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Abstract: One of the major concerns in 5G IoT networks is that most of the sensor nodes are powered
through limited lifetime, which seriously affects the performance of the networks. In this article,
Compressive sensing (CS) technique is used to decrease transmission cost in 5G IoT networks. Sparse
basis is one of the important steps in the CS. However, most of the existing sparse basis-based
method such as DCT (Discrete cosine transform) and DFT (Discrete Fourier Transform) basis do
not capture data structure characteristics in the networks. They also do not take into consideration
multi-resolution representations. In addition, some of sparse basis-driven methods exploit either
spatial or temporal features, resulting in performance degradation of CS-based strategies. To address
these challenging problems, we propose a novel spatial–temporal correlation basis algorithm (SCBA).
Subsequently, an optimal basis algorithm (OBA) is provided considering greedy scoring criteria.
To evaluate the efficiency of OBA, orthogonal wavelet basis algorithm (OWBA) by employing NS
(Numerical Sparsity) and GI (Gini Index) sparse metrics is also presented. In addition, we discuss
the complexity of the above three algorithms, and prove that OBA has low numerical rank. After
experimental evaluation, we found that OBA is capable of the sparsest representing original signal
compared to spatial, DCT, haar-1, haar-2, and rbio5.5. Furthermore, OBA has the low recovery error
and the highest efficiency.

Keywords: 5G IoT networks; compressive sensing; spatial–temporal correlation; sparse basis

1. Introduction

Tens of billions of objects are connected to the 5G communication networks. These
objects form the well-known Internet of Things (IoT), which is a promising application
in future wireless networks [1–3]. However, 5G IoT networks face serious challenges,
which are caused by the complex, variable communication environment and big data
produced. Therefore, the main issue is reducing energy consumption in 5G IoT networks.
Compressive sensing (CS) [4–8] presents some novel data-gathering strategies to reduce
energy consumption in networks. According to the spatial, temporal, or spatial–temporal
correlation characteristics of sensory data of 5G IoT networks, CS technique is able to
recover the original senor node readings from N nodes with the help of M(M << N) CS
measurements as long as the signal can be sparsely represented in a certain transform
domain [9,10]. CS is also capable of performing sensing and compression simultaneously
to decrease transmission costs, aiming to save energy consumption for each node in the
network.

A variety of compressive data-gathering schemes have been investigated for net-
works [11–24]. In reference [11], sparsity in each of the decorrelated streams is used for
temporal compression. In addition, the multivariate data are characterized using multi-
variate normal autoregression-integrated moving-average modeling before compression.
Soheil Salehi et.al. proposed an adaptive compressed sampling via multi-bit crossbar

Sensors 2021, 21, 6899. https://doi.org/10.3390/s21206899 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21206899
https://doi.org/10.3390/s21206899
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21206899
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21206899?type=check_update&version=3


Sensors 2021, 21, 6899 2 of 23

array approach to intelligently generate the CS measurement matrix using a multi-bit STO-
MRAM crossbar array. In addition, energy-aware adaptive sensing for IoT was introduced.
It determined the frequency of measurement matrix updates within the energy budget of an
IoT device. Qiao et al. proposed a media modulation-based mMTC (massive machine-type
communication) solution for increasing the throughput. This technique leveraged the
sparsity of the uplink access signals of mMTC received at the base station. A CS-based
massive access solution was also promoted for tackling the challenge [13]. In reference [14],
novel effective deterministic clustering using the CS technique was introduced to handle
the data acquisition. Han et al. in reference [15] proposed a multi-cluster cooperative CS
scheme for large-scale IoT networks to observe physical quantities efficiently, which used
cooperative observation and coherent transmission to realize CS measurement. However,
existing sparse bases such as DCT (Discrete Cosine Transform), DFT (Discrete Fourier
Transform) basis, and PCA (Principal Component Analysis) do not capture data struc-
ture characteristics in networks. As one of the statistical anomaly detection approaches,
PCA can be applied to mark fraudulent transactions by evaluating applicable features
to define what can be established as normal observation, and assign distance metrics to
detect possible cases that serve as outliers/anomalies. However, it uses an orthogonal
transformation of a set of observations of probably correlated variables into a set value
of uncorrelated variables in a linear way. It serves a multivariate table as a smaller set of
variables to be able to inspect trends, bounces, and outliers. In addition, the PCA method
does not detect internal localized structures of original data. On the other hand, the PCA
method does not provide multi-scale representation and eigenvalue analysis of data where
the variables can occur in any given order. PCA achieves an optimal linear representation
of the noisy data but is not necessary for noiseless observations in networks. It also does
not gain multi-resolution representations. The proposed method in this paper has better
performance in a noiseless environment for anomaly detection or outlier identification.

Some of the existing CS-based strategies try to exploit either spatial or temporal corre-
lation of sensor node readings. Hence, the performance improvement brought by the CS
approach is limited. Sensor node readings are generally periodically gathered for a long
time. Therefore, the temporal correlation of each node can be further used. Additionally,
sensor node readings have spatial correlation characteristics. Consequently, in this paper,
spatial and temporal correlation features are both exploited to enhance data-gathering
performance. As we know, for CS-based data-gathering methods, there are two important
factors—sparse basis and measurement matrix—which should be considered. The mea-
surement matrix includes the dense matrix [10] and the sparse matrix [24]. In reference [10],
Luo et al. provided a dense matrix, which satisfied RIP. Unfortunately, this type of matrix
has high computational complexity, resulting in a high cost to transform network data.
Therefore, Wang et al. presented a sparse random matrix, which demonstrated that this
kind of matrix had optimal K-term approximation [24]. Through many of experiments, Li
et al. showed that recovery accuracy of sparse binary matrix outperformed existing sparse
random matrixes [25]. As a result, the sparse binary matrix was used to gather data and
reconstruct original data.

Sparse representation of sensory data aims to achieve the sparsity basis of sensor node
readings. In this paper, a spatial–temporal correlation basis algorithm (SCBA) of sensory
data from the detected field will be constructed in detail. Zhao et al. first adopted the trans-
form in [26] to design a clustered compressive data aggregation scheme in networks [27].
Unlike reference [26], in this paper, according to sensory data characteristics, we design
SCBA technology for 5G IoT networks. The optimal basis algorithm (OBA) is provided.
At the end, we analyze the SCBA numerical sparsity using different sparsity metrics, and
calculate the recovery error in view of different amounts of measurement combined with a
sparse binary matrix.

The main contributions of this paper are as follows.
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• We analyze various real datasets of 5G IoT networks in terms of the exponential model
and rational quadratic model, respectively. It shows that sensory data have high
spatial–temporal correlation features.

• In this paper, the SCBA method is put forward. In this algorithm, numerical sparsity is
introduced to evaluate the performance of various sparse bases. In addition, algorithm
complexity is also calculated. On the other hand, the OBA algorithm considering
greedy scoring is presented. To compare the performance of the proposed SCBA with
wavelet bases, the orthogonal wavelet basis algorithm (OWBA) is also presented.

• We implement a variety of experiments based on real datasets of 5G IoT networks, in-
cluding noiseless and noise environments. We compare our proposed SCBA with other
sparse bases in view of different numerical sparsity and various recovery algorithms.
Experiments demonstrate that the novel SCBA has better performance.

The rest of the paper is organized as follows. Section 2 presents related work. Section 3
provides CS backgrounds, the network model, and two different sparsity metrics. The
spatial–temporal correlation properties of sensory data are analyzed though the power
exponential (PE) model and the rational quadratic (RQ) model of networks, SCBA is
constructed, and OBA is proposed in Section 4. Section 5 calculates the time complex of
these proposed algorithms. In Section 6, to verify the effectiveness of our presented algo-
rithm, experiments on real datasets are carried out and related discussions are investigated.
Conclusions and future work are given in Section 7. A notation table is given in the Table 1.

Table 1. Notation descriptions.

Name Notation

M CS measurements
N the number of nodes
X N-dimension signal vector
K the number of sparse signals
Ψ sparse basis matrix
Φ measurement matrix
S coefficient vector
G(V, E) an undirected graph
V vertex set
E wireless link
ρ correlation function
Σ covariance matrix
‖‖1 1-norm
‖‖2 2-norm

2. Related Work

Previous work related to sparse bases in networks can be sorted into the following
four categories. The first is that they neither consider the spatial correlation nor consider
the temporal correlation of sensory data in WSNs. For instance, DCT sparse basis [19]
was used and cost-aware stochastic compressive data-gathering was proposed. A Markov
chain-based model was required to characterize the stochastic data-collection process. Sun
et al. [6] modeled the data loss induced by packet collisions and confirmed the correspond-
ing compressive sensing projection matrix using the data loss pattern. Random sampling
at each node was adopted and the optimal sensing probability was obtained. In the work
in [6], a DFT sparse basis was used to recovery original data. Ebrahimi et al. investi-
gated the use of unmanned aerial vehicles (UAVs) for gathering data in networks [22].
Projection-based compressive data-gathering (CDG) was attempted to aggregate sensory
data. Projected nodes were chosen as cluster head nodes (CHs), while the UAV transferred
that collected sensory data from the CHs to a distant sink node.
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Another method is to only take into account the spatial correlation of sensory data.
For example, Wu et al. [28] proposed covariance-based sparse basis. The covariance matrix
was defined as follows:

Σ = E(XXT) (1)

where Σ is a real symmetric matrix, and can be represented as

Σ = UΛUT (2)

In reference [28], U is used as a sparse basis.
A third is to only take into consideration the temporal correlation of sensory data.

Wu et al. [29] observed that the soil moisture process was relatively smooth and changed
slowly, except at the onset of a rainfall. This technique tried to consider the difference
between two adjacent sensory data samples, and the signal might be sparse represented.
Therefore, the difference matrix was defined using Equation (3).

The fourth is to not only consider spatial correlation but also consider the temporal
correlation of sensory data. Chen et al. provided a Fréchet mean estimate sparse basis [30].
In this work, both the intra-sensor and inter-sensor correlation were exploited to decrease
the number of samples required for recovering of the original sensory data. It depicts that
spatial and temporal correlation of a signal are considered simultaneously. Moreover, a
Fréchet mean enhanced the greedy algorithm, called precognition matching pursuit (PMP).
Quer et al. [31] investigated the problem of compressing a large and distributed signal
of networks and reconstructed it though a small number of samples. Bayesian analysis
was proposed to approximate the statistical distribution of the principal components, and
to demonstrate that the Laplacian distribution provided a precise representation of the
statistics of original sensory data. Principal Component Analysis (PCA) was exploited
to capture not only the spatial but also the temporal correlation features of real data. In
reference [32], covariogram-based compressive sensing (CBCS) was presented. In particular,
Kronecker CS framework was employed to leverage the spatial–temporal correlation
characteristics. CBCS performance showed that it was superior to DFT, distributed source
coding, etc. It was also able to adapt efficiently and promptly to change for the signal.

Ψ =



−1 1 0 · · · 0 0
0 − 1 1 · · · 0 0
0 0 − 1 · · · 0 0
... · · · · · · · · ·

...
...

0 0 0 · · · − 1 1
0 0 0 · · · 0 − γ′


(3)

Motivated by the fourth type of sparse representation basis, this paper produces SCBA
aiming for the sparest representation of the sensory data in 5G IoT networks such that
there is a reduction in energy consumption.

3. Problem Formulation
3.1. Compressive Sensing Overview

Compressive sensing provides a novel paradigm for signal sampling and compression
in 5G IoT networks. The theory states that a sparse or compressible signal can be recovered
with high accuracy from a small part of measurements, which is far smaller than the length
of the original data. For instance, given an N-dimension signal vector, X = (x1, x2, . . . , xn)

T

describes the sensor node readings in networks with N nodes. We know that X is a K-sparse
signal if there are only K(K << N) non-zero components, or (N − K) smallest components
can be ignored in X. Then, X can be expressed as follows:

X = ΨS =
N

∑
i=1

ψisi (4)
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where Ψ = [ψ1, ψ2, . . . , ψN ] ∈ <N is given a sparse basis matrix and S ∈ <N is the
corresponding coefficient vector.

To decrease the dimensionality of X, a measurement matrix Φ ∈ <M×N is adopted
to achieve an M-dimensional signal Y ∈ <M, and K < M < N. In addition, the CS
technique asserts that a K-sparse signal X can be reconstructed with high accuracy from
M = O(K log(N/K)) linear combinations of measurement Y. The measurement matrix can
be a Gaussian or Bernoulli matrix that follows the restricted isometry property (RIP) [33].

Definition 1. (RIP [34]): A matrix Φ satisfies the restricted isometric property of order K if there
exists a parameter δK ∈ (0, 1) so that

(1− δK)‖X‖2
2 ≤ ‖ΦX‖2

2 ≤ (1 + δK)‖X‖2
2 (5)

for all K-sparse vectors.
Candès et al. have demonstrated that reconstructing the signal X from Y can be

obtained by solving an l1-minimization problem [34], i.e.,

min
X∈<N

‖X‖l1
s.t.Y = ΦX (6)

Furthermore, there is a large number of recovery algorithms, including Basis Pur-
suit (BP) algorithm [33], (Basis Pursuit De-Noising) BPDN [33], Orthogonal Matching
Pursuit (OMP) [35], Subspace Pursuit (SP) [36], Compressive Sampling Matching Pursuit
(CoSaMP) [37], StagewiseWeak Orthogonal Matching Pursuit (SWOMP) [38], Stagewise
Orthogonal Matching Pursuit (StOMP) [39], and Generalized Orthogonal Matching Pursuit
(GOMP) [40].

3.2. Network Model

We consider that one multi-hop IoT network consists of N sensor nodes and one static
sink node. We assume that the sensor nodes are deployed uniformly and randomly in a
unit square area to periodically sample sensory data from the detected environment. The
system model is described by an undirected graph G(V, E), where the vertex set V is the
sensor nodes of 5G IoT networks, and the edge set E denotes the wireless links among those
various sensor nodes. In addition, sensor node readings are obtained from all the nodes and
transmitted to the static sink periodically. We assume that vector X(k) = [x1k, x2k, . . . , xNk]

T

denotes the node readings at sampling instant k, where xik represents node i’s readings.
Figure 1 is the 5G IoT network model. Nodes in IoT networks transmit data by multi-
hop wireless link to the base station. Finally, data are sent to the cloud data center to be
processed.

3.3. Sparse Metrics

It is well known that sparsity K of sensor node readings X in orthogonal basis Ψ is
generally measured by l0 norm, i.e., K = ‖S‖0s.t.X = ΨS. In fact, there is only a small
fraction of larger coefficients including most of the energy. In this section, Gini index
(GI) [41,42] and numerical sparsity [43] are introduced.

Definition 2. Gini Index (GI): If the coefficient vector of signal X in orthogonal basis Ψ is
S = [s1, s2, . . . , sN ]

T , which are arranged ascending order, i.e., |s1′| ≤ |s2′| ≤ . . . ≤ |sN′| , where
1′, 2′, . . . , N′ represent the novel indexes after reordering. Subsequently, GI is denoted as follows:
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Figure 1. 5G IoT networks model.

GI = 1− 2
N

∑
i=1

|si|
‖S‖1

(
N − i + 1/2

N
) (7)

GI implies the relative distribution of energy among the different coefficients. As can
be seen from Equation (7), the value of GI is normalized and ranges from 0 and 1. It turns
out that when GI is large, then the sensor node readings have only a few values that are
dominated. In addition, when GI is small, readings have very few dominated coefficients.
However, since l0-norm is instability in application, alternatively, numerical sparsity is put
forward. Its definition is as follows.

Definition 3. Numerical Sparsity (NS) [43]: If the coefficient vector of signal X in orthogonal
basis Ψ is S ∈ <N×1 , numerical sparsity (NS) of vector X is described.

NS =
‖S‖2

1

‖S‖2
2

(8)

The ratio between ‖S‖2
1 and ‖S‖2

2 is applied to represent l0-norm. For any non-zero
coefficient vector S, l1-norm and l2-norm satisfy the following inequality

‖S‖2 ≤ ‖S‖1 ≤
√

N‖S‖2 (9)

Additionally, the value of NS ranges from 1 and N, and it also has an upper bound,
namely NS ≤ ‖S‖0.

3.4. Spatial–Temporal Correlation Features Analysis of a Real Dataset

The spatial–temporal correlation properties of the various sensor nodes can be gener-
ally exploited to considerably save energy consumption in networks [44]. In this section,
we extract one temperature dataset from Campaign A of DEI [45] that is representative of
other datasets to approximately estimate a spatial–temporal correlation characteristic. A
testbed of DEI at the University of Padova collects sensory data from 68 TmoteSky wireless
sensor nodes. The sensor node hardware properties are an IEEE 802.15.4 Chipcon wireless
transceiver working at 2.4 GHz, and the maximum data rate is 250 kbps. In addition,
in DEI-Campaign A dataset, there are 29 nodes in total, and the frame length of sensor
node readings is 781. Figure 2 plots the temperature signal features of DEI-Campaign
A. The x-axis describes the time slot (frame length), the y-axis is the number of sensor
nodes, and the z-axis is the corresponding temperature values of various sensor nodes.
From Figure 1, we can see that most sensor node readings have a bit of variance, which
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are within the scope 28 ◦C and 31 ◦C. There is only a small fraction of readings with a
lower value of about 22 ◦C. In other words, at the same sampling instant, collected data
of the adjacent nodes has a high spatial correlation characteristic. When sensor nodes
with high density are deployed in the detected field, as shown in Figure 2, a 3D graph has
many planes. Therefore, intuitively, we consider that the real sensor datasets have a high
spatial–temporal correlation.

Figure 2. Spatial–temporal correlation features of DEI-Campaign A.

On the other hand, we also analyze the spatial–temporal correlation features in view
of theory in detail. To investigate the spatial and temporal correlation properties of the real
sensor node readings respectively, we follow a similar method to that provided by Zordan
et al. in reference [46]. To calculate the spatial correlation feature, we chose 29 × 781 pairs
from the whole data. For each pair, we estimated its Euclidean distance d and its own
spatial correlation function ρs with the help of Equation (10) of reference [46]. Subsequently,
we used the same approach as in [41], with 20 intervals divided for the maximum distance
dmax. Afterwards, the average spatial correlation coefficients for all pairs are calculated.
Then, the relationship between spatial correlation and distance is also evaluated by the
power exponential (PE) model and the rational quadratic (RQ) model. Figure 3 depicts the
relationship between spatial correlation ρs and the normalized distance d/dmax ∈ [0, 1] of
the real sensor node readings from DEI, where for the PE model, the parameters ς = 0.693,
and ν = 1.952, while for the RQ model, ς = 1.609, and ν = 2. As can be seen from Figure 3,
the spatial correlation of the real dataset adopted in this paper fits the PE model. Moreover,
ρs values of most of the blue circles in Figure 2 are larger than 0.65 or so, which indicates
that it has a high spatial correlation. Nevertheless, the temporal correlation coefficients of
sensory dataset are also calculated using Equation (11) in reference [46]. It turns out that
the average temporal correlation coefficient of temperature of DEI-Campaign A is 0.9995,
which implies that it also has a strong temporal correlation.

ρs(p1, p2) =
cov(z(p1, t), z(p2, t))

σz(p1, t)σz(p2, t)
(10)

where cov(.) is the covariance function, and ρs(p1, p2) is the spatial correlation function
between any two points p1, p2,p1, p2 ∈ D,t ∈ T. T is the time domain. D is the space
domain.

ρT(t1, t2) =
cov(z(p, t1), z(p, t2))

σz(p, t1)σz(p, t2)
(11)

where ρT(t1, t2) is the time correlation function of any two time samples t1, t2 ∈ T.
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Figure 3. The comparison between the exponential model and the rational quadratic model.

4. Algorithm Details

Sparsest bases play an important role in the compressive data-gathering technique of
networks. DCT, wavelet basis, and the PCA algorithm are widely used in conventional
compressive data-gathering schemes. Unfortunately, these existing sparse bases do not
capture intrinsic features of a signal. Take PCA, for example. PCA can obtain a global
representation, where each basis vector is a linear combination of all the original data. It
is not easy to detect internal localized structures of original data. On the other hand, the
PCA method does not provide multi-scale representation and eigenvalue analysis of data
where variables can occur in any given order. In addition, PCA achieves an optimal linear
representation of noisy data but is not necessary for noiseless observations in networks.
Therefore, when the number of observations is far greater than the number of variables, the
principal elements may be interfered with by the noise. IoT networks fall into this category.
In other words, the number of sensor node observations is no less than the amount of
sensor nodes in the networks. Thus, in this paper, motivated by hierarchical clustering
tree and wavelets [25], a novel algorithm that not only captures localized data structure
characteristics, but also gains multi-resolution representations, is presented. SCBA is
summarized in Algorithm 1.

In Algorithm 1, there are three stages that include the calculation of the two most
similar sum variables, building a hierarchical tree of 2× 2 Jacobi rotations and constructing
a basis for the Jacobi tree Algorithms.

Stage1: For this algorithm, in step 1, covariance matrix Σij is the general covari-
ance, which is shown in Equation (12). The correlation coefficients ρij is described using
Equation (13), and the similarity matrix is represented as Equation (14).

Σij = E[(xi − E(xi))(xj − E(xj))] (12)

ρij =
Σij√
ΣiiΣjj

(13)

SMij =
∣∣ρij
∣∣+ γ

∣∣Σij
∣∣ (14)

where γ ≥ 0. Subsequently, in step 2, we calculate the most similar sum variables based
on the similarity matrix SMij. However, at the initial stage 1, when input dataset is X, for
instance, the size of an extracted matrix from the temperature of the DEI-Campaign A is
29 ∗ 781. If we calculate correlation coefficients between different rows for each column
vector, it means that the spatial correlation is considered. When we calculate correlation
coefficients between different columns for each row vector, it shows that the temporal
correlation is also taken into account. In application, for a detected environment of 5G
IoT networks, we choose datasets as input variables X of several minutes frame length
which are enough to explore the intrinsic features of sensor node readings. By means
of these collected data, we can design a SCBA schedule. Consequently, in the following
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compressive data-gathering scheme, we can combine the measurement matrix with the
given reconstruction algorithm to recover the original signals in the sink node of networks.

Stage2: Steps 3–24 mainly construct a tree of Jacobi rotations. In step 4, variable T
is applied to store Jacobi rotations matrix, while theta denotes rotation angle. Variable
PCindex is the order of the principle component. Next, Step 7 initializes the related
parameters of the algorithm. For the loop, steps 8–24 calculate Jacobi rotations for each
level of the tree. Variable CM and cc represent covariance matrix Σij and the correlation
coefficient matrix ρij, respectively. By naming the newJacobi function, we accomplish a
change of basis and new coordinates, which corresponds to steps 9–15. Steps 16–23 reveal
various approaches of variable storage. Step 16 is the number of new variables for sum and
difference components.p1 and p2 represent the position of the 1st and the 2nd principal
components at step 17, respectively. So far, it has constructed a Jacobi tree.

Stage3: Then, in the following steps, we will produce the orthogonal basis for the
aforementioned Jacobi tree algorithm. The loop of 26–34 is the core of the orthogonal basis
algorithm, which repeats until lev achieves the maximum maxlev. However, R denotes a
2 × 2 rotation matrix. The two principal components yy(1) and yy(2) are stored in vari-
ables sums and di f s, respectively, that correspond to lines 29–33. It is worth stressing that
sums is the fraction of basis functions of subspaces V1, V2, . . . , Vm−1, and di f s is the basis
functions of subspaces W1, W2, . . . , Wm−1. In addition, the spatial–temporal correlation ba-
sis algorithm is similar to standard multi-resolution analysis: The SCBA algorithm provides
a set of “scale functions”. Those functions are defined on subspaces V0 ⊃ V1 ⊃ . . . ⊃ VL

and a group of orthogonal functions are defined on residual subspaces
{

Wlk

}L
lk=1, where

Vlk ⊕Wlk = Vl k−1 such that they achieve a multi-resolution transformation. Thus, the
orthogonal basis is the concatenation of sums and di f s (lines 35–39).

However, in Algorithm 1, the default basis selection is the maximum-height tree. The
choice results in a fully parameter-free decomposition of the original data. In addition, it is
also specifically for the idea of a multi-scale analysis. In practice, for a compressive data-
gathering technique for 5G IoT networks, we alternatively select any of the orthogonal bases
at various levels of the tree. The algorithm provides an approach that is inspired by the
idea in reference [45]. We assume that the original data xi ∈ <q is a q-dimensional random
vector. We suppose that the candidate orthogonal bases are Basis0, Basis1, . . . , Basisp−1,
where Basislk denotes the basis at level lk of the tree. Subsequently, we find the best sparse
representation for the original signal. Here, in Algorithm 2, scoring criteria are applied to
measure the percentage of explained variance for the selected coordinates. Consequently,
greedy scoring and choice method is presented in the following Equation (15).

score(Wi) =
E{|Wi| · X}
E
{
‖X‖2

} (15)

where for an orthogonal basis Basis = (W1, W2, . . . , Wp), each vector Wi is assigned an
energy score based on the above Equation (15). Therefore, the optimal basis is the basis
with the highest energy score. In Algorithm 2, line 3 describes the value of the molecule,
and line 5 represents the value of the denominator of score(Wi). Of course, in Algorithm
2, the other two sparsity measurement strategies are taken to evaluate the performance
of the spatial–temporal correlation sparse basis. Line 6 and line 7 are 1-norm and 2-
norm, respectively. They are used to compute GI and NS, respectively, and steps 10–11 of
Algorithm 2 are the GI index and NS evaluation approaches. Then, line 12 arranges the
energy score in Equation (15) in descending order such that we find the best orthogonal
basis with the maximum energy score. At the end, lines 13–16 obtain the optimal basis. In
addition, the flow chart of SCBA is shown in Figure 4. The main steps of SCBA input the
needed parameters, calculating the two most similar sum variables, building a hierarchical
tree of 2 by 2 Jacobi rotations and constructing a basis for the Jacobi tree algorithm.
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Algorithm 1 The spatial–temporal correlation basis algorithm with highly efficient (SCBA)

Input: X, dim, N (total number of observations), maxLev, lk
Output: return an orthogonal basis
% calculate the two most similar sum variables
1: calculate covariance matrix ∑i j, correlation coefficients ρij, similarity matrix SMij
2: obtain the two most similar sum variables based on SMij
% build a hierarchical tree of 2 by 2 Jacobi rotations
3: Z ← zeros(J, 3)
4: T ← cell(J, 1)
5: theta← zeros(J, 1)
6: PCindex ← unit8(zeros(J, 2))
7: initialization
8: for lev← 1to J
9: [CMnew, ccnew, maxcc, componet]← newJacobi(CM, cc, )
10: dist← (1−maxcc)/2
11: Z(lev, :)← [double(nodes(component)), dist]
12: T{lev} ← R
13: theta← th
14: PCindex ← unit8(idx)
15: CM← CMnew , cc← ccnew
16: pind← componet(idx)
17: p1← pind(1) , p2← pind(2)
18: va(pind)← unit16([dim + lev, 0])
19. dlables(p2)← unit16(lev)
20. maskno ← [maskno, p2]
21: PC_ra(lev)← CM(p2, p2)/C(p1, p1)
22: Zpos(lev)← unit16(component)
23: ad(lev, :)← dlables′, ad(lev, :)← va
24: end
% construct basis for the Jacobi tree algorithm
25: sums← zeros(maxlev, m) , di f s← zeros(maxlev, m)
26: for lev← 1tomaxlev
27: s1← t f ilt(Zpos(lev))
28: R← T{lev}
29: yy← R′ × s1
30: f ilt(Zpos)← yy
31: yy← yy(PCindex(lev, :), :)
32: sums← yy(1, :)
33: di f s← yy(2, :)
34: end
35: if nargin < 4
36: basis← [sums(J, :); f ilpud(di f s(J)]
37: else
38: basis← [tmp(va, :); f lipud(di f s)]
39: end
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Figure 4. The flow chart of SCBA.

Algorithm 2 optimal basis algorithm with greedy scoring (OBA)

Input: X, basis
Output: the best Treelet orthogonal basis: BestTreelet
1: calculate coe f f 1
2: energy← coe f f 1. ∗ coe f f 1
3: ave← mean(energy)
4:if nargin < 4
5: av_norm← mean(sum(X. ∗ X, 2))
6: av_norm1← (1− norm).̂2
7: av_norm2← (2− noram).̂2
8: end
9: ave1← ave/av_norm
10: calculate GI index using Equation (4)
11: calculate NS by using Equation (5)
12: [ave1, order]← sort(ave1)
13: if nargout > 2
14: score← sum(ave1(1, k1))
15: end
16: BestTreelet← basis(order, :)
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To demonstrate the efficiency of SCBA, in Section 6, we perform plenty of comparison
experiments including spatial, DCT, haar-1, haar-2, and rbio5.5 bases. However, since
the standard wavelet algorithm is not an orthogonal basis, Algorithm 3 proposes the
OWBA scheme with a similar idea in reference [47]. In Algorithm 3, step 1 takes the
rbio5.5 algorithm, for example, by means of filtering, and decomposes out the high and low
filter coefficients. Line 2 calculates the length of the filter, and line 3 and line 4 obtain the
maximum and minimum of the observation vectors, respectively. Step 5 is the initialization
of the wavelet orthogonal basis. The loop of steps 6–18 aims to construct the orthogonal
matrix. It is noted that the length of the signal is the integer power of 2 that is shown in
step 7. Hence, in the subsequent experiment, the frame lengths of data on rbio5.5 and haar
are chosen as the integer power of 2. Lines 8–9 construct two vectors. Nevertheless, in the
coming loop, the aforementioned vector in lines 8–9 is circle-shifted (step 10–13). Finally,
we generate the orthogonal matrix, namely the wavelet orthogonal basis wob (lines 14–17).
As a result, OWBA returns an orthogonal basis until the variable i achieves the maximum,
i.e., rmax.

Algorithm 3 orthogonal wavelet basis algorithm (OWBA)

Input: original data X, measurement size M, FLen(frame length of data), sparsity K
Output: wavelet orthogonal basis: wob
1. [h, g]← w f ilters(′rbio5.5′)
2. Length← length(h)
3. rmax← log 2(FLen)
4. rmin← log 2(FLen) + 1
5. wob← 1
6. for i← rmintormax
7. nn← 2̂i
8. p1← sparse([h, zeros(1, nn− FLen)])
9. p2← sparse([g, zeros(1, nn− FLen)])
10. for j← 1tonn/2
11. p1← circshi f t(p1′, 2 ∗ (j− 1))′
12. p2← circshi f t(p2′, 2 ∗ (j− 1))′
13. end
14. w1← [p1; p2]
15. mm← 2̂rmax− length(w1)
16. w← sparse(w1)
17. wob← wob ∗ w
18. end

5. Theoretical Analysis
5.1. Time Complexity of Algorithm

In this section, we analyze the complexity of the proposed three algorithms on a usual
dataset with N sensor nodes (observations) and FLen frame length (variables). In Algo-
rithm 1, stage 1 is an exhaustive search for the most similar sum variables [26]; in fact, step 2
of SCBA is the optimal processing stage. Hence, the overall complexity is ct + O(L× FLen2)
operations, where ct parameter is the cost of calculating the covariance matrix Σij by using
the singular value decomposition, i.e., ct = O(min(N × FLen2, FLen× N2)), and L is the
height of the tree. Additionally, stage 2 mainly performs a local change and stage 3′s
task is storing the 1st principal component and 2nd principal component. As a result, the
complexity of the algorithm can be decreased to ct + O(FLen× N). It is noted that the
complexity of the algorithm depends on the data size. As the size of the data increases, the
complexity of the algorithm increases. Therefore, it is very important to select probable
data size to design the algorithm.

For OBA algorithm, steps 1–3 calculate the energy of observations, so the time com-
plexity is O(N × FLen). Steps 5–7 obtain the average value, 1-norm and 2-norm, the
corresponding time complexity is O(FLen× N). The time complexity of implementation



Sensors 2021, 21, 6899 13 of 23

GI index of step 10 is also O(FLen× N). However, the complexity of NS sparsity measure-
ment of step 11 is O(FLen2). For the residual steps, the complexity is O(FLen× N). Thus,
the overall complexity is O(min(FLen× N, FLen2)).

For the OWBA algorithm, in terms of the loop of steps 6–18 (not including inner loop:
steps 10–13), the time complexity is O(log FLen). For steps 10–13, in the worst case, the
time complexity is O((2log FLen)/2) = O(FLen). Then, the overall time complexity of steps
6–18 (extra loop and inner loop) is O(FLen)×O(log FLen) = O(FLen log FLen).

5.2. The Proposed SCBA Has Low Numerical Rank

Theorem 1. If similar matrix SM is constructed using Equation (12) and we build a hierarchical
tree of 2× 2 Jacobi rotations, then the sparse operator has low numerical rank.

Proof: We mainly prove the basis generated in Algorithm 1 can make our real sensor
data sparse in this section. First, the eigenvalues of general covariance matrix Σij is
analyzed. In the presented Algorithm 1, we take the temperature of DEI-Campaign A; for
example, 781 frame lengths of sensor data are chosen to calculate the covariance matrix.
We assume that SCBA basis ΨT = [ψ1, ψ2, . . . , ψFlen] and Λ = diag{λ1, λ2, . . . , λFLen} are a
real symmetric matrix. According to Equation (12) and Equation (13), we can conclude that
the correlation coefficient matrix is also a real symmetric matrix. Then, similarly, based on
Equation (14), a similarity matrix is also a real symmetric matrix. Subsequently, when we
find the most similar sum variables, we implement a local PCA on this pair of variables
such that a Jacobi rotation matrix can be calculated. The transformation corresponds to a
change of new coordinates x(l) = JTx(l−1), where J is Jacobi rotation matrix. In other words,
Σ(l) = JTΣ(l−1) J. For a real symmetric matrix, singular values are absolute values of its
corresponding eigenvalues, and the singular values ranges from 0 to 1. With the increase
of decomposition level, singular values gradually become small. Based on the definition of
numerical rank in reference [48], we point out that Treelets operate a numerical rank with
parameters (ξ1, ξ2, ε) if and only if σr ≥ ξ1 > ε ≥ σr+1. Thus, when the two ξ1 and ξ2 are
fixed, the value of numerical rank reduces. Therefore, the proposed SCBA method has low
rank.

6. Experiments Results and Discussions
6.1. Rank Experiment Settings

In this section, we implement the experiments based on real datasets. We choose
four different scenarios that are extracted from the temperature of DEI-Campaign A [45],
the temperature of OrangeLab-Campaign A [49], the soil moisture of EPFL-Campaign
A [50], and the voltage of DEI-Campaign B [45]. For instance, the data of 29 nodes × 781
indicates that 781 temperature sample values are captured from 29 nodes during the
period 19–22, March 2009. The number 29 is the row of the data matrix, while number 781
demonstrates the column of data matrix. These projects are deployed in campus, indoor,
and urban environments. The properties of these datasets are summarized in Table 2.
These experiments are performed on the Matlab 2016a platform on a PC. According to the
SCBA scheme in Section 4, first, we evaluate the performance of the five various spatial–
temporal correlation bases. Secondly, in the light of GI and NS metric, we compare the
OBA algorithm with the other five sparse basis: spatial, DCT, haar-1, haar-2, and rbio5.5
wavelet orthogonal bases. In addition, we represent sensory real data on the above five
different sparse bases and the proposed OBA. On the other hand, we reconstruct the
original data (aforementioned real datasets in Table 2) using the different sparse bases and
recovery algorithms. In addition, we carry out numerous comparison experiments in view
of reconstruction error.
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Table 2. Details of Datasets in 5G IoT Networks.

Name Time Period Physical Signal Size

DEI-Campaign A 19–22 March 2009 Temperature 29 nodes × 781
OrangeLab-Campaign A 26–27 August 2008 Temperature 75 nodes × 65

EPFL-Campaign A 12–15 January 2007 Soil moisture 20 nodes × 742
DEI-Campaign B 19–22 March 2009 Voltage 45 nodes × 754

6.2. Evaluation of SCBA

We now analyze the performance of the proposed SCBA based on the first dataset.
Figure 5 plots the five spatial–temporal correlation bases with the highest energy, where the
x-axis denotes the frame length of signal, and the y-axis is the loading of different bases. As
shown in Figure 5, T1, T2, T3, T4, T5 are the five different bases with the energy of ascending
order respectively, i.e., T1 > T2 > T3 > T4 > T5. It is noted that the loading value is
normalized and ranges from 0 to 1. Obviously, within the overall frame length, the peak of
T1 is about 0.05 or so, and the loading value of each coefficient is greater than 0. Although
the maximum of T2 is 0.38 or so, which is approximately 10 times that of T1’ s maximum, it
only concentrates on the scope of 0 to 10. When the frame length is greater than 10, the
loading of T2 is close to 0. However, during the whole frame length, for the loading of
T3, T4 and T5, there is a fraction of loading of coefficients less than 0. Consequently, the
loadings of the three bases are no higher than T1 or T2.

Figure 5. The five different SCBA bases with high energy.

Figure 6 plots the energy distribution of the proposed SCBA schedule. From the graph,
we can see that the first component concentrates most of energy of basis which is 0.9901. In
addition, the energy of the second component is about 0.0140, the residual components are
close to 0. Therefore, we consider that the proposed OBA is optimal.
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Figure 6. Energy distribution of principal component of the proposed SCBA.

6.3. Representation of Sensory Datasets on the Various Sparse Bases

In the experiment, to validate the efficiency of the proposed OBA algorithm, we com-
pare it with the other sparse bases: spatial, DCT, haar-1, haar-2, and rbio5.5. Figures 5–8
are the sparsity results of temperature of DEI-Campaign A, temperature of OrangeLab-
Campaign A, soil moisture of EPFL-Campaign A, and voltage of DEI-Campaign B, re-
spectively. In Figure 7, we select the first sensor node’s readings with the frame length
FLen = 781 to sparse represent. It is noted that haar and rbio5.5 orthogonal basis are
obtained using the proposed Algorithm 3 in Section 4. As can be seen from Figure 7a, the
maximum is about 30.6 of the spatial basis, and the graph resembles the original signal for
the spatial basis is an identity matrix. In some senses, spatial basis is not able to sparse
sensory data. For Figure 7b, the maximum is about 700, and has a small fraction of non-zero
coefficients, i.e., the energy of most of coefficients is approximately zero. In contrast, the
DCT basis has better sparsity performance. Similarly, haar-1, haar-2, and rbio5.5 in Figure 7
can also make the original sensor node readings sparse. However, the number of non-zero
coefficients of haar-1 and haar-2 basis are far larger than DCT in Figure 7b. It is obvious
that the amount of DCT non-zero coefficients can be 200 or so, and the whole length of
coefficients is 781. In comparison to haar-2 basis in Figure 7d, rbio5.5 maximum is about 42,
which is less than the haar-2 maximum of 60. Moreover, the number of non-zero coefficients
of rbio5.5 is about twice that of haar-2′s. Hence, from Figure 7d,e, we can conclude that the
former’s performance is worse than the latter. However, for OBA, its maximum is 780 or so.
In addition, the number of non-zero coefficients is about 20, i.e., the energy of the residual
761 coefficients is also close to zero. From the above analysis, we draw a conclusion that
the proposed basis in Figure 7f is the sparsest basis among the six various bases. From the
simulation results of Figures 8–10, we can see that as a whole, spatial basis does not make
sensory real data sparse. The sparsity performance of DCT is superior to haar-1, haar-2,
and rbio5.5 wavelet bases. Although the efficiencies of DCT are better than the wavelet
basis, they are worse than the proposed OBA. In addition, the advantage of the proposed
Algorithm 2 is evident, compared with the others.
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Figure 7. Sparsity performance of temperature of DEI-Campaign A in six various sparse bases.

Figure 8. Sparsity performance of temperature of OrangeLab-Campaign A in six various sparse bases.
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Figure 9. Sparsity performance of soil moisture of EPFL-Campaign A in six various sparse bases.

Figure 10. Sparsity performance of voltage of DEI-Campaign B in six various sparse bases.

6.4. Comparison Experiments in Terms of GI and NS Metrics

To investigate the robust performance of the proposed OBA algorithm, in this section,
we perform extensive experiments in view of GI and NS metrics introduced in Section 3.
These simulation results are listed in Table 3. Table 3a–d are the evaluation results of
temperature of DEI-Campaign A, temperature of OrangeLab-Campaign A, soil moisture of
EPFL-Campaign A, and voltage of DEI-Campaign B, respectively. As shown in Table 3a, GI
of spatial, DCT, haar-1, haar-2, rbio5.5, and OBA are 0.0118, 0.2526, 0.5077, 0.7566, 0.5268,
and 0.7842, respectively. Based on the analysis of the GI metric in Section 3.3, it suggests that
the larger the GI value, the better the performance of the presented algorithm. Therefore,
we can demonstrate that the proposed Algorithm 2 has the best performance compared
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to the other five sparse bases as described in Table 3a. The performance of the rbio5.5
basis is better than the haar-1. However, the GI value of haar-2 is greater than rbio5.5. In
addition, the efficiency of DCT is worst among the five techniques except for spatial basis.
This phenomenon is contrary to the conclusion obtained in Figure 7 in Section 6.3. It is
for this reason that we take different sparsity metrics. However, when the NS metric is
used, the performance of DCT is slightly worse than the best basis, which is the proposed
OBA. From Table 3a, we can see that the NS metrics of them are 2.8856, 13.3167, 196.1361,
391.4284, 395.8623, and 780.6154 in ascending order. Therefore, the simulation results of
the other bases—spatial, DCT, haar-1, haar-2, rbio5.5 and OBA—are in accordance with
the conclusion provided in Section 6.3. It demonstrates that the value of the NS metric
is inversely proportion to the efficiency of bases algorithms. In other words, the robust
performances of all the sparse bases are OBA > DCT > haar-1 > haar-2 > rbio5.5 > spatial in
descending order. The best value is marked in boldface in Table 3.

Table 3. Performance evaluations of different sensory datasets.

Sparse Basis GI NS

(a) Temperature of DEI-Campaign A
spatial 0.0118 780.6154
DCT 0.2526 13.3167

haar-1 0.5077 391.4284
haar-2 0.7566 196.1361
rbio5.5 0.5268 395.8623
OBA 0.7842 2.8856

(b) Temperature of OrangeLab-Campaign A
spatial 0.0292 64.8315
DCT 0.3313 6.8109

haar-1 0.4895 33.3158
haar-2 0.7585 18.5259
rbio5.5 0.6940 39.4684
OBA 0.7809 1.7180

(c) Soil moisture of EPFL-Campaign A
spatial 0.4942 741.6826
DCT 0.2266 13.3031

haar-1 0.5022 373.4321
haar-2 0.7478 188.5487
rbio5.5 0.5227 378.0363
OBA 0.7496 2.9541

(d) Voltage of DEI-Campaign B
spatial 2.5089 × 10−4 753.9996
DCT 0.2293 13.6672

haar-1 0.5000 377.1115
haar-2 0.7516 189.1442
rbio5.5 0.5196 382.1088
OBA 0.9820 1.0324

In Table 3b, it is obvious that the GI metric of OBA is the best of all the sparse bases at
0.7809, which is slightly better than the haar-2 of 0.7585. The efficiency of the haar-1 basis
is slightly better than DCT, by contrast. Then, the performance of the rbio5.5 wavelet basis
is worse than the haar-2 basis. The worst of them is the spatial basis, whose GI is 0.0292.
Nevertheless, in terms of NS metric, the proposed OBA displays a superior result compared
with the other five bases. The NS metric of Treelets is 1.7180, which is the smallest value of
DCT at 6.8109, haar-1 at 33.3158, haar-2 at 18.5259, rbio5.5 at 39.4684 and spatial at 64.8315.
This phenomenon is line with Table 3a). Similarly, it also again demonstrates that the
NS value is inversely proportional to the effect of the basis. Hence, it is evident that the
spatial basis has the most terrible performance, while the proposed OBA basis has the most
advantage.
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In view of Table 3c, the robust performance of OBA is a bit better than the haar-2
basis in terms of GI metric. In addition, the performance of haar-1 is worse than rbio5.5.
However, the efficiency of wavelet bases is still worse than Treelet. DCT has a good result,
whose GI is 0.2266, which is the lowest value. It is worse than the spatial value of 0.4942.
It can be shown from Figure 6 that the sparsity performance of DCT is far better than the
spatial basis. Thus, we consider that the GI metric does not precisely demonstrate the
efficiency of the sparse basis, while in Table 3c, the value of DCT (13.3031) is inferior to the
proposed Treelet (2.9541) which is identified by the simulation result in Figure 6. The case
also verifies the instability of the GI metric in application.

In Table 3d, we can observe that the spatial basis has a minimum 2.5089 × 10−4 of GI
metric and NS is 753.9996. In practice, the NS metric indicates the quantity of non-zero
coefficients of the represented sensory signal. For instance, in Table 3d, NS is 753.9996,
which is approximately equal to the signal length of 754. Likewise, the NS values in
Table 3a–c are 780.6154, 64.8315, and 741.6826, respectively, which are close to 781, 65, and
742 of the frame length of extracted simulation datasets. In Table 3d, the GI value of the
proposed OBA is 0.9820, which is approximately 1. It also declares that the novel basis is
the sparsest basis among the six basis algorithms. The performance of DCT is not better
than haar-1. GI of haar-2 is 0.7516, which is higher than rbio5.5 of 0.5196. Nevertheless, the
value of the corresponding NS metric of the former is also less than the latter. Their results
are in contrast. As a whole, different evaluation metrics achieve different results, but in this
paper, we draw a conclusion that NS metrics in Table 3 have identical experiment results
to Figures 5–8, while the GI metric has a bit of deviation. In brief, the NS metric has a
higher accuracy than the GI metric. It can be seen from the above figures and tables that the
OBA algorithm has the most concentrated energy, the smallest NS value, and the largest GI
value, i.e., when the OBA algorithm for compressed data collection and transmission is
used, it will consume less energy and improve the performance of the network.

6.5. Reconstruction Error Results and Analysis

In this section, two various recovery algorithms are taken into consideration. The
BPDN algorithm is the noise environment (σ = 0.05), and the GOMP algorithm is the
noiseless case. In addition, the measurement matrix is the sparse binary matrix with a
fixed number of non-zero elements in each column. For the proposed Treelets sparse basis,
related recovery errors using BPDN are given in Table 4, and recovery errors using the
GOMP algorithm are depicted in Table 5. Recovery error is defined as follows:

error =

∥∥X− X̂
∥∥

2
‖X‖2

(16)

Table 4. Reconstruction errors of four different datasets vs. measurement M for BPDN.

Temperature of DEI-Campaign A (d′ = 60, K = 60, Flen = 781)

M 200 250 300 350 400 450 500 550 600
error 1.2909 1.0517 0.9592 0.7463 0.7262 0.6792 0.5919 0.5224 0.4385

Temperature of OrangeLab-Campaign A (d′ = 10, K = 30, Flen = 64)

M 10 15 20 25 30 35 40 45 50
error 2.7764 1.2690 1.0621 0.9650 0.8080 0.7198 0.6355 0.5000 0.4731

Soil moisture of EPFL-Campaign A (d′ = 60, K = 60, Flen = 128)

M 20 30 40 50 60 70 80 90 100
error 1.5136 1.4068 1.1020 1.0268 0.9443 0.7936 0.6169 0.5336 0.4154

Voltage of DEI-Campaign B (d′ = 60, K = 60, Flen = 128)

M 20 30 40 50 60 70 80 90 100
error 1.5541 1.3264 1.2549 0.9252 0.8494 0.7387 0.5565 0.5427 0.3943
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Table 5. Reconstruction errors of four different datasets vs. measurement M for GOMP.

Temperature of DEI-Campaign A (d′ = 60, K = 60, Flen = 781)

M 200 250 300 350 400 450 500 550 600
error 1.9917 1.8461 1.6777 1.5731 1.4157 1.3460 1.0983 0.9937 0.9475

Temperature of OrangeLab-Campaign A (d′ = 10, K = 30, Flen = 64)

M 10 15 20 25 30 35 40 45 50
error 10.4145 1.7442 1.2315 1.1896 0.9481 0.8384 0.9338 0.7394 0.6125

Soil moisture of EPFL-Campaign A (d′ = 60, K = 60, Flen = 128)

M 20 30 40 50 60 70 80 90 100
error 1.7484 1.7685 1.3382 1.2300 1.3735 1.0918 0.9362 0.8433 0.7216

Voltage of DEI-Campaign B (d′ = 60, K = 60, , Flen = 128)

M 20 30 40 50 60 70 80 90 100
error 1.6838 1.4522 1.4358 1.2890 1.1972 1.0570 0.9642 0.7258 0.7119

In Table 4, in the first dataset, i.e., temperature of DEI-Campaign A, the number of
non-zero elements is d = 60. Similarly, in the third and fourth datasets, the measurement
matrix has the same amounts of non-zero entries in each column. However, in the second
dataset, d′ = 10. In the first dataset, the frame length is 781, K = 60. Here, we assume that
the relative error is less than 1, and we consider that it can recover original data. As can
be seen from Table 4, for the first dataset, with the increase of measurement M, recovery
error gradually decreases. In particular, when the amount of measurement is equal to
300, the relative error is 0.9592, i.e., the proposed OBA can recover the original signal.
For instance, when the measurement M is 350, the error is 0.7463. However, when the
measurement achieves the maximum in Table 4, the error is only 0.4385, which is less
than half of 0.9592. For the second datasets, the temperature of OrangeLab-Campaign
A, when the measurement is not larger than 20, it is unable to reconstruct original data.
Take M = 10, for example—its error is 2.7764. As the measurement increases, the recovery
error of the proposed OBA along with the sparse binary measurement matrix becomes
smaller and smaller. For example, when the measurements are 25, 30, 35, 40, 45, and 50,
their corresponding relative errors are 0.9650, 0.8080, 0.7198, 0.6355, 0.5000, and 0.4731,
respectively. Moreover, for soil moisture of the EPFL-Campaign A, the original signal
cannot be reconstructed until the measurement is 60. From Table 4, when the measurement
equals 50, the error is 1.0268, which is greater than 1. In contrast, 0.7936 of M = 70 is far
smaller than 0.9443 of M = 60. In addition, for M = 100, the error is only 0.4154. For
the last dataset, when the measurement is the minimum, the relative error is 1.5541. It
means that the novel OBA and sparse binary measurement matrix are unable to recover
the original signal. As shown in Table 3, if we set measurement M at 50, the error of the
proposed OBA algorithm is less than 1, i.e., 0.9252. In addition, when the measurement
M = 60, 70, 80, 90, 100, the errors are 0.8494, 0.7387, 0.5565, 0.5427, and 0.3943, respectively.

Table 5 depicts the relationship between reconstruction errors of the four different
datasets and the measurement M using the GOMP algorithm. The parameter d′ in a sparse
binary matrix, and the sparsity K and frame length of signal are the same as aforementioned
Table 4. In the DEI-Campaign A, when the amount of measurement M is greater than 550,
GOMP can recover the original signal. However, in terms of the BPDN algorithm, when
the number of measurements M is 300, the original signal can be reconstructed. BPDN
takes noise into account and therefore has better recovery performance. In the second
dataset, the temperature of OrangeLab-Campaign A, when the measurement M is only
about half of the frame length, GOMP can recovery the original signal with high accuracy.
In comparison to BPDN, in view of the same measurement M, recovery probability of
BPDN is higher than GOMP, such that when M = 35, the former is 0.7198, while the latter is
0.8384. In addition, it is noted that as the measurement M gradually increases, in terms of
theory, the recovery error should steadily decrease. Nevertheless, in the GOMP algorithm,
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the error of the measurement M = 40 is higher than M = 35. The reason for that is that the
measurement matrix uses a sparse binary matrix whose non-zero entry position is not fixed
but random. For the coming third and fourth datasets, the original signal can be recovered
if the measured value is equal to 80. For soil moisture of EPFL-Campaign A, when the
measurement reaches the maximum, the relative error is 0.7216. In addition, for the last
dataset, the smallest error is obtained when the measurement is 100. In brief, there is a
big gap between BPDN and GOMP in terms of recovery accuracy. In practice applications,
we should choose an appropriate reconstruction algorithm to accomplish compressive
data-gathering in 5G IoT networks.

7. Conclusions and Future Work

In the paper, we put forward the spatial–temporal correlation SCBA algorithm and the
OBA choice scheme. Theoretical analyses reveal that SCBA, OBA, and OWBA algorithms
have low computation complexity. On the other hand, we also prove that the presented
SCBA has low numerical rank. The experimental results show that the sensor node readings
on the SCBA algorithm are sparsest in comparison to the other five sparse bases in light
of the GI and NS sparsity metric. Thus, CS-based data-gathering technology using the
SCBA algorithm will transmit data with less energy consumption. It will also affect the
performance of 5G IoT networks. Nevertheless, in the noise environment, the BPDN
algorithm is applied to reconstruct the original signals. Comparatively speaking, we
observed that the proposed approach has robust performance. On the other hand, in the
noiseless case, the GOMP algorithm is used, where similar experimental phenomena are
discovered because of the novel algorithm taking advantage of the intrinsic distinction of
the sensory data in 5G IoT networks.

This paper only discusses and analyzes how to generate the sparse basis, and is
unable to study the construction of the measurement matrix. In future work, an energy-
efficient data-gathering scheme with combination of the sparsest basis with an optimal
measurement matrix should be designed to enhance the performance of 5G IoT networks.
On the other hand, in future work we are planning to implement the approach in hardware
platforms and considering the mobility of sensor nodes in 5G IoT networks.
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