures
of BRB are extensively used to understand the cross-talk between the cells of the retinal
unit. Based on the importance of communication between cells, studies have reported that
the integration of certain cells could influence ECs activities and BRB permeability, also
allowing to explore developmental, functional, and pathological processes of the retina.
Recently, a BRB in vitro model closer to the human in vivo environment was obtained
by co-culturing human retinal endothelial cells, human retinal pericytes, and human
retinal astrocytes [179]. For instance, integrating pericytes, astrocytes, and-or astrocyte-
conditioned medium with ECs in an iBRB Transwell model enhanced TJs proteins and TEER
values compared with monoculture and provided a more relevant frame to investigate
permeability [180,181]. While in an oBRB model, the coculture of ECs-RPE reduced the RPE
barrier properties, this disruption of barrier occurs in ocular pathologies, such as choroidal
neovascularization [178].

In vitro models of BRB have mostly been established using primary cells isolated from
animal or from human samples to increase model relevance to clinical diseases [176-178].
Human immortalized cell lines, such as the RPE cell line ARPE-19, have been developed
to improve availability and robustness [182]. In addition, iPSCs have been developed as a
source to produce retinal cells because of their self-renewal capacity, potential to differenti-
ate into different lineages, and to create vascular progenitors and ECs [74,183-185].

As reviewed by Ragelle et al. [174], conventional in vitro models of BRB can be
improved through OACC systems. They consist of micrometer-sized devices that al-
low the culture of cells under perfusion and, in a spatially precise microenvironment,
mimic tissue or organ physiology. A suitable BRB-on-a-chip should validate appropri-
ate barrier properties with the formation of TJs, reproducible permeability to reference
compounds, and medium-to-high throughput screening capacity [174]. These devices
completely micro-engineered have several advantages: flexibility of design features, the
possibility of integrating analytics directly within the chips, and high-resolution imag-
ing. Finally, the microscale reduces the use of reagents and cells, permits a media-to-cell
ratio closer to physiological values, allows analytical sampling in small volumes, and
favors high-throughput experimentation [186]. Thus, BRB-on-a-chip represents a powerful
in vitro platform in ophthalmic drug discovery and development [174]. Except for OV-
containing brain organoids (OVB-organoids) reported by Gabriel et al. [39], no data have
been published about BRB organoids.
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8. Perspectives: Biobanks

Organoids can be stored in biobanks and used for basic research, organ transplanta-
tion, drug formulation testing [14,16], as well as regenerative medicine [15,16]. Generating
organoid biobanks is crucial for personalized medicine as it brings the ability to perform
high-throughput drug screening, epigenomic and transcriptomic analysis, and copy num-
ber variations of individual patients at a large scale [187]. While biobanks have been
generated for different tumor-derived organoids [188], these can be extended to the devel-
opment of organoid biobanks with individual disease variants derived in ESCs, or from
iPSCs of rare diseases. Since brain organoids were recently identified as a promising living
biobank resource for neuroscience research [189], we hope to see also a retinal organoid
biobank in the future that will accelerate personalized drug development in the ophthal-
mology field. From the future perspective of both these organoids, we propose the potential
applications of organoid culture tools for the advancement of biological research (Figure 1).

(2) Biobank storage

3D Organoid
production

Brain Retinal

(3) l l l ()

Disease modeling Drug screening Personalized medicine

Figure 1. Schematic representation of the workflow from the production of brain and retinal organoids
to their possible conservation/biobanking and potential applications. (1) Healthy or patient-derived
stem cells differentiate and produce brain and retinal 3D organoids. (2) Biobanking, whereby samples
obtained from patients can be used to store patient-generated organoids as a resource for future
research. (3) Disease modeling, to understand the mechanisms of human diseases such as neuronal
disorders and retinal degeneration through various laboratory techniques. (4) Drug screening and
personalized medicine, in which patient-derived organoids can be used to predict drugs response
and as resources for regenerative medicine coupled with genetic engineering.

Patient-derived brain and retinal 3D organoids have provided new insights into
disease modeling and have opened new possibilities for personalized medicine [190].

9. Discussion

Organoid systems leverage the amazing self-organizing properties of stem cells to
re-create complex tissue and organ development in a dish. In vitro organoids are extremely
attractive for broad applicability, ranging from understanding the basic developmental
dynamics to drug treatment personalization or autologous cell therapy. This is because
of their proximity of cell-type composition, structural organization, and functionality to
the respective in vivo tissues [1,12,15]. An obvious advantage of organoid cultures for
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disease modeling, compared with traditional cell cultures of a single cell type, is their
ability to mimic large quantities of pathologies by recapitulating specific human features
that could be relevant for translational studies [191]. Brain organoids represent a powerful
in vitro approach to model brain development [35,108,192], understand neurodevelopmen-
tal diseases [193], recapitulate aspects of neurodegenerative diseases [194-197], and for
personalized drug screening when an individual’s hiPSCs are used [49,198]; while retinal
organoids have been reported as human eye disease models, pharmaceutical testbeds, and
cell sources for transplantations [5,82,84,98,100,199,200].

However, the limitations of current organoid systems are several: high culture costs;
limited level of maturity and function; the limited lifespan of organoids is often a direct con-
sequence of restricted accessibility; readouts or measurements are technically challenging in
3D organoids compared to the standard technique in 2D Transwell culture systems to assess
barrier integrity; heterogeneity in organoid formation efficiency, end-point morphology,
and function; variabilities in the organoid generation, which often require multiple experi-
mental steps [72]. Given the lack of reproducibility, novel stem cell-based differentiation
approaches are necessary [72]. One of the primary factors limiting further development of
organoid technology has been size restriction imposed by insufficient nutrient delivery to
the organoid interior due to the absence of vascularization [201,202], which is especially
true for brain organoids [193]. A lack of vascularization additionally prevents the model-
ing of critical aspects of brain physiology, such as the BBB [203]. Similar to the BRB, the
BBB can act as a checkpoint to the transit of many drugs, and for these reasons, in vitro
vascularization of the brain and retinal organoids using ECs might contribute to fostering
the identification and development of new molecular targets [22]. It is well recognized that
in vitro models of BBB and BRB could be used as tools in translational medicine [168,174].
However, no data have been reported yet, because of many limitations of traditional brain
organoid transplant. This is also true for other organ transplant procedures with high
demands and low success rates, such as renal transplants [2]. Recently, a few studies
showed the potential formation of OVB organoids, but not BRB organoids. Based on the
structure and permeability similarities between the iBRB and BBB and the recent technical
advantages, we are confident that as for BBB, also BRB organoids could be created in the
future to recapitulate the key BRB properties and functions. Thus, the development of
BBB and BRB in vitro studies became extremely important as these barriers play a role in
both brain and retinal health and disease. Additionally, BRB- and BBB-on-a-chip have been
developed as microfluidic cell culture devices to overcome the limitations of static in vitro
models. Modifying the architecture of the device allows the recreation of the physiologi-
cal environment in vivo while measuring barrier function. The assessment of barriers in
organs-on-chips can be difficult, but they offer the opportunity of continuous, non-invasive
sensing of barrier quality, which allows better investigation of central aspects of patho-
physiology, biological processes, and progress of therapies that target barrier tissues [204].
The development of more accurate and sophisticated barriers-on-a-chip with the capacity
to grow in vitro connected with appropriate vascular supplies and nerves, paves the way
for the development of functional and integral in vitro BRB and BBB models and offer
a promising avenue by enabling future research scientists to perform experiments on a
realistic replica when testing the effectiveness of novel experimental therapies [168,174].

In this review, we summarized the analytical methods applied in the brain as well as
in retinal organoids research and, based on the disadvantages (e.g., reduced throughput
and difficult sample preparation), we assess the necessity of improving certain techniques,
which, in turn, allow accurate disease modeling. We review that these organoids are ef-
fective in vitro tools for disease modeling: while brain organoid technology has greatly
enhanced neurodegenerative and neurodevelopmental disease and psychiatric disorders
research [193,205], also the retinal organoid has improved visual research [5,200]. Indeed,
we highlight that organoids from hPSCs-based retinal and brain organoids provide an
outstanding opportunity to explore cellular and subcellular functions within in vitro mod-
els that closely recapitulate the native 3D configuration of the human neural tissue [22].
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Theoretically, brain and retinal organoids offer a potential alternative to cell and whole
organ transplantation by providing autologous tissue. However, the lack of studies in
which brain and retinal translational applications have been carried out does not allow to
make a definitive conclusion about their roles and potentialities in neurological /retinal
disease research [37,46,55].

10. Conclusions

To conclude, there are still many obstacles to overcome before iPSC-derived technology
can be used directly in retinal degeneration and neuronal diseases, as well as in translational
studies. These in vitro platforms offer promising tools to develop novel in vitro therapeutic
approaches [165,206]. Large cohort iPSC-based studies could be allowed by biobanking,
which can significantly drive iPSC-based therapeutic applications in the future [207].
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