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Abstract
A strong relationship exists between tumor and inflammation, which is the hot point in cancer research. Inflammation can
promote the occurrence and development of cancer by promoting blood vessel growth, cancer cell proliferation, and tumor
invasiveness, negatively regulating immune response, and changing the efficacy of certain anti-tumor drugs. It has been dem-
onstrated that there are a large number of inflammatory factors and inflammatory cells in the tumor microenvironment, and
tumor-promoting immunity and anti-tumor immunity exist simultaneously in the tumor microenvironment. The typical relation-
ship between chronic inflammation and tumor has been presented by the relationships between Helicobacter pylori, chronic
gastritis, and gastric cancer; between smoking, development of chronic pneumonia, and lung cancer; and between hepatitis virus
(mainly hepatitis virus B and C), development of chronic hepatitis, and liver cancer. The prevention of chronic inflammation is a
factor that can prevent cancer, so it effectively inhibits or blocks the occurrence, development, and progression of the chronic
inflammation process playing important roles in the prevention of cancer. Monitoring of the causes and inflammatory factors in
chronic inflammation processes is a useful way to predict cancer and assess the efficiency of cancer prevention. Chronic
inflammation-based biomarkers are useful tools to predict and prevent cancer.
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Introduction

In medicine, cancer refers to a malignant tumor originating
from epithelial tissue and is the most common type of

malignant tumor. Cancer has biological characteristics such
as abnormal cell differentiation and proliferation, loss of
growth control, invasiveness, and metastasis [1]. Cancer oc-
currence is a multifactor, multistep complex process [2],
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including carcinogenesis, cancer promotion, and evolution.
Infection, occupational exposure, environmental pollution,
unreasonable diet, and genetic factors are closely related to
cancer. For example, in 2018, lung cancer remained the
world’s leading malignant tumor in morbidity and mortality,
followed by colorectal cancer, gastric cancer, and liver cancer
[3]. The mortality rate of these cancers is high, but it is well
known that there is currently no effective method for accurate
diagnosis and treatment of these cancers. Therefore, it can
only be caught by prevention.

Inflammation is a defensive response to stimulation, char-
acterized by redness, swelling, heat, pain, and dysfunction. In
general, short-term inflammation is beneficial and an automat-
ic defense response of the human body, but sometimes inflam-
mation is also harmful; for example, it attacks the body’s own
tissue and there is inflammation in transparent tissue. The
persistence of inflammation in the body might be transformed
into chronic inflammation [4]. Chronic inflammation can
cause diabetes, autoimmune diseases, neurodegenerative dis-
ease, and cancer [4–7]. Chronic inflammation leads to loss of
tissue structure, excessive tissue remodeling, and modification
of protein self-neutralizing DNA caused by oxidative stress,
all of which increase the risk of cancer development [8, 9].
Many studies have shown that chronic inflammation is asso-
ciated with cancer [10–12]. The factors causing chronic in-
flammation are physical factors such as low temperature and
radiation, chemical factors, and biological factors such as vi-
ruses, bacteria, and fungi [13].

The in-depth study of cancer reveals a strong relationship
between cancer and inflammation [14]. For example, gastric
cancer is associated with chronic gastritis, lung cancer is as-
sociated with chronic inflammation of the lungs, nasopharyn-
geal carcinoma is associated with Epstein–Barr virus, cervical
cancer is associated with cervicitis, and liver cancer is associ-
ated with chronic hepatitis [15, 16]. Many studies have shown
that inflammatory cells can promote the occurrence and de-
velopment of tumors [17, 18], because inflammatory cells can
promote cancer cell proliferation, angiogenesis, and tumor
invasion, and change the efficacy of certain anti-cancer drugs
[19, 20]. An important reason for the high mortality rate of
cancer is that it can metastasize in the body. Some studies have
shown that inflammation can help cancer metastasize. Coffelt
et al. found that γδ-T cells and neutrophils can promote lung
and lymph node metastasis in breast cancer patients [21]. In
addition, activated inflammatory cells, hyenas release reactive
oxygen species, can promote tumor progression [11]. At the
same time, cancer treatment can also trigger inflammatory
reactions, and then cause trauma, necrosis, and tissue damage,
that might stimulate tumor recurrence and resist treatment
[11]. In the tumor microenvironment, tumor-promoting im-
munity and anti-tumor immunity exist simultaneously [22].
When the tumor promotes immunity, the tumor cells grow
faster, and on the contrary, the tumor cells are cleared [23].

As you can see from the above, the relationship between can-
cer and inflammation is very close. Although the biological
characteristics of cancer are distinctive, the mechanism of tu-
mor occurrence and development is still unclear. It is not im-
possible to use inflammatory factors as markers for prediction,
prevention, and early diagnosis of cancer in the future. After
all, many inflammatory factors have been used as biomarkers
for cancer prediction, recurrence, and prognosis; for example,
interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and
Wnt-1 can predict the occurrence and recurrence of hepato-
cellular carcinoma [24], and chitinase 3-like 1 is a predictor of
inflammatory tumors in lung cancer models [25] and several
inflammation-based prognostic systems, including platelet
counts, systemic inflammatory scores, and Glasgow outcome
scores [26].

Chronic inflammation in different types
of cancers

Chronic inflammation is involved in every cancer. Here, var-
ious factors causing chronic inflammation associated with
lung cancer, gastric cancer (GC), and liver cancer are taken
as examples to address chronic inflammation in cancer.

Smoke causing chronic inflammation associated
with lung cancer

Lung cancer is the first most common type of cancer in men
and women, and the first most common cause of cancer-
related death [3]. It is one of the most malignant tumors that
threat the health and life of the population. Lung cancer can
generally be divided into small cell lung cancer and nonsmall
cell lung cancer. Among them, nonsmall cell lung cancer ac-
counts for about 80% of them [27]. Chronic obstructive pul-
monary disease (COPD) is a chronic bronchitis and/or emphy-
sema characterized by airflow obstruction that can further de-
velop into a common chronic disease of pulmonary heart dis-
ease and respiratory failure. It is associated with abnormal
inflammatory reactions of harmful gases and harmful particles
and has high morbidity and mortality. More and more studies
have found that the COPD that is a chronic inflammatory
pulmonary disease is an important risk factor of lung cancer
[16, 28–32]. COPD-induced hypoxia in the lungs activates
hypoxic transcription factors that inhibit apoptosis, which
might trigger lung cancer [33]. In patients with COPD, chron-
ic inflammation leads to a decrease in the ability of the lungs
to clear, and toxic substances are in contact with respiratory
epithelial cells, making patients more likely to acquire lung
cancer [34]. In addition, lung damage caused by chronic in-
flammation of COPD increases endogenous DNA damage,
thereby increasing the risk of carcinogenesis [35].
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Cigarette smoke is made up of more than 7000 different
compounds, most of which have adverse effects on respira-
tory cells [36]. Cigarette smoke contains oxidants and toxic
molecules [37]. Smoking plays an important role in lung
cancer and COPD [38, 39]. Numerous studies have shown
that the longer smoking time and the greater amount of
smoking can cause the greater probability of developing lung
cancer and the higher mortality rate of lung cancer [40–42].
Smoking can cause inflammation and oxidative stress in the
lungs, which can trigger COPD and lung cancer [43]. Toxic
gas molecules in cigarettes, such as reactive oxygen species
and reactive nitrogen species, enter the lungs through the
upper respiratory tract, causing oxidative stress in the lung,
and sustained oxidative stress is a major cause of inflamma-
tion and COPD [44]. The reactive oxygen species can also
directly lead to the damage of DNA and the degradation of
tumor suppressors, and then might lead to carcinogenesis
[45, 46]. Zuo et al. believed that oxidative stress caused by
the cigarette smoke oxidant could activate nuclear transcrip-
tion factor κB (NF-κB) and mitogen-activated protein kinase
(MAPK), thereby promoting the release of chemokine and
cytokines and then triggering an inflammatory response [47].
In addition, when cigarette smoke enters the lungs through
the respiratory tract, the body’s first immune defense, innate
immunity, is opened, resulting in reduced mucosal cilia
clearance and excessive mucus secretion and infiltration of
the airway wall by natural killer lymphocytes and macro-
phages [48]. Cigarette smoke can also be used as a foreign
antigen to stimulate the body’s adaptive immune response,
thereby activating some immune cells and triggering the re-
lease of inflammatory factors. Arnso et al. and Churg et al.
believed that cigarette smoke promoted the release of
TNF-α, IL-1, IL-6, and IL-8 [49, 50]. Since IL-6 and
TNF-α can predict the occurrence and recurrence of hepato-
cellular carcinoma [24], TNF-α, IL-1, IL-6, and IL-8 might
be used as biomarkers for prevention and prediction of lung
cancer.

Except for smoking associated with lung cancer, the risk
factors that lead to lung cancer include air pollution, genetic
risk factors, occupational exposures, diet, and alcohol [47].
Lung cancer is a malignant tumor with high incidence and
high mortality. Therefore, lung cancer can only be prevented
from the source in advance, such as not smoking, not
smoking second-hand smoke, maintaining good eating
habits, and so on.

Helicobacter pylori causing chronic inflammation
associated with GC

In 2018, the mortality rate of GC was 8.2%, and GC is the
third most lethal cancer among 36 cancers [3]. Although the
mortality rate of GC is so high, specific early diagnosis symp-
toms have not been found [51–53]. GC is a malignant tumor

originating from the gastric mucosal epithelium. According to
Lauren’s classification, the GC can be divided into intestinal
type GC and diffuse type GC [54]. Glandular cavity formation
is common in intestinal type GC, and the adjacent mucosa is
often accompanied by extensive atrophic gastritis and intesti-
nal metaplasia. Intestinal GC is often thought to be secondary
to chronic atrophic gastritis.

Helicobacter pylori (H. pylori) is a spiral, microanaerobic,
gram-negative bacterium that is very demanding on growth
conditions. In 1983, it was successfully isolated from gastric
mucosal biopsies from patients with chronic active gastritis
[55]. It is the only microbial species known to survive in the
human stomach.H. pylori is generally acquired at a young age
and generally lasts for a lifetime [56]. H. pylori causes acute
and chronic gastritis, leading to progressive damage to the
gastric mucosa. Therefore, it is associated with many impor-
tant upper gastrointestinal diseases, including esophageal can-
cer, chronic gastritis, chronic ulcers, distal gastric adenocarci-
noma, and gastric lymphoma [57–59]. Fortunately, only about
5% of infected people can acquire GC [60]. It is generally
believed that the clinical process ofH. pylori infection is such
that H. pylori colonizes the gastric mucosa and settles infec-
tion, causing chronic, superficial gastritis after several weeks
or months and develops into GC after several years or de-
cades. It refers to intestinal ulcer, gastric ulcer, lymphoprolif-
erative gastric lymphoma, chronic atrophic gastritis, etc.,
while the latter is the most dangerous factor leading to GC.
Experts believe that H. pylori infection increases the risk of
GC development by about 2 times [61]. H. pylori can cause
GC in two ways. One of them is that virulence factors of
H. pylori directly cause epithelial cell damage, leading to ep-
ithelial cell apoptosis and proliferation and the production of
inflammatory factors; the other is that H. pylori can pass
through gastric mucosal cells, triggering innate immunity
and specific immunity, and the body secretes a variety of
inflammatory factors [62, 63].

Except for host and environmental influence, H. pylori
affects mucosal and systemic immune responses through
bacterial virulence factors that affect cytokine secretion and
recruitment of different inflammatory cells [64, 65]. So far,
in H. pylori, the best identified bacterial virulence factors
that are associated with inflammation and carcinogenesis
are the vacuolating cytotoxin (VacA) and the cag type-IV
secretion system (T4SS), and its translocated effecter pro-
tein, cytotoxin-associated gene A (CagA) [66]. The
cytotoxin-associated gene pathogenicity island (Cag-PAI)
can promote pathogenic virulence factors such as CagA into
gastric epithelial cells through the T4SS [67]. After entering
the gastric epithelial cells, the CagA undergoes tyrosine
phosphorylation and then binds to tyrosine phosphatase
SHP-2 which is Src homology-domain-containing protein
tyrosine phosphatase [64]. Sustained activation of SHP-2
by CagA induces apoptosis of gastric epithelial cells and,
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therefore, might cause atrophic gastritis associated with
H. pylori [68, 69]. Atrophic gastritis is a well-recognized
precancerous lesion, and it might develop into GC [70, 71].
In addition, activated SHP-2 is able to induce MAPK signal-
ing through Ras/Raf-dependent and Ras/Raf-independent
mechanisms [72], and the MAPK cascade is a highly con-
served module that is involved in various biological process-
es, including inflammation, proliferation, differentiation, and
anti-apoptosis. The Cag-PAI also can directly activate nucle-
otide-binding oligomerization domain through the T4SS,
and then activate NF-κB [72], causing DNA damage, ulti-
mately leading to chemotatic and proinflammatory effects.
The chemokines and inflammatory factors produced by
chemotatic and proinflammatory effects might promote the
development of chronic gastritis, which in turn triggers GC.
Therefore, target drugs might be designed according to the
epithelial cell signaling in H. pylori infection to prevent the
formation of GC in patients with H. pylori infection, such as
T4SS inhibitors, and Cag-PAI inhibitors.

The cell wall of H. pylori is a lipopolysaccharide (LPS),
which is an endotoxin. When H. pylori enters the stomach,
LPS is captured as an important antigen molecule by antigen-
presenting cells and then causes a series of immune responses
in the body, which in turn causes the body to secrete a variety
of inflammatory factors. LPS can bind to the transmembrane
recognition receptor toll-like receptor 4 (TLR4) and then ac-
tivates the Toll-Like receptor signaling pathway. Pathogen
recognition of TLRs causes rapid activation of innate immu-
nity by inducing the production of proinflammatory cytokines
and upregulation of costimulatory molecules. The TLR sig-
naling pathway is divided into two groups: a myeloid differ-
entiation factor 88 (MyD88)-dependent pathway, which leads
to the production of proinflammatory cytokines that are rap-
idly activated by NF-κB and MAPK, and a MyD88-
independent pathway associated with the induction of
interferon-beta (IFN-β) and IFN-inducible genes, as well as
the maturation of dendritic cells that are slowly activated by
NF-κB andMAPK. These persistent inflammatory factors can
cause DNA damage and chronic gastritis, which might even-
tually lead to GC. Of course, it is obviously to simplify the
process of chronic gastritis induced by H. pylori and then
induces gastric cancer, and the specific induction process
needs to be further studied.

H. pylori can evade the body’s immune system for a long
time, and this mechanism might cause cell damage and chron-
ic inflammation [63]. Infection of the stomach by H. pylori
can cause the body to produce reactive oxygen and nitrogen
species, which causes DNA damage to trigger GC [73]. In
addition, although the stomach environment is very acidic,
H. pylori still has good colonization ability in the stomach
[74]. In summary, H. pylori can colonize the stomach for a
long time, and then cause chronic gastritis, which might even-
tually lead to the development of GC.

Hepatitis B and C virus causing chronic inflammation
associated with liver cancer

Liver cancer can be divided into primary and secondary liver
cancer. Primary liver malignant tumors originate from the ep-
ithelial or mesenchymal tissues of the liver. The former is
called primary liver cancer and is a highly harmful malignant
tumor. The latter is called sarcoma and is rare compared with
primary liver cancer. In 2018, liver cancer remained the
world’s leading malignant tumor in morbidity and mortality
[3]. Liver cancer is a malignant tumor with multiple carcino-
genic factors which include alcohol, viral infections, congen-
ital immune diseases, and genetic diseases [75, 76]. Among
these carcinogenic factors, the host immune system and viral
infection with hepatitis B virus (HBV) and hepatitis C virus
(HCV) are the most important risk factors [77, 78]. It is com-
mon knowledge that persistent hepatitis can lead to liver cir-
rhosis and then liver cancer, which is called the liver cancer
trilogy. Therefore, persistent hepatitis can be considered as the
initial initiator. Chronic hepatitis is inseparable from HBVand
HCV. This review will explain the relationship between HBV
and HCVand chronic hepatitis and liver cancer.

HBV causing chronic inflammation associated with liver
cancer

HBV is a hepadnavirus that belongs to the family of hepatic
viruses, and was discovered in 1966 [79]. The complete
HBV consists of the envelope that includes an envelope
and a nucleocapsid whose core contains a double-stranded
circular DNA [80]. The DNA is infectious. HBV adheres to
the surface of hepatocytes through low-affinity receptors
(such as heparan sulfate, proteoglycan, etc.) and then binds
to the viral receptor through the pre-S1 region of the large
envelope protein to mediate the endocytosis of the virus. The
sodium ion-taurocholic acid transport peptide is an important
receptor that mediates the entry of HBV into cells and estab-
lishes infection. The endocytic virus envelope and the mem-
brane of the swallowed membrane release the capsid into the
cytoplasm, and the capsid is transported. The viral genomic
rcDNA to the interior of the nuclear pore complex is released
into the nucleus. Within the nucleus, rcDNA may be con-
verted to covalently closed circular DNA (cccDNA) by the
DNA replication machinery of the cell. The cccDNA has
high stability and can last for several months to several years
in the nucleus, which is the root cause of viral rebound after
antiviral treatment. Therefore, clearing cccDNA is a decisive
significance for eradication of hepatitis B [81]. In 2016, ap-
proximately 260 million people were infected with HBV
around the world [82].

HBV is transmitted through the blood, sexual intercourse,
and vertical transmission [83]. For adults, once infected with
HBV, the body with normal physiological function
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immediately responds and recovers, but it may develop chron-
ic HBV infection in patients with liver dysfunction or im-
paired immune function [84]. Therefore, the chronic infection
rate caused by HBV infection in infants and young children is
as high as 90% [83]. During the infection, the body immedi-
ately started to protect itself from the systemic epidemic [85],
although the immune response caused by HBVand its role in
the mechanism of chronic hepatitis B is not clear [86]. Chronic
hepatitis B can cause liver damage, leading to liver fibrosis,
cirrhosis, and even liver cancer [87]. HBV-infected liver cy-
tokine family binds to its corresponding receptor to activate
the Janus kinase–signal transducer and activator of transcrip-
tion (JAK–STAT) signaling pathway, causing DNA damage,
thereby promoting hepatocyte proliferation, inhibiting hepa-
tocyte apoptosis, and then triggering liver cancer [88]. He
et al. also believed that NF-κB can promote the occurrence
of liver cancer through HBV infection of liver cells and liver
inflammation [88]. In addition, studies have shown that pa-
tients with chronic HBV infection have higher levels of lipo-
polysaccharide in the blood [84]. This might suggest that there
may be activation of Toll-like receptor pathway in chronic
HBV-infected individuals. The relationship between the
TLR pathway and tumors has been briefly described in the
gastric cancer section.

HCV causing chronic inflammation associated with liver
cancer

HCV is a single-stranded positive-strand RNA virus,
which is surrounded by a lipid-containing capsule in the
nucleocapsid and has a condyle on the capsule. HCV is
classified in the Flaviviridae family. HCVoften infects the
liver, causing chronic HCV infection, which then triggers
hepatitis, cirrhosis, liver cancer, and more [89]. Most pa-
tients with chronic HCV infection develop chronic hepa-
titis C [90, 91]. Li et al. believed that the mechanism by
which HCV develops into chronic hepatitis C is that HCV
RNA can activate NF-κB and cellular inflammatory fac-
tors (such as TNF, IL-6, etc.) through TLRs, and these
cellular inflammatory factors interact with their receptors
to ac t iva te the JAK–STAT, MAPK, and phos -
phatidylinositol 3-kinase–AKT (PI3K–AKT) signaling
pathways [92]. These signaling pathways are closely re-
lated to the formation of tumors [93–95]. These cellular
inflammatory factors can also provide a tumor microenvi-
ronment for the development and progression of liver can-
cer [96]. Moussa et al. found that the immunopositive rate
of pSmad2/3 and Smad4, which are the cellular inflam-
matory factors, increased with the degree of chronic hep-
atitis C, liver fibrosis, and liver cancer by the study on
patients with chronic hepatitis C, liver cancer patients,
and normal controls [97]. The reason why HCV can cause
chronic HVC infection is because the HCV can evade the

body’s monitoring of innate and adaptive immunity [98].
HCV can evade the body’s immune surveillance through a
variety of mechanisms, including changing the differenti-
ation direction of CD4 cells, allowing them to differenti-
ate into TH2 and TH17 cells, which destroy the function
of natural killer cells [99].

In addition, studies have shown that HCV can also cause
liver cancer by itself. They believe that HCV core protein is an
important factor in HCV-induced liver disease [100]. This
protein is closely related to cell apoptosis, growth, prolifera-
tion, etc. and is related to the regulation of signaling pathways
such as the MAPK pathway and cyclooxygenase-2 [101].
Abnormalities of these signaling pathways are closely related
to liver cancer [102]. The viral protein of HCV can cause
oxidative stress in the liver, and oxidative stress can promote
the occurrence of liver cancer [103].

Except for HBV and HCV, diet, alcohol, and genetic risk
factors are also the predisposing factors for liver cancer [104].
The clinical symptoms of early onset of liver cancer are not
obvious, so many patients diagnosed with liver cancer are
from the middle and late stages of the rod. Therefore, preven-
tion of liver cancer from the source is extremely important.
For HBV and HCV, it is necessary to prevent its spread
through the blood. Good habits and optimism are also impor-
tant for other risk factors for liver cancer. In addition, both
HBV- and HCV-induced liver cancer are associated with acti-
vation of signaling pathways, so target drugs can be designed
to prevent the development of chronic hepatitis patients into
liver cancer patients.

Proinflammatory factors and inflammatory
factors in chronic inflammation process
in cancer

Chronic inflammation is a very complex process. Except for
initiating factors causing chronic inflammation, including
physical factors such as low temperature and radiation, chem-
ical factors such as different chemical carcinogens, and bio-
logical factors such as viruses, bacteria, and fungi, there are
lots of proinflammatory factors and inflammatory factors that
are secreted by leukocytes and mast cells involved in the
chronic inflammation processes, including IL-6, IL-1,
NF-κB, TNF-α, STAT3, tumor growth factor-beta (TGF-β),
and so on. And these factors promote proliferation and differ-
entiation of epithelial cells and endothelial cells [105], then
might induce cancers. Lee et al. found TNF-like weak inducer
induced inflammation with real-time polymerase chain reac-
tion (RT-PCR), western blotting, and enzyme-linked immuno-
sorbent assay (ELISA) [106]. Khodabandehlon et al. found
the existence of human papillomavirus was related to tumor
progress and the increase of inflammatory cytokines (IL-6, IL-
17, IL-1, NF-κB, TNF-α, and TGF-β) with ELISA and RT-
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PCR [107]. Many proinflammatory factors and inflammatory
factors are associated with chronic inflammation and cancer.
Here, IL-1, IL-6, and IL-8 are taken for example for detailed
discussions.

IL-1 associated with cancer

IL-1 is a cytokine of the chemokine family and is produced
primarily by macrophages. So far, the IL-1 family has 11
members, but the most important ones are IL-1α and IL-1β.
The most studied subtype of IL-1 is IL-1β [108].

IL-1β is mainly produced by tissue macrophages, skin
dendritic cells, and blood mononuclear cells. The biolog-
ical activity of the IL-1β precursor is biologically active
after being subjected to enzymatic treatment and is mainly
present in the microcirculation system [109]. Under nor-
mal physiological conditions, IL-1 has an anti-tumor ef-
fect, but when the body is in persistent chronic inflamma-
tion, IL-1 has a tumor-promoting effect, at which time IL-
1β supports tumor development [110, 111]. IL-1β acti-
vates vascular endothelial growth factor, which promotes
blood vessel growth and provides nutrients for tumor
growth [112, 113]. At the same time, IL-1β can also in-
duce chronic inflammation and activate blood endothelial
cells, thereby promoting the metastasis and invasiveness
of cancer cells [114]. IL-1β activates the NF-κB signaling
pathway of myeloid cell lines (MDSCs), and NF-κB is an
important link between inflammation and cancer. MDSCs
can secrete IL-6 and TNF-α, which can promote tumor
growth [115]. When IL-1 β binds to its corresponding
receptors, it can activate MyD88 and IL-1 receptor–
associated kinase-4 (IRAK4), which leads to the phos-
phorylation of IRAK2 and IRAK1 and then activates
NF-κB. Activated NF-κB can enter the nucleus and pro-
mote the transcription of some inflammatory genes [116].
It leads to the increase of the level of inflammatory factors
in the body, which may promote the occurrence of tumor.

IL-1 is involved in the angiogenesis and proliferation of
cancer cells, which may promote the development of cancer
[117, 118]. IL-1 also can promote the expression of vascular
cell adhesion factor-1, thereby promoting adhesion and me-
tastasis of cancer cells [119]. Han et al. found that IL-1 is
involved in the invasion of gastric cancer with a mice model
[120]. In addition, several studies have shown that IL-1β is
involved in the development of gastric cancer [121, 122]. The
study of IL-1α is few, but it is also involved in tumor progres-
sion and metastasis, which can activate NF-κB and promote
tumor growth [123].

In conclusion, the proinflammatory cytokine IL-1 is closely
related to the occurrence, development, metastasis, and inva-
sion of tumors. Therefore, IL-1 may be used as a biomarker
for tumor diagnosis and prognosis in the future.

IL-6 associated with cancer

IL-6 is a cytokine of the chemokine family. IL-6 is a protein of
184 amino acids with a molecular weight of 21–28 kDa, and it
was found in 1968 [124]. IL-6 is mainly produced by macro-
phages, T lymphocytes, B lymphocytes, monocytes, and so on
[125]. IL-6 is a multifunctional cytokine that promotes tumor
cell proliferation, invasion, and metastasis; inhibits tumor cell
apoptosis; and promotes blood vessel growth [126]. IL-6
mainly relies on the activation of multiple signaling pathways
to participate in the development of tumors, such as the JAK2/
STAT3 signaling pathway, PI3K/AKT signaling pathway,
RAS/MAPK signaling pathway, and so on [127]. Upon bind-
ing of IL-6 to the IL-6 receptor (IL-6R), GP130 is activated to
form a dimer, which induces phosphorylation of JAK1 and
JAK2 leading to phosphorylation of STAT1 and STAT3.
Phosphorylated STAT3 can enter the nucleus and induce a
variety of gene transcription, such as cFOX, IRF-1, Bcl2,
etc., which are involved in cell growth, differentiation, inhibi-
tion of apoptosis, and promotion of vascular production and
cell adhesion [124, 128–130]. STAT3 can also induce onco-
genes that are associated with cell proliferation and metastasis.
In addition, IL-6 binds to IL-6R to activate the PI3K–AKT
signaling pathway, which induces phosphorylation of JAK
and PI3K and activates AKT, to regulate several genes in-
volved in cell survival [131].

In conclusion, IL-6 is involved in the proliferation, metab-
olism, metastasis, invasion, and angiogenesis of various tu-
mors and has been found to have high expression of IL-6 in
various tumors, such as breast cancer, colorectal cancer, pros-
tate cancer, lung cancer, ovarian cancer, and so on. Moreover,
Xu et al. thought that serum IL-6 might be a potential bio-
marker for colorectal cancer [132]. And inhibitors of IL-6, IL-
6R, GP130, JAK, and STAT3 may be targets for tumor ther-
apy in the future.

IL-8 associated with cancer

IL-8 is a cytokine of the chemokine family. IL-8 is mainly
produced by endothelial cells, epithelial cells, fibroblasts,
etc., and its active form is composed of 69, 72, 77, and 79
amino acids, respectively, and has a molecular weight of about
8 kDa [133]. The receptors for IL-8 are CXCR1 and CXCR2.
IL-8 generally only undergoes biological function when it
binds to a receptor. For example, Yung et al. and other studies
found that IL-8 binds to CXCR2 and activates transforming
factor-β-activating enzyme 1 (TAK1)/NF-κB signaling,
which in turn increases the invasiveness of ovarian cancer
cells [134]. Sharma et al. found that IL-8 binds to CXCR1/
CXCR2 and indirectly promotes angiogenesis, proliferation,
and invasion of cancer cells and promotes the progression of
glioblastoma multiforme, and the level of IL-8 is higher and
the patient’s prognosis is worse [135]. In addition, Zheng et al.
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found that M2 macrophages produced IL-8, which activated
STAT3 and phosphorylated it, leading to increased expression
of lung adenocarcinoma transcript-1 that was associated with
lung adenocarcinomas metastasis [136]. IL-8 can induce PI3K
phosphorylation and then activate AKT phosphorylation,
which in turn increases blood vessel growth, cancer cell sur-
vival, and migration [137]. IL-8 also regulates cell prolifera-
tion, survival, and invasion by activating MAPK and ERK1/2
phosphorylation [137]. In brief, IL-8 is highly expressed in a
variety of cancers, such as colon cancer, lung cancer, breast
cancer, and so on [138]. And IL-8 is closely related to tumor
growth, invasion, and metastasis [139–141].

Besides IL-1, IL-6, and IL-8, other proinflammatory fac-
tors are also associated with the occurrence and development
of cancer, such as TNF-α, TGF-β, BCA-1, and so on (Fig. 1).
These proinflammatory factors generally promote the devel-
opment of cancer by activating signaling pathways (Table 1).
Although TGF-β has an inhibitory effect on the cancer cell
cycle in the early stage of tumors, it also has a tumor-
promoting effect [142]. TNF-α promotes blood vessel growth
and promotes tumor progression and metastasis [142], and
TNF-α can be used to predict the occurrence and recurrence
of liver cancer [24]. In addition, Rossi et al. found that TNF-α
could increase the invasiveness of melanoma cells [143], and
Tan et al. found that TNF-α could be a potential therapeutic
target for hepatocellular carcinoma [144]. NF-κB is an impor-
tant immune protein and NF-κB signaling pathway is closely

related to the development and progress of human tumor
[145]. NF-κB has been shown to be a linker of inflammation
and cancer in mouse models [146]. Avariety of cytokines can
activate NF-κB signaling pathway. Most proinflammatory
factors activate STAT3, and chitinase 3-like 1 that is a down-
stream gene of the STAT3 signaling pathway is a potential
biomarker to predict inflammatory lung cancer in a STAT3-
induced mouse lung cancer model [25]. In the IL-6 family, in
addition to IL-6 associated with inflammatory tumors, both
IL-23 and IL-11 are associated with tumors. For example,
Wang et al. found that IL-23 promotes the development of
gastritis, which might lead to gastric cancer [147], and Li
et al. found that IL-23 can also promote the metastasis of liver
cancer [148]. Yang et al. [149] and Lay et al. [150] found that
IL-11 is involved in the development of esophageal squamous
cell carcinoma and endometrial cancer. In addition, some sci-
entists have found that IL-17A can promote the formation of
tumor blood vessels [151, 152], thereby contributing to the
proliferation and invasion of tumor cells. IL-5 promotes the
metastasis and invasion of lung cancer and bladder cancer
cells [153, 154]. Although IL-33 can inhibit the growth of
lung adenocarcinoma [161], it is also involved in the invasion
andmigration of glioma cells [155], promotes the proliferation
of colorectal cancer cells [156], and promotes the role of ovar-
ian cancer [157]. Similar to IL-33, IL-15 is also a controversial
cytokine that most researchers have found to have anticancer
activity, but Gupta et al. found that it promoted colonal

elevant 

syndromes

elevant 

syndromes

Fig. 1 A molecular model proposed for chronic inflammation in cancer.
The orange box means the potential therapeutic targets and biomarkers
for cancer. The green box means potential therapeutic targets for cancer.
The corresponding information on relevant syndromes is provided in the

article, for example, regarding the “Flammer syndrome” phenotype,
“Individualized patient profiling is instrumental for cancer prediction
and prevention” section
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expansion of B cell chronic lymphocytic leukemia [158].
Besides cytokines, chemokines are also involved in the devel-
opment of inflammatory tumors. CCL11 played an important
role in the proliferation and invasion of ovarian cancer cells
[159] and was involved in the progression of glioblastoma
[160]. Therefore, since so many inflammatory and proinflam-
matory factors are associated with tumors, whether these fac-
tors can be used as biomarkers for specific tumor prediction,
prevention, and prognosis is worthy of further study.

Multiomics andmolecular networks in chronic
inflammation process in cancer

Multiomics includes genomics, transcriptomics, proteomics,
metabolomics, and radiomics [1], which is more and more
widely used in clinical treatment and basic research of cancer
[2, 162–165].

Genomics is a science of genomic mapping (including ge-
netic maps, physical maps, transcriptional maps), nucleotide
sequence analysis, gene mapping, and gene function analysis
of all genes. Genomic information is increasingly being used
in the diagnosis, treatment, and prognosis of tumors [166].
Gene mutations might occur during inflammation-induced
cancer, and genomic techniques can be used to quickly under-
stand the cause and then adopt an effective treatment.

Transcriptomics is a discipline that studies the transcription
of genes and transcriptional regulation in cells at an overall
level. The transcriptome is an important objective to study the
development of cell phenotype and function and response
diseases. One of the common features of tumors is splicing
abnormality [1]. Therefore, the use of transcriptomics-related
techniques to detect abnormal shear in the body is conducive
to early detection of cancer, early treatment of cancer, and
relief of patient suffering and economic burden.

Proteomics is a science in which the proteome is the re-
search object to study the protein composition of cells, tissues,
or organisms and their changes. Proteins might form protein
variants due to post-translational modifications, cleavage, etc.
[167], so the number of proteins is far more than the number of
genes. Proteomics research mainly includes the extraction,
separation, and identification of proteins. The methods for
studying protein separation are mainly one-dimensional gel
electrophoresis and two-dimensional gel electrophoresis
[168], and the identification method is mainly mass spectrom-
etry. It can be said that proteomics study is more important
than genomics and transcriptomics study [169]. Proteomics
studies attempt to compare the similarities and differences of
protein expressions in different physiological or pathological
conditions, and classify and identify related proteins.
Therefore, it is extremely clinically meaningful to compare
protein expressions in cancer patients and normal humans. It

can provide a clinical basis for the diagnosis, treatment, and
prognosis of cancer patients.

Metabolomics is a way to quantitatively analyze all metab-
olites in organisms, and to find out the relative relationship
between metabolites and physiological and pathological
changes. Most of the subjects are small molecular substances
with relative molecular weight less than 1000. Metabolism is
one of the indispensable life activities in the body. Many in-
tracellular life activities take place at the metabolite level, such
as cell signal release (cell signaling), energy transfer, and cell-
to-cell communication which are regulated by metabolites.
Cancer caused by inflammation leads to changes in the path-
ophysiological process of the body and eventually causes cor-
responding changes in metabolites. Through the analysis of
some metabolites, and compared with the metabolites of nor-
mal people, it may be possible to find biomarkers for cancer
and provide better methods for early diagnosis.

Radiomics is to obtain images of patients’ lesions by using
somemedical instruments, and then to further diagnose, predict,
and analyze the massive image data to assist doctors in making
the most accurate diagnosis. For example, CT, PET/CT, and
MRI are used to diagnose the size of the tumor and the growth
of the tumor to determine the benign and malignant tumors.
During the occurrence and development of cancer that is in-
duced by chronic inflammation, some signaling pathways are
involved in this process, for example, MAPK signaling path-
way [101], Toll-like receptor signaling pathway, NF-κB signal-
ing pathway [145], JAK–STAT signaling pathway [88], and
PI3K–AKT signaling pathway [92]. When chronic inflamma-
tion induces tumorigenesis and development, some genes, pro-
teins, and metabolites in these signaling pathways might be
abnormally expressed, so it may be possible to use these genes,
proteins, and metabolites as biomarkers for tumor prevention
and prediction and even as a drug target for clinical therapy.

Those multiomics and molecular network approaches pro-
mote one to consider chronic inflammation in cancer from a
multiparameter systematic strategy angle, but not from a sin-
gle one-parameter model in order to understand thoroughly
the molecular mechanisms of chronic inflammation in cancer
and discover more reliable and effective biomarkers targeting
the chronic inflammation process associated with cancer to
predict the occurrence and development of cancer, effectively
prevent cancer, and even design reasonable assessment index
to assess the effects of cancer prevention.

Impaired wound healing and chronic
inflammation as a clue to aggressive cancer
development and progression

Wound healing refers to a highly complex repair process in
which the body is subjected to external forces and the tissues
such as the skin are broken or defective. It is mainly divided
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into the following four stages: hemostasis, inflammation, pro-
liferation, and tissue remodeling [162]. The time required for
wound healing is mainly related to the severity of the wound
and the health of the body. Some wounds may only take a few
days to heal. Some wounds may take years or decades to heal,
but some wounds may never be able to heal, such as a tumor
[163]. Inflammation is involved in the process of wound
healing, and the slow healing of the wound may be related
to the excessive and prolonged period of inflammation [163].
As can be seen from the foregoing, chronic inflammation can
cause cancer. Therefore, it can be considered that impaired
wound healing can promote the development and progression
of cancer. At the same time, cancer can inhibit the healing of
wounds, such as due to the use of radiotherapy and chemo-
therapy drugs, malnutrition in cancer patients, and abnormal
immune system in cancer patients [163, 164].

Individualized patient profiling is
instrumental for cancer prediction
and prevention

It is well known that there are various factors for cancer, in-
cluding genetic factors, immune factors, and habit factors. The
prediction and prevention of cancer need choosing the right
solutions for the cause. Individualized patient profiling is a
right solution, which can understand individual details, in-
cluding detailed basic information, family history, and medi-
cal history. For example, Golubnitschaja et al. have made a
case study on Flammer syndrome, which understands the pa-
tient’s illness and family history, and finally made recommen-
dations based on predictive, preventive, and personalize med-
icine [165]. Kunin et al. [170] and Goncharenko et al. [171]
have conducted an individualized patient profile analysis of
dry mouth and Flammer syndrome (FS), and vaginal dryness
in the form of questionnaires, respectively. This is also a good
solution for cancer prediction.

From phenotype to predictive biomarker
panels: the “road map” for implementation

As can be seen from the foregoing, chronic inflammation can
promote the occurrence and development of cancer. The under-
lying cause of chronic inflammation is the persistence of in-
flammatory factors and tissue damage. There are many kinds
of tissue damage, such as wounds. Wound healing is generally
divided into four phases: hemostasis, inflammation, prolifera-
tion, and remodeling. In the early stage of the wound, the vas-
cular rupture is in a state of transient hypoxia. The hypoxia-
inducing factor produced by this process plays an important
role in the stages of angiogenesis, tissue remodeling, and in-
flammation, which can be used to judge the healing of the

wound [172]. In addition, impaired wound healing is associated
with FS [173], and FS-related systemic hypoxia can promote
cancer metastasis, such as breast cancer [174].

Conclusion and expert recommendation

The early clinical symptoms of cancer are not obvious and the
social medical mechanisms in developing countries are not per-
fect, both of which lead to cancer in the middle and late stages
of diagnosis. This brings more economic burdens to the pa-
tient’s family and brings more pains to the patient and a lower
quality of life for the patient. Therefore, it is extremely impor-
tant to find clinical diagnostic markers for early cancer. All
cancers including GC, liver cancer, and lung cancer are also
associated with inflammation. Although the molecular mecha-
nism between cancer and chronic inflammation is still unclear,
there is an inextricable link between cancer and chronic inflam-
mation. It is of great significance for the study of biomarkers for
cancer prevention and prediction that find how chronic inflam-
mation induces cancer, develops cancer, and whether chronic
inflammation is produced autonomously or is caused by acute
inflammation. Of course, these tips allow us to continue to
study the mechanisms between chronic inflammation and the
development of cancer to discover inflammatory factors, cyto-
kines, or key factors that regulate chronic inflammatory re-
sponses that may be involved in the development of cancer.
This will alleviate the patient’s illness and bring the gospel to
the patient and his family. In addition, FS has also been shown
to be associated with the development of cancer and aggressive
metastatic disease [172]. Therefore, for FS phenotype individ-
uals, we should pay close attention to the state of the body to
avoid cancer. Besides FS, diabetes, autoimmune diseases, and
obesity are all inducing factors for cancer.

We recommend to emphasize and strengthen studies of
chronic inflammation in cancers. Chronic inflammation in
cancer involves many complex factors, complex processes,
and multiple targets associated with cancers. It is necessary
to use multiomics strategy in the study of chronic inflamma-
tion and cancers [1, 2, 162–165] to understand deeply the
molecular mechanisms of chronic inflammation in cancer
and discover more reliable and effective biomarkers targeting
the chronic inflammation process associated with cancer to
predict the occurrence and development of cancer, effectively
prevent cancer, and even design reasonable assessment index
to assess the effects of cancer prevention. Here, we propose
the chronic inflammation-based strategy of cancer treatment:
(i) reduce, inhibit, or eliminate the factors to cause chronic
inflammation, including physical factors such as low temper-
ature and radiation; chemical factors such as all types of chem-
ical carcinogens; and biological factors such as viruses, bac-
teria, and fungi; (ii) strengthen the multiomics study of chron-
ic inflammation to clarify the complex pathway networks of
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chronic inflammation, and establish biomarkers based on
chronic inflammation pathway networks; and (iii) extensively
study proinflammatory factor/inflammatory factor networks
to identify inflammatory factor biomarkers and therapeutic
targets to predict cancer, and inhibit or block the chronic in-
flammation progression to prevent occurrence and develop-
ment of cancer.
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