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Männel1, Anja Lechner1*

1 Institute of Immunology, University of Regensburg, Regensburg, Germany, 2 Department of Neurology, University of Regensburg, Regensburg, Germany, 3 Multiple

Sclerosis Research Center of New York, New York, New York, United States of America

Abstract

Background: The function of T helper cell subsets in vivo depends on their location, and one hallmark of T cell
differentiation is the sequential regulation of migration-inducing chemokine receptor expression. CC-chemokine receptor 6
(CCR6) is a trait of tissue-homing effector T cells and has recently been described as a receptor on T helper type 17 (Th17)
cells. Th17 cells are associated with autoimmunity and the defence against certain infections. Although, the polarization of
Th cells into Th17 cells has been studied extensively in vitro, the development of those cells during the physiological
immune response is still elusive.

Methodology/Principal Findings: We analysed the development and functionality of Th17 cells in immune-competent
mice during an ongoing immune response. In naı̈ve and vaccinated animals CCR6+ Th cells produce IL-17. The robust
homeostatic proliferation and the presence of activation markers on CCR6+ Th cells indicate their activated status.
Vaccination induces antigen-specific CCR6+ Th17 cells that respond to in vitro re-stimulation with cytokine production and
proliferation. Furthermore, depletion of CCR6+ Th cells from donor leukocytes prevents recipients from severe disease in
experimental autoimmune encephalomyelitis, a model for multiple sclerosis in mice.

Conclusions/Significance: In conclusion, we defined CCR6 as a specific marker for functional antigen-specific Th17 cells during
the immune response. Since IL-17 production reaches the highest levels during the immediate early phase of the immune
response and the activation of Th17 cells precedes the Th1 cell differentiation we tent to speculate that this particular Th cell
subset may represent a first line effector Th cell subpopulation. Interference with the activation of this Th cell subtype provides
an interesting strategy to prevent autoimmunity as well as to establish protective immunity against infections.
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Introduction

In the late 80ies Mossman et al. designated Th1 and Th2 cells

according to their capacity to secrete the cytokines IFN-c and IL-

4, respectively [1]. Since then, IL-10 and TGF-b producing T cells

were identified as regulatory T cells [2]. The increasing knowledge

about the heterogeneity of the Th cell subpopulations helped to

explain how most infections are resolved. Nevertheless, the

involvement of Th cells in the elimination of extracellular bacteria

and fungi, and in the development of autoimmune disorders could

not be adequately explained with the T effector cell subpopula-

tions as defined in the literature so far. Recent studies on the role

of the APC-derived cytokine IL-23 for the development of

autoimmunity and clearance of infections [3–6] expanded our

knowledge in T cell immunology by pointing to a new Th cell

subtype involved in these mechanisms. These particular Th cells

are characterised by the production of the cytokine IL-17 and are

now referred to as Th17 cells [7,8]. While the expansion and

maintenance of Th17 cells depends on IL-23 [9], their generation

in mice is induced by the early inflammatory cytokines IL-21, IL-

6, and TGF-b [9–11]. These cytokines are produced early in the

inflammatory process by innate effector cells and Th cells [12,13].

Once the Th cells are differentiated, the cytokine milieu influences

the functionality of each of the Th cell subsets; Thl, Th2, and

Th17 cells produce cross-regulatory cytokines that are mutually

inhibitory for the respective other subsets [8,14]. Nevertheless, it is

still unclear how the development and maintenance of Th17 cells

is regulated during the immune response in vivo. One of the

reasons for this is the lack of well-characterised surface markers

identifying Th17 cells. Based on the findings that Th17 cells

express CCR6 [15,16] we examined the generation of IL-17

producing Th cells in a non-infectious vaccination model with

ovalbumin (OVA), and analysed the functionality of Th17 cells

during the immune response in immune-competent C57BL/6

mice. For the first time, we demonstrated that CCR6 is a selective

marker for the identification of Th17 cells during an immune

response. Furthermore, CCR6+ Th17 cells were present even in

naı̈ve mice and this population showed signs of activation in the
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steady state. During the acute phase of the immune response, the

proportion of IL-17 producing Th cells in the lymph nodes

decreased compared to the Th1 cell subpopulation. Nevertheless,

antigen-specific IL-17 producing responder cells arose in the

lymph node. The functionality of CCR6+ Th17 cells was

demonstrated in adoptively transferred experimental autoimmune

encephalomyelitis (at-EAE); transfer of lymph node cells contain-

ing CCR6+ Th17 cells led to severe disease while depletion of

CCR6+ Th cells attenuated the course of at-EAE.

Materials and Methods

Mice
Inbred C57BL/6 mice were purchased from Charles River

(Sulzfeld, Germany), inbred SJL/J mice were obtained from

Harlan Winkelmann (Borchen, Germany). OVA TCR transgenic

(OT-II) mice were bred and maintained in the animal facilities of

the University of Regensburg. Mice of 8–16 weeks of age were

used. Vaccination with OVA was performed injecting 100 mg

OVA and 8 nmol CpG-ODN 1668 [17] s.c. into the hind footpad.

All experiments were conducted according to animal experimental

ethics committee guidelines and were approved by the local

authorities.

Antibodies and reagents
The following antibodies were used for flow cytometry: Rat

anti-mouse CD4 (clone RM4-5), rat anti-mouse CD8a (clone 53-

6.7), rat anti-mouse CD44 (clone IM7), rat anti-mouse CD62L

(clone MEL-14), hamster anti-mouse CD69 (clone H1.2F3), rat

anti-mouse IFN-c (clone XMG1.2), rat anti-mouse IL-17 (clone

TC11-18H10.1), mouse anti-BrdU (clone B44), PE and APC

labelled isotype control IgG. All mAb and isotype controls were

purchased from BD Biosciences (Heidelberg, Germany). Rat anti-

mouse CCR6 (clone 140706) was purchased from R&D Systems

(Wiesbaden, Germany). Hamster anti-mouse CD3e (clone

145.2C11) was purified from hybridoma cell culture supernatant

using protein-G-sepharose columns (GE Healthcare, München,

Germany).

Flow cytometry and cell sorting
Popliteal and inguinal lymph nodes were harvested. Single cell

suspension was prepared as previously described [18]. Cells were

incubated with the appropriate antibodies in staining buffer (PBS

containing 2% FCS). Data was collected on the LSR II flow

cytometer (BD Biosciences) and analysed using the DIVA software

(BD Biosciences). All staining profiles were based on live-gated

cells, as determined by forward and sideward scatter properties.

For the separation of CD4+ T cells the MACS system (Miltenyi

Biotec, Bergisch Gladbach, Germany) was employed using anti-

mouse CD4 MACS beads. For further separation of CD4+

CCR6+ lymphocytes 56107 cells per sample were incubated in

500 ml of staining buffer with the appropriate antibodies. Cells

were sorted on the FACSAria cell sorter (BD Biosciences).

Analysis of cell proliferation in vitro
Lymph node cells (56105) were labelled with CFSE (Invitrogen,

Karlsruhe, Germany) at a final concentration of 1.25 mM, and

cultured in 200 ml RPMI 1640 (PAN Biotech, Aidenbach,

Germany) supplemented with 10% FCS (Sigma-Aldrich,

München, Germany), 50 mM b-mercaptoethanol, 2 mM L-

glutamine, 100 U/ml penicillin and 100 mg/ml streptomycin

(PAN Biotech). Cells were stimulated with OVA (20 mg/ml;

Sigma-Aldrich) or plate bound anti-CD3 (5 mg/ml) and prolifer-

ation was assessed by flow cytometry.

Measurement of cell proliferation in vivo
OT-II mice were immunised for the indicated periods of time

and fed with 5-Bromo-29-deoxyuridine (BrdU; 800 mg/ml) in

drinking water for three days. Draining lymph nodes were

harvested and single cell suspensions were prepared. Cell surface

staining was performed. The detection of the incorporated BrdU

was conducted with the BrdU Flow Kit (BD Biosciences)

according to the manufacturer’s instructions with the exception

that a FITC-conjugated mouse anti-BrdU (clone B44) was used for

detection of the thymidine analogue. Proliferation of either CD4+

CCR6+ or CD4+ CCR62 cells was assessed by the presence of

BrdU fluorescence in dividing cells.

Determination of cytokine production
Cells were stimulated with plate bound anti-CD3 (5 mg/ml) or

OVA (20 mg/ml) in vitro and supernatants were collected. IFN-c
and IL-17A protein quantification was performed with DUO-

ELISA kits (R&D Systems) following the manufacturer’s instruc-

tions. The detection limit for IFN-c and for IL-17A was 20 pg/ml.

Intracellular cytokine staining
Freshly isolated or in vitro reactivated lymph node cells were

stimulated with ionomycin (1 mM; Sigma-Aldrich), and PMA

(80 ng/ml; Sigma-Aldrich) in the presence of GolgiStop (BD

Biosciences) for 4 h. Intracellular staining was performed using the

Cytofix/Cytoperm Kit (BD Biosciences) according to the manu-

facturer’s instructions.

Induction and assessment of at-EAE
SJL/J mice were immunised by injection of 200 mg of murine

PLP (aa139–151, Pepceuticals Limited, UK), emulsified in

Complete Freund’s adjuvant (CFA) (Difco Laboratories, Detroit,

Michigan, USA) supplemented with 500 mg Mycobacterium

tuberculosis (Difco Laboratories). After 10 days cells were harvested

from draining lymph nodes and single cell suspension was prepared.

Lymphocytes were sorted into CD42, CD4+ CCR62 and CD4+

CCR6+ fractions. After the sorting procedure cell fractions either

including or excluding CD4+ CCR6+ cells were combined in the

same ratio as present in the starting lymph nodes and cultured with

5 mg/ml PLP for 72 h. Afterwards, lymph node cells were harvested

and washed twice with PBS. Each recipient mouse received

3.56106 activated lymph node cells by i.p. injection. Weight and

clinical score were recorded at the indicated time points according

to the following criteria: 0 = healthy; 1 = limp tail; 2 = partial

hindlimb weakness and/or ataxia; 3 = complete paralysis of at least

one hindlimb; 4 = severe forelimb weakness; 5 = moribund or dead.

Statistical analysis
Error bars represent SEM. For statistical analysis two-tailed

Student’s t test was used unless indicated otherwise; p,0.05 was

considered significant. For at-EAE experiments differences were

analyzed by the non-parametric Mann-Whitney U test; p,0.05

was considered significant.

Results

Analysis of CCR6+ Th cells in immune-competent C57BL/
6 mice

Antigen-specific T cell response occurs in distinct steps. After

activation Th cells differentiate into effector cells that migrate to

their target organs, and orchestrate the immune response.

Therefore, re-organization of adhesion molecules and chemokine

receptors is a hallmark of T cell differentiation [19].

In Vivo Analysis of Th17 Cells
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In this study we analysed the fate and the function of CCR6+

Th cells in naı̈ve and vaccinated mice. Analysis of the cytokine

pattern of lymph node residing CCR6+ Th cell fraction in naı̈ve

mice showed that this T cell subpopulation clearly consists of Th17

cells; 16.1% (64.7) of the CD4+ CCR6+ Th cell fraction produced

IL-17 (Fig. 1A, left panel). In the respective Th cell fraction nearly

no IFN-c production was observed (0.6%60.3; Fig. 1A, left panel).

In addition, neither IL-4 nor the anti-inflammatory cytokine IL-10

were detectable in CCR6+ Th cells (data not shown). Th cells that

were negative for CCR6 did not produce IL-17 (Fig. 1A, right

panel). The exclusive production of the cytokine IL-17 allowed us

to follow the generation of Th17 cells according to the surface

marker CCR6 during the immune response in our study.

Since the CCR6+ IL-17 producing cells were present in naı̈ve

mice we were interested in the phenotype of those cells. CCR6+

Th cells expressed the activation markers CD69 and CD44

(Fig. 1B) in untreated mice. In contrast to the former markers,

CD62L and CD45RB are characteristics of naı̈ve Th cells and

were down regulated on CCR6+ Th cells (Fig. 1B). The expression

pattern of the activation markers and adhesion molecules on

CCR6+ Th cells pointed to an activated phenotype of these cells in

naı̈ve mice; it did not change substantially after immunisation

(data not shown). To correlate the activated phenotype with

functional properties on CCR6+ Th cells we determined in vivo

proliferation of those cells in non-vaccinated C57BL/6 mice. In

naı̈ve mice the CCR6+ Th cell subpopulation proliferated

vigorously. 15.5% (65.2; Fig. 1C) of the CCR6+ Th cells

incorporated BrdU within the treatment period of three days.

Nearly no proliferation was detected in CCR62 Th cells (0.4%

cells in proliferation60.2; Fig. 1C).

Vaccination favours the development of IFN-c producing
Th1 cells

To clarify the role of CCR6+ Th17 cells during the immune

response we vaccinated C57BL/6 mice with OVA and CpG-

oligodeoxynucleotides (ODN) as adjuvant. These conditions

mimic the situation during infections with pathogens. During the

acute phase of the T cell response on day six after vaccination

lymph node cells had a reduced capacity to produce IL-17 protein

after polyclonal activation (Fig. 2A left panel). As in naı̈ve animals

IL-17 production was restricted to the CCR6+ Th cell subpop-

ulation after immunisation (Fig. 2B, left panel). Following

immunisation IFN-c became the dominant cytokine produced

by lymph node cells (Fig. 2A, right panel). Thereby, IFN-c was

synthesised by CCR62 Th cells (Fig. 2B, right panel) and cytotoxic

T lymphocytes (CTL; data not shown). To rule out whether these

findings are due to the use of CpG-ODN we performed additional

immunisation experiments using alum and IFA as adjuvants. Both

alum precipitated OVA and OVA emulsified in IFA induced the

same reduction in Th17 cells during the peak phase of the immune

response as seen in CpG-OVA vaccinated mice (Fig. S1). The

decrease in IL-17 producing Th cells after vaccination correlated

Figure 1. Residual CD4+ CCR6+ T cells show an activated
phenotype in C57BL/6 mice. (A and B) Lymph nodes of naı̈ve C57BL/
6 mice were harvested and cells were analysed by multicolour flow
cytometry. For each experiment lymph node cells from three mice were
pooled. (A) Cells were gated on CD4+ cells and the expression of CCR6

and IL-17 or CCR6 and IFN-c was monitored. The percentage of cytokine
producing cells in the live cell gate was determined. Data is given as
mean (6SEM) of three independent experiments. (B) The expression of
activation markers on CD4+ CCR6+ (dark grey histogram) and CD4+

CCR62 (light grey histogram) cells was analysed. Data is representative
for three independent experiments. (C) OT-II mice were fed with BrdU.
Cells were isolated from lymph nodes. In vivo proliferation of Th cells
was assessed by their BrdU-linked fluorescence. Representative density
plots of gated CD4+CCR6+ (left panel) and CD4+CCR62 (right panel) cells
are shown. Data is given as mean (6SEM) of six independent
experiments.
doi:10.1371/journal.pone.0002951.g001

In Vivo Analysis of Th17 Cells
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with the reduction of CCR6+ Th cells in the lymph nodes (Fig. 2C).

To elucidate the mechanisms underlying the different kinetics of

the induction of IL-17 and IFN-c, respectively, we determined the

kinetics of the expansion of CCR6+ and CCR62 cells during the

course of the immune response in vivo. Immunisation led to a

tremendous induction of proliferation of the CCR62 Th cell

subpopulation (Fig. 2D; 34.7%68.6). Between days three and six

of the immune reaction the expansion of CCR62 cells was almost

completed and the proliferation rate dropped to 5.4% of

proliferating cells (62.1). As CCR6+ Th cells showed a high

proliferation rate in naı̈ve mice (Fig. 1C and 2D), the

responsiveness of CCR6+ Th cells to vaccination was rather weak

but clearly detectable (Fig. 2D; 33.6%68.4).

Antigen-specific CCR6+ Th17 cells are generated in
response to OVA in C57BL/6 mice

So far we noticed proliferation of CCR6+ Th cells following

immunisation with OVA and CpG-ODN but the antigen-specificity

of these vaccination-induced cells still needed to be clarified.

Therefore, we tested whether in vivo activated Th cells are capable

Figure 2. Production of IL-17 and IFN-c is differentially regulated during the immune response. (A–C) C57BL/6 mice were immunised for
the indicated periods of time. For each experiment lymph node cells from three mice were pooled. (A) Cells were cultured in the presence of plate
bound anti-CD3. After 72 h in culture supernatants were collected. The amounts of IL-17 (left panel) and IFN-c (right panel) were analysed by ELISA.
ELISA was performed in duplicates. Data is given as mean (6SEM) of two independent experiments, * p,0.05. (B) Intracellular cytokine staining was
performed immediately after isolation as described in materials and methods. The percentage of IL-17 and IFN-c producing cells (6SEM) within the
CD4+ T cell fraction was determined by flow cytometry. Three independent experiments were performed. (C) CD4+ lymphocytes were analysed for
the expression of CCR6. Mean values (6SEM) of three independent experiments are shown, * p,0.05. (D) OT-II mice were immunised for the
indicated periods of time. In vivo proliferation of CD4+ CCR6+ (open bars) and CD4+ CCR62 (black bars) cells was determined according to their BrdU-
linked fluorescence. Data is given as mean values (6SEM) of three (day 6) to six (day 0 and d 3) independent experiments. * p,0.01.
doi:10.1371/journal.pone.0002951.g002

In Vivo Analysis of Th17 Cells
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to produce IL-17 in response to in vitro re-stimulation with specific

antigen. Cells obtained either from naı̈ve mice or mice that were

immunised for two days did not release IL-17 in response to OVA-

challenge. On day six after immunisation cells produced considerable

amounts of IL-17 (Fig. 3A, left panel). In accordance to polyclonal

activation antigen-specific re-stimulation resulted in a strong

induction of IFN-c release (Fig. 3A, right panel).

We next determined the capacity of in vivo activated CCR6+

Th17 cells to expand in vitro. On day six after vaccination we

detected antigen-induced proliferation of the CCR6+ Th cell subset

(Fig. 3B, right panel). Cells cultured without exogenous antigen also

progressed in divisions (Fig. 3B, left panel). This suggests that

endogenous antigen derived from the previous vaccination induced

proliferation in those cells. This hypothesis was supported by the

fact that T cells obtained from mice on day 21 after immunisation

did not proliferate without re-stimulation but responded to the

administration of OVA (Fig. 4A). Moreover, at that late point of the

immune response antigen-specific reactivity was largely limited to

the CCR6+ Th cell subpopulation. Whereas CCR6+ and CCR62

Th cells proliferated to the same extent upon polyclonal stimulation

only a small proportion of the CCR62 Th cell subpopulation

showed responsiveness to in vitro challenge with antigen (Fig. 4B).

CCR6 defines functional antigen-specific Th17 cells that
induce autoimmune disease

To investigate whether CCR6 could be used as a specific

marker to isolate functional Th17 cells we induced EAE in mice.

In this murine model for multiple sclerosis the autoimmune

deterioration of the central nervous system (CNS) is mainly

mediated by inflammatory Th17 cells [20]. Antigen-specific Th

cells are primed by vaccination with the myelin-specific antigen

PLP. Disease is induced transferring in vivo activated lymph node

cells into naı̈ve recipient mice. Therefore, depletion of CCR6+ Th

cells in that particular transfer model should prevent disease

development in mice. In accordance with our previous observa-

tions we observed a significant reduction of IL-17 production in

PLP re-stimulated lymph node cells depleted of CCR6+ Th cells

(Fig. 5A). Analysis of sorted CCR6+ and CCR62 Th cell fractions

revealed that IL-17 was exclusively produced by CCR6+ Th cells

(Fig. 5B). Although, lymph node cells that were depleted for

CD4+CCR6+ cells regained CCR6 expression (Fig. S2A) nearly no

IL-17 production was detected in those cells after in vitro re-

stimulation for 3 days (Fig. S2B). Consequently, adoptive transfer

of lymph node cells containing CCR6+ Th cells into naı̈ve

recipients induced severe EAE whereas depletion of CCR6+ Th

cells form donor cells considerably attenuated the severity of

disease in recipient mice, and reduced their mortality (Fig. 5C and

Table 1).

Discussion

Differential expression of chemokine receptors is an accepted

principle for the classification of different Th cell subpopulations

[21,22]. The chemokine receptor CCR6 is expressed on activated

Figure 3. Induction of antigen-specific CCR6+ Th17 cells after vaccination. C57BL/6 mice were immunised for the indicated periods of time.
Lymph node cells were isolated and stimulated in vitro. (A) OVA-stimulated (black bars) or control cells (open bars) were cultured for 72 h in vitro. The
amounts of IL-17 and IFN-c were quantified. ELISA was performed in duplicates. Mean values (6SEM) of three independent experiments are depicted
(n.d. indicates values below the detection limit). (B) Lymph node cells of three mice were pooled, labelled with CFSE and cultured for 96 h.
Proliferation of OVA-stimulated (right panel) and control CD4+ CCR6+ cells (left panel) was determined by CFSE dilution. Each data point represents
one experiment (n = 3/time point). Horizontal bars indicate the mean. * p,0.05.
doi:10.1371/journal.pone.0002951.g003

In Vivo Analysis of Th17 Cells
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Th cells but the function of CCR6+ Th cells has been rather

obscure for a long time [23]. Recent reports on Th17 cells start to

enlighten the role of this particular T cell subset [15]. In our study

we demonstrated for the first time that CCR6 is a valid marker to

define functional antigen-specific Th17 cells in mice. In naı̈ve and

immunised mice IL-17 producing Th cells from lymph nodes

exclusively resided within the CCR6+ Th cell fraction. Analysis of

the cytokine production of sorted CCR6+ Th cells clearly showed

that this Th cell fraction was the only source of IL-17 protein

within the Th cell population.

A common issue linking CCR6 expressing Th cells and Th17

cells is their association with autoimmune diseases [24–26]. IL-17

producing Th cells have been shown to be responsible for the

development of EAE in mice [20]. As a matter of fact depletion of

auto-reactive Th17 cells on the basis of CCR6 expression from

lymph node cells attenuated the encephalitogenicity of transferred

cells in at-EAE. It is important to note that IL-17 producing CTL

[20] could not compensate for the loss in IL-17 producing Th cells

resulting from the depletion of the CCR6+ Th cell fraction. The

ablation of CCR6+ Th cells from lymph node cells of PLP

immunised mice almost completely prevented IL-17 production.

This experiment places emphasis on the correlation between IL-17

production and CCR6 expression. Interestingly, in vitro re-

stimulation of primed lymph node cells that were depleted for

CD4+CCR6+ cells, led to the emergence of CCR6+ T cells but not

Th17 cells. As we were not able to completely block EAE

development by deletion of CCR6+ Th17 cells, it is conceivable

that those cells regain functionality in vivo irrespective of their

inability to produce IL-17 during in vitro culture.

Up to now the generation of murine Th17 cells is accomplished

by polarizing these cells in vitro in the presence of cytokines such

as IL-6 and TGF-b [9,11]. Additionally, the spontaneous

development of CCR6+ Th17 cells could be shown in autoim-

mune prone mice [27] but the stimulatory requirements for the

development of Th17 cells in the course of an infection are yet ill-

defined. In vitro IL-17 production can be forced by stimulating

lymph node cells with pathogenic components, such as LPS, CpG

DNA motifs, and pertussis toxin [9,28]. Those toll-like-receptor-

activating substances trigger the production of pro-inflammatory

cytokines by antigen presenting cells that further induce Th cell

differentiation towards the Th17 subtype. Thus, our non-

infectious vaccination scheme provides the opportunity to follow

the formation of Th17 cells in vivo.

In fact, we were able to induce antigen-specific Th17 cells by

our protocol. These cells were functional by producing IL-17

protein and expanding in response to their specific antigen without

the presence of additional polarizing cytokines. The presence of

IL-17 in antigen-specifically re-stimulated cell cultures suggested

the differentiation of Th17 cells from non-committed naı̈ve T cells

after vaccination. However, since Th17 cells are most abundant in

naı̈ve mice we cannot completely rule out whether that cytokine is

derived from pre-existing CCR6+ memory cells. This implies the

presence of cross-reactive T cells within the IL-17 producing Th

cell subpopulation. Polyspecific T cells are part of the normal T

cell repertoire and initially selected against self- or microbial

antigens [29,30]. Although, the promiscuity in antigen recognition

is thought to be in particular important for T cell memory and

homeostasis it often leads to autoimmunity [31–34]. Indeed, IL-17

production in our experiments is accompanied with Th cells with a

memory phenotype. Since those cells are resistant to suppression

by regulatory T (Treg) cells [35] the occurrence of polyspecificity

within the Th17 cell subset might explain the detrimental role of

Th17 cells for the development of chronic inflammatory diseases.

Strikingly, our data demonstrate that Th1 cells became the

predominant Th cell subtype during the peak of the physiological

inflammatory response. As IFN-c negatively regulates IL-17

production in vitro [8] this cytokine also seems to display a

suppressive effect on Th17 cells in vaccinated mice. Since we

observed a reduction of Th17 cells under Th1, and Th2 polarizing

conditions these observations might reflect the differential

temporary needs for Th1 or Th2 cells and Th17 cells during the

course of an infection, and account for the different kinetics

underlying the development of these Th cell subtypes. Th17 cells

are equipped with homing receptors that allow them to reside in

peripheral tissues. We also noticed a robust proliferation and

expression of activation-induced receptors within the CCR6+ Th

cell subset in non-vaccinated mice. This pointed to a Th cell

subpopulation that is constantly on the alert. Th cell-derived IL-17

induces the production of growth factors, cytokines, and

Figure 4. On day 21 after immunisation CD4+ CCR6+ prolifer-
ated in response to specific antigen. C57BL/6 mice were
immunised for 21 days. Lymph nodes cells of three mice were pooled
for each experiment and labelled with CFSE. (A) Cells were cultured for
96 h in the absence or presence of OVA. Proliferation was measured by
flow cytometry. The proportion of proliferating cells within the CD4+

CCR6+ fraction was determined. Each data point represents one
experiment (n = 3/time point). Horizontal bars indicate the mean. *
p,0.05. (B) Cells were stimulated with anti-CD3 or OVA and
proliferation was assessed by flow cytometry. The percentage of
proliferating cells is depicted. One representative experiment out of
three is show.
doi:10.1371/journal.pone.0002951.g004

In Vivo Analysis of Th17 Cells
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chemokines by stromal cells [36,37]. Thus, Th17 cells provide the

stimulatory conditions creating the appropriate environment

needed for the recruitment of innate immune cells early in

inflammation [38,39]. Subsequently, during the peak of the

immune response Th1 cells assume their role in promoting the

functionality of CTL and macrophages.

An open question still remains: is ligation of CCR6 required for

in vivo activation of Th17 cells? Since blocking CNS-expressed

CCL20, the cognate ligand of CCR6, in active EAE results in an

attenuation of the disease [40,41] CCR6 expression seems to be

necessary for the generation of functional Th17 cells. Accordingly,

CCR62/2 mice exhibit impaired Th cell function in delayed type

Figure 5. Depletion of CD4+ CCR6+ T cells attenuates disease development in at-EAE. SJL/J mice were immunised as described in materials
and methods. On day 10 lymph nodes were harvested and cells were isolated. (A) Total lymph node cells (open bar) or lymph node cells depleted of
CD4+ CCR6+ cells (black bar) were cultured in vitro in the presence of PLP for 72 h. The production of IL-17 protein was quantified. ELISA was
performed in duplicates. Data represents the mean values (6SEM) of two independent experiments. * p,0.05. (B) Purified CD4+ CCR6+ (open bar) or
CD4+ CCR62 (black bar) T cells were stimulated with plate bound anti-CD3 for 72 h. IL-17 was quantified. ELISA was performed in duplicates. Data
represents the mean values (6SEM) of three independent experiments. * p,0.05. (C) Mean EAE scores (6SEM) from mice received either total lymph
node cells (open squares) or CD4+ CCR6+ depleted lymph node cells (closed circles) are shown (n = 5/group). The differences between the two groups
were statistically significant by day 6 through day 17. * p,0.05.
doi:10.1371/journal.pone.0002951.g005

Table 1. Depletion of CD4+ CCR6+ T cells attenuates disease in the at-EAE model.

Transferred cell type Incidence a Mortality a
Mean day of disease
onset Maximum score Cumulative scoreb

Total LNCc 5/5 3/5 6 (60; n = 5) 4.5 (60.7; n = 5) 46.7 (614.1; n = 5)

CD4+CCR6+ depleted LNCc 4/5 0/5 10 (64.6; n = 5)d 2.6 (61.6; n = 5)d 18.1 (613.9; n = 5)d

aClinical outcome of EAE of mice that had received either total lymph node cells or CD4+CCR6+ depleted lymph node cells is shown for the observation period of 20
days.

bCumulative score was calculated by summing up each individual score registered during the follow-up period.
cLNC, lymph node cells
dp,0.05 compared with control mice; Mann-Whitney U test.
doi:10.1371/journal.pone.0002951.t001
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of hypersensitivity reactions (DTH) and in re-infection experi-

ments [18,42]. These inflammatory conditions also test primed Th

cells for their functionality. One likely explanation is that in those

models the CCR6-mediated migration of Th cells into the target

organs is needed for a sufficient activation of Th17 cells. In

contrast, in the respective adoptive transfer EAE model blocking

CCL20 did not prevent the development of disease [40]. That

indicates once activated CCR6+ Th17 cells remain functional.

They react against endogenous antigen and cause autoimmunity.

Together, these findings point to a defect in the differentiation

towards the Th17 subtype in the absence of CCR6.

From our observations, we conclude that CCR6+ Th cells

represent an activated Th cell subpopulation. They are capable of

producing IL-17 after vaccination with protein antigens. However,

exceeded stimulation of Th17 cells results in a continuous

production of IL-17 that promotes autoimmune phenomena

[43]. Therefore, Th17 cells have to be controlled effectively.

CCR6 is a common attribute of certain tissue homing Treg cells

[44] and Th17 cells, and the dichotomy between Treg cells and

inflammation-promoting Th17 cells has been stated recently [11].

Equipped with a similar type of homing and activation receptors

both Th cell subtypes might meet at the sites of inflammation and

cross-regulate each other. Extending the knowledge of the

mechanisms influencing the generation and recruitment of Th17

cells in vivo, and the identification of additional target structures

on these cells may lead to new therapeutic approaches for the

treatment of autoimmune disorders or to the development of

innovative vaccination strategies.

Supporting Information

Figure S1 IL-17 production is down regulated during the

immune response. (A–C) C57BL/6 mice were immunised with

100 mg OVA either adsorbed to ImjectH alum (Pierce Biotech-

nology, Rockford, USA) or emulsified in incomplete Freund’s

adjuvant (IFA). Draining lymph nodes of naı̈ve mice (black bar)

and mice immunised with Ova alum (grey bars) or IFA (open bars)

were harvested at the indicated time points. (A) Cells were

stimulated in vitro with plate bound anti-CD3 for 72 h. The

production of IL-17 protein was quantified. ELISA was performed

in duplicates. * p,0.05; compared to day 0. (B) Cells were applied

for intracellular cytokine staining immediately after isolation. The

percentage of IL-17 producing CCR6+ cells (6SEM) within the

CD4+ T cell fraction was determined by flow cytometry. * p,0.05;

compared to day 0. (C) Intracellular cytokine staining of lymph

node cells obtained on day 6 after immunisation was performed as

described in materials and methods. The percentage of IL-17

producing CCR6+ cells within the CD4+ T cell fraction was

determined by flow cytometry. Data represents the mean

values6SEM (n = 3, control mice; n = 4 immunised mice).

Found at: doi:10.1371/journal.pone.0002951.s001 (0.55 MB TIF)

Figure S2 CCR6 expression does not concur with IL-17

production in PLP re-stimulated lymph node cells. SJL/J mice

were immunised as described in materials and methods. (A) Total

lymph node cells (open bar) or lymph node cells depleted of CD4+

CCR6+ cells (black bar) were re-stimulated with PLP for 72 h in

vitro. The percentage of CCR6+ cells within the CD4+ T cell

fraction is shown. Data represents the mean values6SEM (n = 4).

(B) After the 72 h re-stimulation period intracellular cytokine

staining was performed as described in materials and methods.

Cells were gated on CD4+ CCR6+ cells and the percentage of IL-

17 producing cells was calculated. Data is given as mean6SEM

(n = 4; * p,0.05).

Found at: doi:10.1371/journal.pone.0002951.s002 (0.21 MB TIF)
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