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Abstract

Phosphorus (P) is an essential mineral nutrient and one of the key factors determining crop

productivity. P-deficient plants exhibit visual leaf symptoms, including chlorosis, and alter

spectral reflectance properties. In this study, we evaluated leaf inorganic phosphate (Pi)

contents, plant growth and reflectance spectra (420–790 nm) of 172 Thai rice landrace vari-

eties grown hydroponically under three different P supplies (overly sufficient, mildly deficient

and severely deficient conditions). We reported correlations between Pi contents and reflec-

tance ratios computed from two wavebands in the range of near infrared (720–790 nm) and

visible energy (green-yellow and red edge) (r > 0.69) in Pi-deficient leaves. Artificial neural

network models were also developed which could classify P deficiency levels with 85.60%

accuracy and predict Pi content with R2 of 0.53, as well as highlight important waveband

sections. Using 217 reflectance ratio indices to perform genome-wide association study

(GWAS) with 113,114 SNPs, we identified 11 loci associated with the spectral reflectance

traits, some of which were also associated with the leaf Pi content trait. Hyperspectral mea-

surement offers a promising non-destructive approach to predict plant P status and screen

large germplasm for varieties with high P use efficiency.

Introduction

Phosphorus (P) is an essential macronutrient that is critical for plant growth and development

and crop productivity. Unlike nitrogen that can be acquired from N2 in the atmosphere

through biological nitrogen fixation or the Haber-Bosch process, the global phosphorus

resource is non-renewable. Global P supply from inorganic phosphate (Pi) rock reserves may

be depleted within the next decades [1]. In spite of the high use of synthetic P fertilizers in agri-

culture, more than 80% of the supplied P is not used by crop plants [2]. P is often precipitated

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0267304 April 20, 2022 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Pinit S, Ruengchaijatuporn N, Sriswasdi

S, Buaboocha T, Chadchawan S, Chaiwanon J

(2022) Hyperspectral and genome-wide

association analyses of leaf phosphorus status in

local Thai indica rice. PLoS ONE 17(4): e0267304.

https://doi.org/10.1371/journal.pone.0267304

Editor: Muhammad Abdul Rehman Rashid,

Government College University Faisalabad,

PAKISTAN

Received: October 29, 2021

Accepted: April 6, 2022

Published: April 20, 2022

Copyright: © 2022 Pinit et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This research was funded by the

Development and Promotion of Science and

Technology Talents Project (DPST) grant fund of

Institute for the Promotion of Teaching Science

and Technology (IPST) (024/2558) and partially

funded by Grants for Development of New Faculty

Staff, Ratchadaphiseksomphot Endowment Fund

https://orcid.org/0000-0003-2546-6061
https://orcid.org/0000-0002-4117-3632
https://orcid.org/0000-0002-4802-0428
https://doi.org/10.1371/journal.pone.0267304
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267304&domain=pdf&date_stamp=2022-04-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267304&domain=pdf&date_stamp=2022-04-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267304&domain=pdf&date_stamp=2022-04-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267304&domain=pdf&date_stamp=2022-04-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267304&domain=pdf&date_stamp=2022-04-20
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0267304&domain=pdf&date_stamp=2022-04-20
https://doi.org/10.1371/journal.pone.0267304
http://creativecommons.org/licenses/by/4.0/


with other minerals or bound to organic compounds in the soil, while soil erosion is reported

to account for 50% of total P losses [1], further aggravating the problem of P scarcity, as well as

food security.

Plants have evolved a diverse array of adaptive mechanisms to respond to P deficiency. This

includes remodeling of root system architecture to explore more soil volumes and secreting

root exudates, such as acid phosphatases or organic acids, to enhance P acquisition efficiency

[3]. P-deficient plants can also recycle internal Pi or alter P remobilization from mature to

young developing organs to improve internal P use efficiency [4]. Identification of germplasm

with high P use efficiency and genes underlying the mechanism could lead to the development

of highly P-efficient crops that can tolerate P deficiency stress and maintain productivity.

Hyperspectral technology uses visible (VIS, 400–700 nm), near infrared (NIR, 700–1100

nm) and shortwave infrared (SWIR, 1100–2500 nm) energy to estimate plant physiological

and biochemical properties. This technique offers a promising tool to quickly and non-

destructively phenotype plant leaves. Photosynthetic pigments in leaf cells absorb most of the

spectra in VIS, while water in the leaves reflects NIR and absorbs certain wavebands in SWIR

[5]. Thus, variability in pigment compositions and concentrations of water, inorganic minerals

or organic compounds in plant tissues could lead to different spectral reflectance. Based on

these properties, narrow-band vegetation indices, which are computed from two or more spec-

tral bands in a simple mathematical form, have been investigated for their performance on

predicting various leaf traits, as determined by correlation analysis. Notably, the normalized

difference vegetation index (NDVI) is widely used to estimate leaf chlorophyll and nitrogen

levels [6].

The advanced development of massively parallel sequencing technologies has enabled

researchers to perform genome-wide sequencing analyses and explore allelic diversity existing

in populations. Genome-wide association study (GWAS) has become an effective method for

dissecting the genetic basis of the complex traits by establishing statistical links between phe-

notypes and genotypes [7]. As such, there is an increasing need to phenotype plants or screen

large collections of germplasm to search for accessions with desired phenotypes.

In Thailand, soil P contents are very low [8]. With the long history of rice cultivation, Thai

rice landrace accessions may potentially adapt to the low P soil conditions. In this study, we

evaluated the relationship between leaf Pi content, shoot biomass, and leaf spectral reflectance

from a rice panel consisting of 172 Thai landrace accessions grown hydroponically in three dif-

ferent P supplies. The hyperspectral data (380–790 nm) were measured non-destructively with

a handheld spectrometer, and leaf samples were harvested for laboratory Pi content determi-

nation. Classification of P status and prediction of Pi content using deep learning models, as

well as regression analysis, were performed. The measured Pi contents and reflectance indices

computed from two wavebands were used to perform GWAS analysis to identify genetic loci

related to P efficiency in rice.

Materials and methods

Plant materials and growth conditions

Seeds of 172 local Thai rice (Oryza sativa L. subsp. indica) accessions (S1 File) were provided

by the Pathum Thani Rice Research Center and grown in hydroponic conditions. Seeds were

sterilized using commercial bleach (2% sodium hypochlorite), germinated in water for 2 days,

and then pre-cultivated in half-strength Yoshida’s solution [9] for 5 days. Then, the seed endo-

sperm was removed from the seedlings, and the seedlings were transferred to full-strength

Yoshida’s solution with 3 different levels of P concentrations (320, 16 and 0.8 μM NaH2PO4

for P100, P5 and P0.25 treatments, respectively) and maintained for 16 days. The decrease of
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NaH2PO4 of each treatment was supplied with NaCl to reach the same concentration of Na+ in

the control (full-strength Yoshida’s solution).

The experiment was performed in a randomized complete block design (RCBD) and

repeated three times. Each experiment included three plants/accession/treatment. Seedlings

were grown in 80-litre containers, each containing all 172 accessions (one plant per accession).

The nutrient solution was renewed every 4 days and adjusted pH at 5.8 every two days. The

experiment was performed in the greenhouse under natural light conditions (30–38˚C day/26-

30˚C night temperature; 40–70% day/70-90% night relative humidity). The plants were har-

vested after 16 days of treatment. The second fully expanded leaves were used for leaf spectral

reflectance measurement, and leaf discs were harvested for Pi content determination (see

below). The presence of leaf senescence (with at least half of the leaf blade showing senescence)

in the first three leaves was recorded. The remaining shoot samples were harvested, dried in

oven at 80˚C for 3 days and used for biomass (dry weight) measurement. Ten accessions were

randomly selected for total root length measurement.

Pi extraction and determination

After spectral reflectance measurement (see below), the same leaves were harvested for Pi con-

tent determination using the Pi-molybdenum blue assay described previously [10]. In brief,

each leaf was punched using a paper puncher to harvest four 3-mm-diameter leaf discs. The

leaf discs were immediately put into a 96-well plate on dry ice and then stored at -80˚C. Leaf Pi

was extracted by incubating the leaf discs in 5.5% (w/v) perchloric acid for 3 hours. The Pi con-

centration in the supernatants was then measured using the molybdate blue assay. Absorbance

was measured at 820 nm using a “SpectraMax M3” microplate reader (Molecular Devices,

USA). A standard curve was performed using different concentrations of KH2PO4. The Pi con-

centration was calculated by comparing A820 with the standard curve and was calculated as

nmol per leaf area (mm2).

Phosphorus Utilization Efficiency (PUtE) was calculated as the ratio of shoot biomass

divided by the Pi content measured from the same plant [11]. Hierarchical clustering of the

variances of mean Pi contents, biomass, and PUtE of different rice varieties was performed

and plotted using the ClustVis web tool [12].

Spectral reflectance measurement and correlation with Pi content

Leaf spectral reflectance (Rλ: the reflectance at respective wavelengths, λ) was measured using

a handheld spectroreflectometer (PolyPen RP 400 (UV-VIS), Photon Systems Instruments,

Brno, Czech Republic), which scanned wavebands from 380 to 790 nm in 2 nm steps. The

device was calibrated with a white reference standard before use. For each leaf, the measure-

ments were performed twice at two points near the center of the leaf length by placing the

adaxial side to face PolyPen’s measuring head. Spectral reflectance data were exported from

the device and further analyzed in Excel. The two measurements from the same leaf were

treated as technical replicates, and the values were averaged. Then, means of Rλ for each wave-

length from all rice accessions were calculated for different P treatments. Spearman’s Rank

correlations between Rλ from two different wavelengths and between reflectance ratio (RNIR

/RVIS) and Pi contents were calculated. Heatmaps were plotted using the ClustVis web tool

[12].

To model the relationship between reflectance characteristic (e.g., Rλ or a reflectance ratio)

and Pi content, regressions with exponential decay function, Reflectance ¼ aþ be� c�Pi, were

performed. The exponential decay function was chosen because reflectance values tend to

change sharply at low Pi content (Pi < 0.1 nmol/mm2) and flatten out over the intermediate Pi
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content range (0.2< Pi< 0.5 nmol/mm2). Furthermore, we trimmed data points with Pi con-

tent below 0.02 nmol/mm2 where most measurements are expected to be noises. The value of

the offset term a in the exponential decay function was constrained within the interval [−1,

1), as reflectance values are positive. The value of the exponent term c was constrained within

the interval [0, −1) to preserve the exponential decay characteristic. The value of the multipli-

cative factor term b was unconstrained. The covariance matrices of the three regression

parameters and the R-squared statistics (R2) were calculated to monitor the quality of the fit.

Regressions were performed at both individual plant level and at accession level, where average

values from plants in the same accession and P treatment were used.

Mean normalized values of reflectance ratio indices were calculated from the mean of each

reflectance ratio of the P0.25 treatment divided by the corresponding reflectance ratio of the

control (P100 treatment). Total of 217 mean normalized SR traits were used in GWAS.

Deep learning model development

Leaf spectral reflectance data were standardized so that the reflectance at each wavelength

has zero mean and unit variance prior to inputting into the model. The total of 6,258

reflectance spectra were split into 4,379 for training, 939 for validation, and 940 for test-

ing. To increase the number of samples, synthetic reflectance spectra were additionally

generated by adding a Gaussian noise with standard deviation of 0.01 to the observed

spectra. These augmented samples were used only for training the models and excluded

from performance evaluations.

Two model architectures were explored (Fig 2A): a standard convolutional neural network

with a single classification output, and a multi-task model that includes both a classification

output and a reconstructed spectra output. The spectral reconstruction objective was added to

encourage the multi-task model to learn a meaningful low-dimensional representation of the

input reflectance spectra. In both model variants, data from the input standardized spectra

passed through two convolutional blocks, each consisting of a 1D convolutional layer, a batch

normalization layer, and a rectified linear unit (ReLU) activation layer. The first block has 16

filters of kernel size 8 and the second block has 32 filters of kernel size 8. The output from the

second block then passed through an average pooling layer with a window size of 4 and a stride

of 3. Finally, the pooled output was flattened into a 1D vector (flattened output) and passed

through two fully connected layers with hidden dimensions of 64 and 3, respectively. The last

layer produces 3 outputs which are the predicted probabilities for P100, P5, and P0.25 condi-

tions. Dropout layers with dropout rate of 0.2 were added before the fully connected layers as a

regularization. The hidden dimension of the first fully connected layer was also varied from 32

to 1,024 to optimize the performance of the models.

For the multi-task model, the flattened output from the average pooling layer also passed

through a fully connected layer with hidden dimension of 1,664 and then reshaped into a (52,

32)-dimensional tensor. This tensor then passed through two upsampling blocks, each consist-

ing of a 1D convolutional layer, a batch normalization layer, a ReLU activation layer, and an

upsampling layer with upsampling size of 2. The first block has 32 filters of kernel size 8 and

the second block has 16 filters of kernel size 8. Finally, the upsampled output passed through a

1D convolutional layer with 1 filters of kernel size 4 to reconstruct the input spectrum.

Categorical cross-entropy was used as the loss function for the classification and the mean

square error was used as the loss function for the reconstruction of input spectrum. The multi-

task model combines the two losses with a weight of 1.0 for classification and 0.5 for spectral

reconstruction. Model performances were measured from 5 random initializations. The
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categorical cross-entropy is defined as:

crossentropy loss ¼ �
X

i

yi log pi

where yi is 1 if the input spectrum of class i, and 0 otherwise and pi is the predicted probability

for class i. The reconstruction loss is defined as:

reconstruction loss ¼
X

i

1

n

Xn

j¼1

ðsj � ŝjÞ
2

where n is the number of wavelengths, sj is the observed value at wavelength j, and ŝj is the pre-

dicted value for wavelength j.
For the prediction of log10 Pi content, the classification output head was replaced by a linear

output head. Mean square error was used as the loss function for optimizing the regression

performance. Absorbance spectra for 3,791 P5 and P0.25 plants were split into 2,651 for train-

ing, 571 for validation, and 569 for testing. All individual plants of the same accessions were

assigned to the same set. Adding data from P100 plants to the training set significantly

degrades the regression performance from an overall R2 of 0.53 to 0.38.

Class activation map generation

To understand how the model makes use of the input spectrum, we applied the gradient-

weighted class activation map (Grad-CAM) [https://arxiv.org/abs/1610.02391] which is a stan-

dard technique in computer vision for acquiring visual explanation of deep models. Grad-

CAM produces a Class Activation Map (CAM) that identifies discriminative regions of an

input for a given class. The first step in Grad-CAM is to compute the gradients of the signal for

a given class with respect to the output of the last convolution block of the model. Conceptu-

ally, the average of these gradients reflects the importance of each input feature (or wavelength

in this case) for the given class. Only the regions with a positive effect on the interested class

are obtained. For the visualization of CAMs in Fig 2C, the averaged gradients were normalized

by the sum within each sample.

Association mapping

For each accession, means of the Pi contents, biomass, and PUtE under different P treatments

(with the exception of PUtE at P100) and normalized reflectance ratios (SR traits) were calcu-

lated and used for association mapping. The whole-exome SNP data and population structure

of 172 Thai rice accessions were obtained from a previously reported association mapping

study [13]. SNPs with minor allele frequency (MAF) < 0.05 were filtered out. The remaining

113,114 SNPs were used for the association mapping with the Pi contents and SR traits. The

GWAS analysis was performed using the linear mixed model (LMM) of GEMMA software

[14]. Association results were illustrated with Manhattan plots and quantile–quantile (Q-Q)

plots. The plots were generated using the ‘qqman’ package [15] in R (version 3.6.1; R Core

Team, 2019). Significant SNPs were considered using Bonferroni correction with an experi-

mental type I error rate of α = 0.05, which the significant threshold of these associations was

-log10(p-value)� 6.35.

Results of linkage disequilibrium (LD) analysis between pairs of SNPs were obtained from

the previous study [13]. SNPs located within 100 kb of the significant SNPs and LD correlation

r2 values greater than 0.50 were included for candidate gene analysis.
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Gene models and their annotation were obtained from the MSU Rice Genome Annotation

Project database [16]. For each significant SNP and LD block, gene models in the LD block

were retrieved from the MSU database. Putative candidate genes were selected based on their

characterized and annotated function by searching against the funRiceGenes dataset [17] and

the MSU Rice Genome Annotation Project database [16].

Statistical analysis of phenotypic data

The effects of genotype, treatment and their interaction were tested using two-way analysis of

variance (ANOVA) in SPSS version 22. The distribution of of Pi content and biomass was

visualized using the seaborn package v0.9.0 in Python 3.8. Phenotypic comparison between

treatments was performed using ANOVA in SPSS version 22.

Results

Phenotypic variations of Pi contents and plant growth in different P

supplies

To evaluate phenotypic variations in the rice panel and their responses to Pi deficiency, we

determined Pi content and spectral reflectance (380–790 nm) in the second fully expanded

leaves, as well as biomass (shoot dry weight) and chlorosis or senescence in older leaves, of 172

rice accessions grown in full-strength Yoshida’s nutrient solution with three different P sup-

plies: 320, 16 and 0.8 μM P, denoted as P100, P5 and P0.25, respectively (Fig 1A).

Frequency distribution analysis of leaf Pi content exhibited a normal distribution pattern

under all three P conditions (Fig 1B). The non-overlapping graphs of each condition indicated

Fig 1. Phenotypes of rice seedlings grown under different P conditions. (a) A representative image of rice seedlings

grown in P100, P5 and P0.25 conditions, showing plant size, root length and leaf senescence. Scale bar = 5 cm. (b, d)

Frequency distribution of leaf Pi content (nmol/mm2) (b) and biomass (shoot dry weight, g/plant) (d). The values in

the X axis of (b) are marked with both linear and logarithmic scales. (c, e) Fold change comparison of leaf Pi content

(c) and biomass (e) in P100 vs. P5 and P5 vs. P0.25 conditions. (f) Percentage of plants showing senescence in the

oldest (L1), the second oldest (L2) and the third oldest (L3) leave. For each P condition, the number of plants analyzed

was at least 1,500 plants. P100, P5 and P0.25 conditions contained 320, 16 and 0.8 μM NaH2PO4, respectively.

https://doi.org/10.1371/journal.pone.0267304.g001
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that the plants accumulated different levels of Pi as a result of the different P treatments. When

P supplies were reduced from P5 to P0.25, all rice accessions showed statistically significant

decreases in leaf Pi content and shoot biomass with an average of 3.23 and 1.81 fold decreases,

respectively (Fig 1B–1E). On the other hand, when P supplies were reduced from P100 to P5,

leaf Pi contents decreased by an average of 15.62 fold, but shoot biomass was only slightly

reduced by 1.12 fold (Fig 1B–1E). Analysis of leaf senescence in the first three leaves showed

that 93.3% of the oldest leaves and 18.5% of the second oldest leaves in P5 showed senescence,

Fig 2. Spectral reflectance of the leaves from different P conditions and classification of P deficiency levels using

artificial neural network model. (a) Average reflectance spectrum (380–790 nm). Shaded areas indicate the one-

standard deviation range. (b) Overview of the model architectures for the standard convolutional neural network

(outside of the dashed box) and the multi-task model (including the dashed box). See Methods for the detailed

description of the architecture. (c) Confusion matrix of the best model (multi-task model with hidden dimension = 64)

on the test set (n = 940). (d) Class activation maps (CAMs) for samples from each P deficiency class. CAM values

conceptually represent the relative importance of the data from each wavelength on the predicted class (see Methods).

Black trend lines indicate the running mean. Shaded areas indicate the one-standard deviation range.

https://doi.org/10.1371/journal.pone.0267304.g002
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while none of the leaves in P100 showed senescence (Fig 1F). The presence of senesced leaves

in P5, but not P100, suggests that the P5 level was suboptimal as plants responded to P defi-

ciency by remobilizing P from mature leaves to the younger leaves. Furthermore, as compared

to P100, the P5 treatment increased root lengths, indicating an adaptive response to P defi-

ciency (Figs 1A and S1). These findings suggest that the P0.25, P5 and P100 treatments, respec-

tively, represented severely deficient, mildly deficient, and overly sufficient conditions for rice

growth in this study. Under P5 condition, the results showed that internal Pi contents from

mature leaves were remobilized to younger leaves without significant growth retardation (Fig

1D and 1E). This suggests that the Pi contents of the second fully expanded P5 leaves could be

used to study plant adaptation to P deficiency. However, the extra amount of Pi observed in

the P100 leaves may not be relevant to normal plant growth.

To assess P deficiency adaptation across the Thai landrace varieties, we calculated P utiliza-

tion efficiency (PUtE) by dividing shoot biomass by each plant’s Pi content [11]. The variances

of mean Pi contents, biomass, and PUtE of each variety were clustered hierarchically. PUtE at

P5 and P0.25 was more similar to biomass under the same conditions, however PUtE at P100

was not because the Pi content were extremely high and may not be physiologically relevant to

plant growth (S2 Fig). As a result, PUtE at P100 was not included in the following association

study. Clustering analysis of rice varieties identified those with (1) high Pi accumulation, low

biomass and low PUtE, (2) low Pi accumulation, high biomass and high PUtE, (3) high Pi

accumulation, high biomass and moderate PUtE, and (4) low Pi accumulation, low biomass

and moderate PUtE, as well as other groups with varying Pi accumulation patterns under dif-

ferent P conditions (S2 Fig). These results suggest that the rice varieties in this panel exhibited

varied patterns of Pi accumulation, growth and PUtE and used different adaptation strategies

in response to limited P supply.

Spectral reflectance characteristics of leaves with varying Pi contents

Spectral reflectance measured from the second fully expanded leaves grown under different P

treatments showed similar overall patterns with typical features of fresh plant leaves, including

the low reflectance at the blue and red bands and the red edge [5]. Comparing the mean spec-

tra of different P treatments, the results showed that P0.25 treatments increased the reflectance

in the VIS region, likely due to reduction of chlorophyll, but decreased the reflectance in the

NIR region (730–790 nm). P5 treatments slightly decreased the reflectance in the NIR region,

but did not affect the reflectance in the VIS region (Fig 2A). Although the P5 plants had much

lower Pi content than the P100 plants (Fig 1B and 1C), they did not show obvious visible defi-

ciency symptoms in terms of leaf spectral reflectance or chlorosis in the second fully expanded

leaves. This result indicates that spectral reflectance is affected by P deficiency when plants are

severely P-deficient. However, leaf Pi contents reflect P status more accurately and are more

sensitive to P deficiency than spectral reflectance when plants are under mildly deficient

conditions.

The whole VIS-NIR spectra are rich in data. To explore the correlation structure of the

wavebands, we first performed correlation analysis between reflectance at two wavelengths of

each spectrum (within-spectrum) using spectral data from 172 rice accessions grown under

different P conditions (S3A Fig). A correlation matrix heatmap illustrates that reflectances in

the VIS range (~420–720 nm) and the NIR range (~730–780 nm) are highly correlated within

each group (r = 0.53–0.99) but not across the two groups (r = 0.05–0.54) (S3A Fig). In contrast,

data from 380–410 nm was highly fluctuating, showing low correlations between adjacent

wavelengths (e.g., within 10 nm). This suggests that data from 380–410 nm was noisy and thus

excluded from further consideration in this study.
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Artificial neural network models for detecting P deficiency

With more than 6,000 high-resolution leaf reflectance spectra generated, we trained artificial

neural networks to predict plant P status (P100, P5, or P0.25). Two model variants were devel-

oped: a standard convolutional neural network (CNN) and a multi-task network with both a

classification output and a spectral reconstruction output (Fig 2B). The spectral reconstruction

output was added to encourage the model to learn meaningful low-dimensional representation

of the input spectra. This helps the models generalize better to unseen input spectra (S1 Table).

The best multi-task model achieved 85.60% classification accuracy, with the majority of errors

occurring between P100 and P5 conditions (Fig 2C). The P0.25 condition can be accurately

differentiated.

To understand how the artificial neural network models distinguish the reflectance spectra

between the P100, P5, or P0.25 conditions, we generated a class activation map (CAM) for

each correctly classified input. CAM illustrates the contribution of reflectance value from each

wavelength on the predicted class through the artificial neural network architecture. This

showed that the models consistently focused on the 680–700 nm and the 420–500 nm regions,

especially for the P100 and P5 samples (Fig 2D). In contrast, CAMs for P0.25 samples are flat-

ter and more highly variable. This may be because the reflectance spectra for P0.25 differ from

the other classes on almost the entire waveband (Fig 2A), and so many parts of the spectra

could be used to distinguish them.

Correlation and regression analyses of Pi contents

Self-correlation analysis of the reflectance values indicated that the entire spectrum (380–790

nm) could be reduced to two regions: the VIS region (RVIS) and the NIR region (RNIR). As

such, reflectance ratios computed from the two wavebands (RNIR /RVIS) could be simple yet

informative representations of the complex spectral data. In the following analyses, reflectance

data at 10 nm intervals (e.g., R420, R430, . . ., R790) were considered for building ratios. In total,

there are 217 reflectance ratios calculated from 7 RNIR (R730, R740, . . ., R790) and 31 RVIS (R420,

R430, . . ., R720) values.

To determine VIS-NIR reflectance indices that are relevant to leaf Pi contents and growth

parameters, we performed Spearman’s correlation analysis between each of the 217 reflectance

indices and leaf Pi contents, shoot biomass and PUtE determined from the same leaves. The

data was taken from all 172 rice accessions grown in the P5 and P0.25 treatments. Correlation

matrix heatmaps showed that the indices with RNIR from 730–790 nm and RVIS from 530–630

nm or 700–720 nm, showed strong correlation with Pi content (r> 0.69) and good correlation

with shoot biomass (r> 0.55) and PUtE (r< -0.47), all of which exhibited similar correlation

patterns (Figs 3A and S3B). These results suggest that reflectance indices computed from these

indices may be used to predict leaf Pi contents as well as growth-related parameters in rice.

We selected one of the best correlated reflectance indices from each region, which included

R740/R560 (r = 0.72) and R750/R700 (r = 0.70), and performed a regression analysis with Pi con-

tents. The data was fitted by a non-linear regression model with an exponential decay function,

as the reflectance ratios changed dramatically when Pi contents were less than 0.1 nmol/mm2

but changed slowly when Pi contents were between 0.2–0.4 nmol/mm2 (Figs 3B and S4).

When data points from individual plants were considered, the regression achieved R2 of 0.20

for R740/R560 and R750/R700 (Figs 3B and S4A). When mean values of each rice accession

(n = 9–12 plants per accession) were used, the regression achieved higher R2 of 0.52 and 0.69

for R740/R560 and R750/R700 (S4b and S4c Fig), respectively, with less than 10% coefficient of

variations in the estimated parameter values (S4B and S4C Fig).
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Next, the same artificial neural network architectures used for predicting plant P status (Fig

2B) were adapted for predicting log10 Pi content by replacing the 3-class output with a single

linear output. This significantly improved the R2 of Pi content regression from 0.20 to 0.53 for

individual plants (Fig 3C). The multi-task model with spectral reconstruction achieved the

best performance with mean absolute error of 0.14 on both P5 and P0.25 plants. The class acti-

vation map, which shows the relative importance of each wavelength on the model output,

indicated that the 420–500 nm, 660–670 nm, and the 760–790 nm regions were most impor-

tant (Fig 3D).

Genome-wide association analysis using Pi contents and spectral

reflectance traits

Statistical analysis of the mean Pi content, biomass, PUtE and the two selected reflectance ratio

(R740/R560 and R750/R700) values in different P treatments showed considerable phenotypic var-

iation within the accession panel, as indicated by the coefficient of variation (CV) (6.20–

48.40%) (Table 1). Effects of the genotype, treatment, and genotype x treatment interaction on

the observed phenotypic data were also significant (S2 Table), indicating that the phenotypic

data could be used for association mapping.

Fig 3. Correlation and regression analyses of Pi contents and reflectance ratio indices. (a) Heatmap shows

Spearman’s correlation between 217 reflectance ratio indices (RNIR /RVIS) and leaf Pi content determined from the

same leaves. R740/R560 (r = 0.72) and R750/R700 (r = 0.70) (marked with yellow squares) were selected for a regression

analysis with Pi contents (nmol/mm2) (b). Pi content and R750/R700 data was fitted by a non-linear regression model

with an exponential decay function. The formula and R2 statistics are displayed in the graph. Each data point is from

an individual plant (n = 172 accessions x 2 P treatments (P5 and P0.25) x 3 individual plants x 3 independent

experiments). (c) Scatter plot showing the correlation between observed Pi contents and the predicted values made by

an artificial neural network model on a held-out test set consisting of 569 plants. The corresponding R2 is 0.53. (d)

Class activation map (CAM) showing the relative importance of the data from each wavelength on the predicted Pi

content (see Methods). Black trend lines indicate the running mean. Shaded areas indicate the one-standard deviation

range.

https://doi.org/10.1371/journal.pone.0267304.g003
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To identify genes associated with P deficiency responses in the Thai rice population, we

performed a genome-wide association study (GWAS) using published exome-sequencing SNP

data [13], which included 172 accessions used in this study. After filtering out SNPs with

minor allele frequency (MAF) < 0.05, the remaining 113,114 SNPs were used for association

mapping with the phenotypic data using the linear mixed model (LMM) of GEMMA software

[14]. SNPs that passed a significant threshold of -log10(p-value)� 6.35 were considered signifi-

cant SNPs. For each trait, significant SNPs located within an approximately 300-kb region

were considered as one association signal (locus), and SNPs with the lowest p-value were con-

sidered as lead SNPs. For mean Pi content under different P treatments (denoted as Pi_P100,

Pi_P5 and Pi_P0.25), we identified 5 loci associated with the Pi_P5 trait (Fig 4A and 4B). The

details about these loci are listed in Table 2. There was no significant SNP found in the

Pi_P100 and Pi_P0.25 trait, as well as the PUtE_P5 and PUtE_P0.25 trait. (S5 Fig). The PUtE_

P100 trait was not included in this analysis because leaf Pi content was extremely high and not

relevant to its biomass at P100 condition.

To determine genetic loci associated with plant growth and spectral reflectance (SR) in

response to mild and severe Pi deficiency, the phenotypic values of the P-deficient conditions

(P5 and P0.25) were divided by those of the P100 condition in which plants were not stressed.

The mean normalized values of biomass and 217 reflectance ratios computed from 7 RNIR and

31 RVIS (RNIR /RVIS) were used for association mapping, which was carried out in the same

way as for the Pi content and PUtE traits. Of the 217 reflectance ratios from P0.25 condition

(P0.25/P100), 113 of them did not identify any significant SNP, while 104 reflectance ratios

identified from 1 to 48 significant SNPs (S6 Fig). The lists of the significant SNPs from each SR

trait are highly overlapped due to the strong correlations between the reflectance ratios and

leaf Pi contents (Fig 3A). All of the significant SNPs identified from the SR traits can be sum-

marized into 10 loci (Table 2). In particular, the trait R750/R700 identified 48 significant SNPs

corresponding to 9 out of the 10 loci (Fig 4C and 4D), and the trait R740/R560 identified 48 sig-

nificant SNPs corresponding to 7 out of the 10 loci. However, neither the R750/R700 nor the

R740/R560 traits from the P5 condition identified significant SNPs, most likely due to the very

Table 1. Descriptive statistics of Pi content, shoot biomass, PUtE and reflectance ratio phenotypic values from 172 accessions.

Traits Treatments Mean±SD Range CV (%)

Pi content

(nmol/mm2)

P100 3.60 ± 1.74 0.08–11.56 48.40

P5 0.22 ± 0.07 0.03–1.00 30.89

P0.25 0.07 ± 0.03 0.01–0.22 35.00

Shoot biomass

(g)

P100 0.32 ± 0.06 0.11–0.46 19.55

P5 0.29 ± 0.05 0.13–0.47 18.93

P0.25 0.16 ± 0.03 0.06–0.27 18.78

PUtEa

(g Biomass/

P100

P5

0.04 ± 0.01

0.47 ± 0.12

0.01–0.08

0.13–0.84

29.11

24.68

mg/g Pi content) P0.25 0.85 ± 0.20 0.22–1.45 23.13

R740/R560 P100 2.95 ± 0.18 1.13–3.58 6.20

P5 2.97 ± 0.21 2.28–3.72 7.15

P0.25 2.43 ± 0.29 1.71–3.50 11.92

R750/R700 P100 2.53 ± 0.17 1.02–3.10 6.86

P5 2.56 ± 0.19 1.91–3.13 7.44

P0.25 2.12 ± 0.29 1.31–2.97 13.68

a Pi content used in the calculation was converted from the unit of nmol/mm2 to mg/g by multiplying with the molecular weight of PO4
3- and dividing with dry weight

of leaf discs with known leaf areas.

https://doi.org/10.1371/journal.pone.0267304.t001
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small difference in reflectance spectra between the two conditions (Fig 2A). The biomass traits

did not identify any significant SNPs either (S5 Fig).

Heatmaps showing p-values of the lead SNPs of qSR8 (8_9225490) and qSR6-1 (6_7583291)

from all of the 217 SR traits indicate that the SNPs had similarly low p-values and passed the

Fig 4. Manhattan plots and quantile-quantile plots from GWAS of leaf Pi content and reflectance ratios. (a)

Manhattan plot for Pi_P5 (Pi content determined from the P5 treatment). (b) QQ plot for Pi_P5. (c) Manhattan plot

for R750/R700 index of P0.25 treatment normalized by P100 treatment (d) QQ plot for the R750/R700 index. For

Manhattan plots, the x-axis represents SNP positions across the entire rice genome by chromosome, and the y-axis is

the -log10(p-value) of each SNP. Red lines indicate the threshold line at -log10(p-value)� 6.35.

https://doi.org/10.1371/journal.pone.0267304.g004

Table 2. List of loci associated with Pi content and spectral reflectance indices. The number of significant SNPs and -log10 (p-value) for each locus of the reflectance

ratios R740/R560 and R750/R700 are listed and separated by semicolons.

Trait Loci name Chr Number of significant SNPs Lead SNP position (bp) -log10 (p-value) Minor allele

frequency

Pi_P5 qPi1 1 1 18,062,446 7.81 0.101

qPi5 5 2 16,423,976 6.83 0.057

qPi8-1 8 4 8,596,112 10.11 0.052

qPi8-2 8 6 18,346,725 9.19 0.054

qPi11 11 2 25,844,888 6.68 0.054

SR (R740/R560; R750/R700) qSR1-1 1 0; 2 11,321,950 6.71 0.06

qSR1-2 1 0; 1 38,610,955 6.40 0.114

qSR2 2 5; 4 1,002,248 7.94; 7.92 0.075

qSR3-1 3 3; 1 24,458,607 6.69; 6.40 0.106

qSR3-2 3 1; 0 27,448,860 6.39 0.062

qSR6-1 6 29; 30 7,583,291 7.60; 7.41 0.194

qSR6-2 6 0; 2 24,291,698 6.54 0.135

qSR6-3 6 1; 1 26,513,707 6.77; 6.72 0.054

qSR8 8 4; 4 9,225,490 7.39; 7.41 0.085

qSR11 11 5; 3 20,701,489 7.56; 7.47 0.062

https://doi.org/10.1371/journal.pone.0267304.t002
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significant cutoff threshold over a wide range of reflectance ratios (S7 Fig). Such a pattern sug-

gests that the identified SNPs and genetic loci are likely not false positives from noisy data.

Out of 10 qSR loci, one of them (qSR8) is colocalized with qPi8-1. This peak contains three

significant SNPs, which are strongly linked (r2� 0.9) and located in two genes encoding Sup-

pressor of MAX2-like protein (OsSMAX1, LOC_Os08g15230) and anthocyanidin 3-O-gluco-

syltransferase (LOC_Os08g15330), which have been shown to be related to Pi deficiency

responses. The enzyme anthocyanidin 3-O-glucosyltransferase (EC 2.4.1.115) catalyzes a step

in the anthocyanin biosynthesis pathway and its expression has been shown to be up-regulated

by Pi deficiency in suspension-cultured grape cells and rice transcriptomic studies [18,19],

consistent with Pi starvation-induced anthocyanin accumulation [20,21]. A recent study

showed that OsSMAX1 functions in the karrikin signaling pathway downstream of the

Dwarf14-Like (D14L) karrikin receptor and negatively regulates arbuscular mycorrhizal (AM)

symbiosis and strigolactone biosynthesis [22], which are adaptive strategies to overcome Pi

deficiency [23]. These suggest that both Pi contents and SR traits are relevant to each other

and to P use efficiency in rice.

The other 9 qSR loci are specific to the SR traits. The qSR6-1 locus includes 30 significant

SNPs located in 12 genes (Table 3). Among these genes, LOC_Os06g13810 encodes the regula-

tory β-subunit of pyrophosphate-fructose 6-phosphate 1-phosphotransferase (PFP1b). The

enzyme PFP (also called PPi-dependent phosphofructokinase, PPi-PFK; EC 2.7.1.90) catalyzes

the reversible phosphorylation of fructose 6-phosphate to fructose 1,6-bisphosphate in the gly-

colysis pathway and is involved in various stress responses, including phosphate starvation

and anoxia in which cytoplasmic Pi and ATP are limited [24,25]. For the qSR11 locus, a gene

encoding an R2R3-type MYB transcription factor OsMYB4P (LOC_Os11g35390), whose over-

expression in rice increases Pi acquisition [18], was found in the linkage disequilibrium (LD)

block of qSR11 lead SNP (r2 = 0.84) (S3 Table).

Several loci identified in this study were colocalized with P-related QTLs reported previ-

ously [11,26–28] (S8 Fig). Three loci (qSR3-1, qSR3-2, and qSR6-2) were located within the

reported marker intervals related to root adaptation traits (e.g. root fresh weight or root num-

ber) under P deficiency conditions [27]. These findings suggest that the loci reported in this

study likely contribute to P efficiency in rice.

Discussion

P is an essential macronutrient, and its deficiency leads to limited growth and plant productiv-

ity. Recent work showed that P deficiency immediately affects electron transport and CO2

assimilation; however, it does not terminate it [29]. Thus, P-deficient plants often do not

develop chlorosis and show visual leaf symptoms, especially in young leaves, unless the plants

experience long-term severe P deficiency. Consistently, our study showed that Pi contents are

more sensitive to plant P status than spectral reflectance. Compared to the P100 group, the P5

group clearly had limited Pi contents, but they did not alter the reflectance spectra. It could be

observed in the P0.25 group that P deficiency increased reflectance in the VIS range but

reduced reflectance in the NIR range (Fig 1B). Correlation analysis further suggested that

reflectance ratios computed from two wavebands, one from NIR (730–790 nm) and the other

from green-yellow (530–640 nm) or red edge (700–730 nm), showed good correlation with

leaf Pi contents and also had similar correlation patterns with shoot biomass and the computed

PUtE (Figs 3A and S3B). The increase of VIS reflectance and the decrease of NIR reflectance in

P-deficient leaves are related to the reduction of chlorophyll content and leaf thickness in P-

deficient leaves, respectively [30,31]. In addition, our results suggest that the NIR band and red
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edge region, which is the boundary between chlorophyll absorption of red wavelengths and

scattering of NIR wavelengths by the leaf internal structure, are sensitive to Pi deficiency.

The leaf Pi contents at P100 were exceedingly high, whereas the biomass and leaf reflectance

spectra did not show much increase from that of the mildly-deficient P5 plants. A previous

study has shown that when P levels are over-sufficient, plants can store up to 85% to 95% of

total P in the vacuoles [32]. Thus, the measured parameters affected by P-related metabolism

and leaf spectral reflectance may not be able to predict the extra amount of Pi stored in the

nonmetabolic pool of P-sufficient plants. Consistently, our artificial neural network models

trained to classify P deficiency using reflectance data can clearly distinguish P0.25 samples but

had trouble with the other two classes whose reflectance spectra are more similar (Fig 2B).

Additionally, even though class activation maps indicated that the models put more emphasis

on the red (660–690 nm) and the blue (420–500 nm) regions when differentiating the P5 and

P100 conditions and also the red edge and NIR (730–790 nm) region when predicting Pi

Table 3. List of putative candidate genes associated with Pi content and spectral reflectance indices.

Loci name Gene ID (MSU) Gene ID (RAPDB) Gene annotation

qSR1-1 LOC_Os01g19950 - expressed protein

qPi1 LOC_Os01g32890 Os01g0512400 expressed protein

qSR1-2 LOC_Os01g66490 Os01g0888300 no apical meristem protein

qSR2 LOC_Os02g02370 Os02g0114800 Myb-like DNA-binding domain containing protein

LOC_Os02g02670 Os02g0118875 NBS-LRR disease resistance protein

LOC_Os02g02690 Os02g0119100 expressed protein

qSR3-1 LOC_Os03g43720 Os03g0638200 transporter family protein

LOC_Os03g43730 Os03g0638300 tesmin/TSO1-like CXC domain containing protein

qSR3-2 LOC_Os03g48230 Os03g0687900 expressed protein

qPi5 LOC_Os05g28090 Os05g0348100 expressed protein

qSR6-1 LOC_Os06g13650 Os06g0245700 alpha-mannosidase 2

LOC_Os06g13660 Os06g0245800 alanyl-tRNA synthetase

LOC_Os06g13670 Os06g0245900 E2F family transcription factor protein

LOC_Os06g13680 Os06g0246000 B12D protein

LOC_Os06g13710 Os06g0246400 glycosyltransferase

LOC_Os06g13730 Os06g0246600 glutamate receptor precursor

LOC_Os06g13750 - expressed protein

LOC_Os06g13760 Os06g0247000 glycosyl transferase 8 domain containing protein

LOC_Os06g13780 Os06g0247200 expressed protein

LOC_Os06g13810 Os06g0247500 PFP1, pyrophosphate—fructose 6-phosphate 1-phosphotransferase subunit beta

LOC_Os06g13820 Os06g0247800 dynamin

qSR6-2 LOC_Os06g40740 Os06g0609800 expressed protein

qSR6-3 LOC_Os06g44020 Os06g0649100 expressed protein

qPi8-1, qSR8 LOC_Os08g15230 Os08g0250900 SMAX1-like protein

LOC_Os08g15330 Os08g0253100 anthocyanidin 3-O-glucosyltransferase

qPi8-2 LOC_Os08g29854 Os08g0388300 RGH1A

LOC_Os08g29870 Os08g0388400 expressed protein

LOC_Os08g30070 Os08g0390100 expressed protein

qSR11 LOC_Os11g35300 - expressed protein

LOC_Os11g35320 Os11g0557300 BSD domain-containing protein

LOC_Os11g35860 Os11g0565300 OsWAK120—OsWAK receptor-like protein kinase

qPi11 LOC_Os11g42300 Os11g0642500 OsFBX434—F-box domain containing protein

LOC_Os11g42900 Os11g0649000 expressed protein

https://doi.org/10.1371/journal.pone.0267304.t003
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content (Figs 2D and 3D), the reflectance ratios derived from these wavebands are not highly

correlated with the Pi content (Fig 3A). Previous studies have shown that several wavebands,

including the UV, blue, green, red, red edge and NIR spectrum, can be used to distinguish

nitrogen (N)- and P-deficient leaves from the control leaves and that the specific wavebands

are dependent on growth stages of the plants [33,34].

Based on the correlation analysis and the number of significant SNPs identified by GWAS,

we selected R740/R560 and R750/R700 as two spectral ratios that are most biologically relevant to

Pi deficiency responses. These ratios are sensitive to the change of Pi content when Pi content

was less than 0.1 nmol/mm2, which is the level found in P0.25 samples, but not when Pi con-

tent was higher than 0.2 nmol/mm2. Similar patterns have been reported for the relationship

between chlorophyll a fluorescence and leaf P concentration in barley [35], which are likely

due to the extra P stored in the vacuoles [32].

Our model using the two reflectance ratios to predict Pi contents achieved a poor performance

with R2 of 0.20 for both R740/R560 and R750/R700 at individual plant levels (Figs 3B and S4A). The sig-

nificant improvement in R2 at accession levels to 0.52 and 0.69, respectively, suggests that there is

considerable variability among individual plants within the same accessions (S4B Fig). Previous

studies have shown that Green NDVI (GNDVI, computed from R550 and R800) and Red-edge

NDVI (RENDVI, computed from R705 and R750), which is closed to the R750/R700 ratio used here,

could estimate leaf chlorophyll (R2> 0.8) and nitrogen contents (R2> 0.7) in a maize diversity

panel grown under different N levels very well [36]. However, the model performance to predict P

contents in the same study was poor (R2< 0.1) [36]. Although our artificial neural network model

achieved a much higher R2 statistics of 0.53 (Fig 3C) by using the information from the whole reflec-

tance spectrum, its performance still lagged behind those reported for leaf chlorophyll and nitrogen

content prediction [36]. Due to the latent effect of P deficiency on chlorosis, spectral reflectance

may have more limitation in detecting mild levels of P deficiency, compared to N deficiency. On

the other hand, a predictive model based on chlorophyll a fluorescence transient analysis has been

used to predict leaf P concentration with R2 of 0.8 [35]. P deficiency reduces Pi concentration in the

chloroplast, inhibits ATP synthase activity and consequently affects the electron transport chain,

resulting in the transient change of chlorophyll a fluorescence [29]. A recent study developed a

model to predict N content of rice using the leaf hyperspectral profile and suggested that collecting

reference spectral reflectances and reference N content of rice at various developmental stages

would be necessary to accurately evaluate the N status of rice [37]. These findings indicated that sev-

eral factors, such as plant growth stages and the measured biochemical and physiological parame-

ters, could have a significant impact on the reported R2 statistics in different studies.

Only the Pi content determined from the P5 treatment resulted in significant SNPs, but not

the P100 or P0.25 treatments, likely due to oversaturated or extremely scarce Pi contents in

these two extreme conditions. Our GWAS of the SR traits identified an overlap set of genes

with GWAS of the Pi traits and included more significant SNPs. The identification of genes or

QTLs with known P-related functions, such as MYB4P and PFP1b, from the SR-specific traits

further supports the potential of other qSR-linked candidate genes. Recently, Sun et al. (2019)

has shown that the Normalized Difference Spectral Index (NDSI, computed from R1177 and

R1227) is highly correlated with protein content in rice seeds (R2 = 0.68). The NDSI trait was

also used in GWAS analysis and identified the same SNP loci as rice protein content measured

by traditional methods with one extra SNP marker [38].

Conclusions

These applications of hyperspectral technology in plant phenotyping highlight the advantages

of using a non-destructive approach to estimate plant physiological and biochemical traits. In
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this study, we showed that the hyperspectral technology could be used as a high-throughput

phenotyping tool for developing classifier of P deficiency and identifying genetic loci associ-

ated with P use efficiency in rice.

Supporting information

S1 Fig. Rice seedlings grown under different P conditions. (a) The experimental setup show-

ing rice seedlings of 172 accessions grown in 80-L containers under P100, P5 and P0.25 condi-

tions. Senescence was visible in the first few leaves of P5 plants. The P0.25 plants showed

senescence as well as shoot growth reduction, when compared to the P100 plants. (b) Average

root length of ten Thai landrace varieties showing root elongation in response to P deficiency.

Error bars indicate standard deviation (n = 9).

(TIF)

S2 Fig. Hierarchical clustering of variances of mean Pi contents, biomass (shoot dry

weight, DW) and P Utilization Efficiency (PUtE) of 172 Thai landrace varieties grown

under P100, P5 and P0.25 conditions. (a) Clustering of the traits. (b) Heatmap analysis and

clustering of the rice varieties showing different adaptation strategies to limited P supply.

(TIF)

S3 Fig. Heatmaps showing Spearman’s correlation. (a) between reflectances at two wave-

lengths within the same spectrum and (b) between 217 reflectance ratio indices (RNIR /RVIS)

and shoot biomass and P Utilization Efficiency (PUtE) computed from shoot biomass divided

by Pi content.

(TIF)

S4 Fig. Regression analysis between R740/R560 and R750/R700 with Pi contents at individ-

ual level (a) and accession level (b-c). The data were fitted by a non-linear regression model

with an exponential decay function. The formula and R2 statistics are displayed in the graph.

(a) Each data point is from an individual plant (n = 172 accessions x 2 P treatments (P5 and

P0.25) x 3 individual plants x 3 independent experiments). (b-c) Each data point is an average

value of each rice accession from the same treatment (n> 9–12) (n = 172 accession x 2 P treat-

ments (P5 and P0.25)).

(TIF)

S5 Fig. Additional Manhattan plots from GWAS of leaf Pi content, PUtE, biomass and

spectral reflectance. Corresponding P conditions were marked above each plot. The x-axis

represents SNP positions across the entire rice genome by chromosome, and the y-axis is the

-log10 p-value of each SNP.

(TIF)

S6 Fig. The number of significant SNPs identified from GWAS of 217 reflectance ratio

traits. The ratios with RVIS of 420–520 nm yield no significant SNPs and are removed from

the plot.

(TIF)

S7 Fig. Heatmaps showing -log10(p-value) of the lead SNPs of qSR8 (8_9225490) and

qSR6-1 (6_7583291) from all of the 217 SR traits.

(TIF)

S8 Fig. Mapping of reported P-related QTL positions and significant candidate genes from

this study (listed in the box). P-related QTL intervals and SNPs reported previously are indi-

cated by lines and dots, respectively. The color symbols indicate loci identified from different
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studies: Li et al., 2009 (red), Ni et al., 1998 (green), Wissuwa et al., 1998 (blue), and Jewel et al.,

2019 (yellow).
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