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SUMMARY
Early detection and effective treatment of severe COVID-19 patients remain major challenges. Here, we per-
formed proteomic and metabolomic profiling of sera from 46 COVID-19 and 53 control individuals. We then
trained a machine learning model using proteomic and metabolomic measurements from a training cohort of
18 non-severe and 13 severe patients. The model was validated using 10 independent patients, 7 of which
were correctly classified. Targeted proteomics and metabolomics assays were employed to further validate
this molecular classifier in a second test cohort of 19 COVID-19 patients, leading to 16 correct assignments.
We identifiedmolecular changes in the sera of COVID-19 patients compared to other groups implicating dys-
regulation of macrophage, platelet degranulation, complement system pathways, and massive metabolic
suppression. This study revealed characteristic protein and metabolite changes in the sera of severe
COVID-19 patients, which might be used in selection of potential blood biomarkers for severity evaluation.
INTRODUCTION

Coronavirus disease 2019 (COVID-19) is an unprecedented

global threat caused by severe acute respiratory syndrome coro-

navirus 2 (SARS-CoV-2). It is currently spreading around the

world rapidly. The sudden outbreak and accelerated spreading

of SARS-CoV-2 infection have caused substantial public con-

cerns. Within about 3 months, over 2 million individuals world-

wide have been infected, leading to over 150,000 deaths.

Most COVID-19 studies have focused on its epidemiological

and clinical characteristics (Ghinai et al., 2020; Guan et al.,

2020). About 80% of patients infected with SARS-CoV-2 dis-

played mild symptoms with good prognosis. They usually

recover with, or even without, conventional medical treatment

and therefore are classified as mild or moderate COVID-19 (The-

varajan et al., 2020). However, about 20% of patients suffer from

respiratory distress and require immediate oxygen therapy or

other inpatient interventions, including mechanical ventilation

(Murthy et al., 2020; Wu and McGoogan, 2020). These patients,
classified as clinically severe or critical life-threatening infec-

tions, are mainly diagnosed empirically based on a set of clinical

characteristics, such as respiratory rate (R30 times/min), mean

oxygen saturation (%93% in the resting state), or arterial blood

oxygen partial pressure/oxygen concentration (%300 mmHg).

However, patients exhibiting these clinical manifestations have

already progressed to a clinically severe phase and require im-

mediate access to specialized intensive care; otherwise, they

may die rapidly. Therefore, it is critical to develop new ap-

proaches to assess early which caseswill likely become clinically

severe. In addition, effective therapy for severe patients remains

speculative, largely due to limited understanding of SARS-CoV-2

pathogenesis.

In this study, we hypothesized that SARS-CoV-2 induces

characteristic molecular changes that can be detected in the

sera of severe patients. Thesemolecular changesmay shed light

on therapy development for COVID-19 patients. To test this hy-

pothesis, we applied proteomic (Aebersold and Mann, 2016; Li

et al., 2020) and metabolomic (Hou et al., 2020; Lee et al.,
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2019) technologies to analyze the proteome and metabolome of

sera from COVID-19 patients and several control groups.

RESULTS

Proteomic and Metabolomic Profiling of COVID-19 Sera
We procured a cohort of patients (Zheng et al., 2020) containing

28 severe COVID-19 patients. The detailed patient descriptions

including the sampling date for each patient are shown in

Figure 1A, Table 1, and Table S1. Controls with matched epide-

miological features were included to identify severity-related

molecular alterations. These controls were 28 healthy subjects,

25 non-COVID-19 patients (negative for the SARS-CoV-2 nucleic

acid test) with similar clinical characteristics as COVID-19 pa-

tients, and 25 non-severe COVID-19 patients. A serum sample

was obtained from each patient within a few days after hospital

admission, with a few exceptions when samplings were per-

formed at later disease stages.We analyzed 12 clinical measure-

ments of the COVID-19 and non-COVID-19 patients (Figure S1),

including white blood cell count, lymphocyte count, monocyte

count, platelet count, C-reactive protein (CRP), alanine amino-

transferase (ALT), aspartate aminotransferase (AST), glutamyl-

transferase (GGT), total bilirubin (TBIL), direct bilirubin (DBIL),

creatinine, and glucose. Compared to non-severe patients, se-

vere patients showed significant suppression of lymphocyte

count and monocyte count, as well as increase of CRP and

AST (Figure S1).

We used stable isotope labeled proteomics strategy TMTpro

(16plex) (Li et al., 2020) and ultra performance liquid chromatog-

raphy/tandem mass spectrometry (UPLC-MS/MS) untargeted

metabolomics approach to analyze the sera samples. Alto-

gether, 894 proteins and 941 metabolites (including 36 drugs

and their metabolites) were identified and quantified. Drugs are

not used in the following analysis. The details of the peptides,

proteins, and metabolites are shown in Table S2. For metabolo-

mic analysis, both hydrophilic and hydrophobic molecules were

analyzed using both positive and negative ionization to cover

various endogenous biochemical classes. Our data were ac-

quired with high degree of consistency and reproducibility. In

quality control analysis, the median coefficient of variance (CV)

values for proteomic and metabolomic data were 10% and

5%, respectively (Figure S2A). Without molecule selection, the

omics data of sera from SARS-CoV-2 infected patients were

well resolved from healthy individuals, while the other groups

showed certain degrees of separation (Figures S2B and S2C).

We further checked the influence of age, sex, the time from dis-

ease onset to admission, and the time from sampling to diag-

nosis of severe cases, to the omics profiling in our training cohort

(C1). As shown in the UMAP plots (Figures S2D and S2E), we did

not observe substantial impact of these confounding factors to

the omics data.

Identification of Severe Patients Using Machine
Learning
We next investigated the possibility of identifying the severe

cases from COVID-19 patients based on the molecular signa-

tures of proteins and metabolites (Table S3). Five patients were

excluded from this analysis because of failure to collect proteo-
60 Cell 182, 59–72, July 9, 2020
mic data. We built a random forest machine learning model

based on proteomic and metabolomic data from 18 non-severe

and 13 severe patients (Figure 1B), leading to prioritization of 29

important variables including 22 proteins and 7 metabolites (Fig-

ures 2A and 2B). This model reached an area under curve (AUC)

of 0.957 in the training set (Figure 2C). One non-severe patient,

XG3, was incorrectly classified as severe, possibly because

this 70-year-old male patient was the oldest individual in this

cohort (Figure 1A).

We then tested the model on an independent cohort of 10 pa-

tients (Figure 2D; Table S4). All severe patients were correctly

identified, except one patient, XG45, a 62-year-old male with

the longest pre-admission treatment in this cohort. He had

received traditional Chinese medicines for more than 20 days

before admission. The extended administration of traditional

Chinese medicines might have been a confounding factor for

the model. An incorrectly classified non-severe patient was

XG22, a 43-year-old male. This patient had chronic hepatitis B

virus (HBV) infection, diabetes, and the longest hospitalization

(>50 days) among all non-severe patients. His infection and

treatment history might be confounding factors for our model.

For reasons unclear, XG25, a 43-year-old male non-severe

case, was incorrectly classified as severe. We also generated

classifiers containing 29 molecules randomly selected from the

omics profiles for 1,000 times, and these classifiers using

random molecules had relatively low rates of classification cor-

rectness. The accuracies are from 48% to 49%within 95% con-

fidence interval, which are significantly lower than our classifier

using the 29 selected proteins and metabolites (p value <

2.2e�16 with one-sample t test).

To further validate this classifier, we developed targeted mass

spectrometric assays for the 22 proteins and 7 metabolites (Fig-

ure 2A) and analyzed these 29 molecules in a second test cohort

containing 19 COVID-19 patients (Figure 1; Table 1; Tables S1

and S5). Applying the classifier model using the 29 measured

molecules to this new cohort led to correct assignment of 16 pa-

tients (Figure 2E). Severe patient X2-13 was incorrectly classified

as non-severe, possibly because he was receiving methylpred-

nisolone therapy before sampling. The methylprednisolone

treatment might have suppressed his immune responses and

distorted the classification. Another severe patient who was

incorrectly classified as non-severe was X2-18. This is a 68-

year-old female who had received mitral and aortic valve

replacement and had a long warfarin treatment history. The

only non-severe patient who was incorrectly classified as a se-

vere patient was X2-22, a 66-year-old female who had hyperten-

sion and diabetes. On the day of blood sampling, her blood

glucose level reached 27.8mmol/L, whichmight have influenced

the result of classification using our model.

Proteomic and Metabolomic Changes in Severe COVID-
19 Sera
We found that 105 proteins were differentially expressed in the

sera of COVID-19 patients but not the non-COVID-19 patients

(Figures S3 and S4). After correlating their expression with clin-

ical disease severity (Figure S5), 93 proteins showed specific

modulation in severe patients. Pathway analyses and network

enrichment analyses of the 93 differentially expressed proteins



Figure 1. Summary of COVID-19 Patients and Machine Learning Design

(A) Summary of COVID-19 patients, including non-severe (n = 37) and severe (n = 28) patients withmore details in Table S1. Patients labeled in red (y axis) indicate

chronic infection of hepatitis B virus.

(B) Study design for machine-learning-based classifier development for severe COVID-19 patients. We first procured samples in a training cohort (C1) for

proteomic and metabolomic analysis. The classifier was then validated in an independent test cohort (C2), followed by a second test cohort (C3).
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Table 1. Demographics and Baseline Characteristics of COVID-19 Patients

Variables Healthy Control (N = 28) Non-COVID-19 (N = 25)

COVID-19

Total (N = 65) Non-severe (N = 37) Severe (N = 28)

Sex - no. (%)

Male 21 (75.0) 17 (68.0) 41 (63.1) 25 (67.6) 16 (57.1)

Female 7 (25.0) 8 (32.0) 24 (36.9) 12 (32.4) 12 (42.9)

Age - year

Mean ± SD. 44.4 ± 8.3 49.2 ± 14.0 48.2 ± 13.7 42.9 ± 12.5 55.1 ± 12.4

Median (IQR) 45.0 (38.0-51.0) 53.0 (37.0-61.0) 47.0 (37.0-57.5) 43.0 (33.0-50.0) 55.0 (47.0-64.8)

Range 28.0-57.0 23.0-67.0 18.0-77.0 18.0-70.0 33.0-77.0

BMI, kg/m2

Mean ± SD 24.4 ± 2.7 23.5 ± 2.7 25.1 ± 3.0 24.5 ± 3.2 26.0 ± 2.4

Median (IQR) 24.2 (22.5-26.5) 24.7 (20.9-25.8) 24.9 (22.8-27.1) 24.2 (21.8-26.8) 26.2 (24.4-27.7)

Range 19.9-32.9 19.1-27.4 18.9-31.3 18.9-30.7 22.2-31.3

Smoke - no. (%) 7 (10.8) 2 (5.4) 5 (17.9)

Alcohol - no. (%) 6 (9.2) 1 (2.7) 5 (17.9)

Time from Onset to Admission, Days

Mean ± SD. 6.1 ± 4.4 4.6 ± 3.2 7.9 ± 5.1

Median (IQR) 4.0 (3.0-9.0) 4.0 (2.5-5.5) 8.5 (4.0-11.0)

Range 1.0-24.0 1.0-15.0 1.0-24.0

Time from Admission to Severe, Days

Mean ± SD. 2.4 ± 1.7

Median (IQR) 2.0 (1.0-4.0)

Range 0.0-7.0

Symptoms - no. (%)

Fever 9 (36.0) 49 (75.4) 23 (62.2) 26 (92.9)

Cough 11 (44.0) 30 (46.2) 14 (37.8) 16 (57.1)

Headache 2 (8.0) 9 (13.8) 4 (10.8) 5 (17.9)

Fatigue 2 (8.0) 8 (12.3) 4 (10.8) 4 (14.3)

Pharyngalgia 0 (0.0) 4 (6.2) 3 (8.1) 1 (3.6)

Expectoration 3 (12.0) 13 (20.0) 5 (13.5) 8 (28.6)

Diarrhea 0 (0.0) 6 (9.2) 2 (5.4) 4 (14.3)

Chest tightness 2 (8.0) 2 (3.1) 1 (2.7) 1 (3.6)

Chest CT - no. (%)

Involvement of chest radiographs 1 (4.0) 63 (96.9) 35 (94.6) 28 (100.0)

Comorbidity- no. (%)

Hypertension 10 (40.0) 10 (15.4) 3 (8.1) 7 (25.0)

Diabetes 0 (0.0) 10 (15.4) 6 (16.2) 4 (14.3)

Respiratory system 2 (8.0) 4 (6.2) 4 (10.8) 0 (0.0)

Other Endocrine system 0 (0.0) 4 (6.2) 1 (2.7) 3 (10.7)

Chronic kidney disease 0 (0.0) 1 (1.5) 0 (0.0) 1 (3.6)

Digestive system 2 (8.0) 6 (9.2) 3 (8.1) 3 (10.7)

Oxygenation Index - mmHg

Mean ± SD. 394.4 ± 137.3 438.0 ± 130.0 336.7 ± 125.4

Median (IQR) 382.8 (307.2-459.5) 447.6 (376.2-473.8) 319.1 (259.2-382.4)

Range 129.0-891.0 138.0-891.0 129.0-729.0

Treatment - no. (%)

Oxygen inhalation 3 (12.0) 40 (61.8) 14 (37.8) 26 (92.9)

Antibiotics 0 (0.0) 22 (33.8) 10 (27.0) 12 (42.9)

(Continued on next page)
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Table 1. Continued

Variables Healthy Control (N = 28) Non-COVID-19 (N = 25)

COVID-19

Total (N = 65) Non-severe (N = 37) Severe (N = 28)

Antiviral drug 25 (100) 65 (100.0) 37 (100.0) 28 (100.0)

Immunoglobulin 0 (0.0) 24 (36.9) 0 (0.0) 24 (85.7)

Methylprednisolone 0 (0.0) 24 (36.9) 1 (2.7) 23 (82.1)

Chinese medicine 0 (0.0) 65 (100.0) 37 (100.0) 28 (100.0)

no. (%), number; SD, standard deviation; IQR, interquartile range; CT, computed tomography.
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showed that 50 of these proteins belong to threemajor pathways

(Figure S6), namely activation of the complement system,

macrophage function, and platelet degranulation (Figure 3A). It

was found that 373 metabolites were significantly changed in

COVID-19 patients (Figure S4B), whereas the change of 204me-

tabolites was correlated with disease severity as evaluated by

mFuzz (Figure S5). Correspondingly, 80 significantly changed

metabolites were also involved in the three biological processes

revealed in the proteomic analysis. We summarized the key dys-

regulated molecules in Figure 5 and discussed them in the

following sections.

Dysregulated Macrophage and Lipid Metabolism
Our data uncovered dysregulation of multiple apolipoproteins

including APOA1, APOA2, APOH, APOL1, APOD, and APOM

(Figure 3A). Most of them are associated with macrophage func-

tions andwere downregulated. Decrease of APOA1 in serum has

been reported during the transition of COVID-19 patients from

mild to severe illness (Nie et al., 2020). The APOM in sera of se-

vere patients was downregulated compared with healthy and

non-severe COVID-19 patients. Dysregulation of serum APOM

has also been observed in patients with HBV infection (Gu

et al., 2011).

Consistent with these proteomic findings, we also detected

dysregulated metabolites involved in lipid metabolism. Accumu-

lation of 11 steroid hormones in COVID-19 patients may

contribute to macrophage modulation. Steroid hormones,

including progesterone, androgens, and estrogens can promote

the activity of macrophages, as well as other immune cells and

non-immune cells (Cain and Cidlowski, 2017). We detected

increased 21-hydroxypregnenolone, the essential intermediate

for synthesizing corticosterone, suggesting that corticosterone

biosynthesis may be a protective mechanism against SARS-

CoV-2 infection.

We also found evidence of significant activation of the kynur-

enine pathway. Metabolites of kynurenate, kynurenine, and

8-methoxykynurenate were enriched in COVID-19 patients.

Nicotinamide adenine dinucleotide (NAD+), the cofactor in

many cellular redox reactions, can be synthesized from trypto-

phan by the kynurenine pathway and operates as a switch for

macrophage effector responses (Minhas et al., 2019).

The macrophage process is closely related to lipid meta-

bolism. Over 100 lipids were downregulated in severe patients.

Our data showed decreased sphingolipids in both non-

severe and severe COVID-19 patients (Figure 4A). Sphingolipids

and glycerophospholipids are important components of bio-

membranes, which mediate signal transduction and immune
activation processes. Sphingolipids regulate diverse processes

including growth regulation, cell migration, adhesion, apoptosis,

senescence, and inflammatory responses (Hannun and Obeid,

2018). Sphingosine-1-phosphate has been reported to induce

macrophage activation, inhibit macrophage apoptosis, and pro-

mote migration of macrophages to inflammatory sites (Weigert

et al., 2009). Phagocytosis and platelet degranulation are

coupled with changes in biomembrane lipid composition and

fluidity and modulate the production of glycerophospholipids

(Rouzer et al., 2007). In this study, we found continuous decrease

of glycerophospholipids after SARS-CoV-2 infection. Glycero-

phospholipids and fatty acids such as arachidonic acid have

been found significantly elevated in HCoV-229E-infected cells,

and exogenous supplement of arachidonic acid significantly

suppressed HCoV-229E and MERS-CoV replication (Yan et al.,

2019). Our data suggest severe COVID-19 patients might benefit

from this therapeutic strategy.

Choline and its derivatives were downregulated in COVID-19

patients (Figure 4B), particularly in severe cases, while phospho-

choline, the intermediate product for producing phosphatidyl-

choline (PC) was upregulated (Figure 4A). This was probably

due to activated macrophage-mediated immunity (Sanchez-Lo-

pez et al., 2019). Polarization of macrophages in response to

pathogens requires increased absorption of choline for PC for-

mation, thereby promoting cytokine secretion (Sanchez-Lopez

et al., 2019). Other immunological functions may also contribute.

Activated Acute Phase Proteins and the Complement
System
We detected ten activated acute phase proteins (APPs) among

20 proteins that are differentially expressed between non-severe

and severe groups (Figure 2A). They are involved at the early

stages of immune responses to virus infection. Among the

most significantly upregulated proteins in the sera of the severe

COVID-19 patients are APPs, including serum amyloid A-1

(SAA1), serum amyloid A-2 (SAA2), serum amyloid A-4 (SAA4),

CRP, alpha-1-antichymotrypsin (SERPINA3), and serum amyloid

P-component (SAP/APCS) (Figure 3B). Some of them, including

SAA1, SAA2, and CRP, are known to be potential biomarkers for

viral infections. Although CRP has been associated with COVID-

19, the other proteins have not previously been reported in

COVID-19 (Liang et al., 2020). SAA1 was reported to be elevated

in severe SARS patients but was not specific to SARS-CoV

(Pang et al., 2006). As a major contributor to acute phase

response, complement system plays a crucial role in eliminating

invading pathogens in the early stage of infection. Among those

APPs, two proteins belong to the complement membrane attack
Cell 182, 59–72, July 9, 2020 63
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complex, including complement 6 (C6) and complement factor B

(CFB). Two other proteins, Properdin (CFP) and Carboxypepti-

dase N catalytic chain (CPN1), are regulators of complement

system (Figure 3).

We also observed the accumulation of mannose and its deriv-

atives in severe patients. In the complement system, binding of

mannose to lectin leads to cleavage of C2 and C4, which then

form a C3 convertase to promote complement activation (Ricklin

et al., 2010).

Suppressed Platelet Degranulation in Severe COVID-
19 Sera
Fifteen of 17 proteins involved in platelet degranulation were

downregulated in SARS-CoV-2 infected patients, which may

be associated with observed thrombocytopenia in this patient

cohort (Zheng et al., 2020). Low platelet count is also reported

to be associated with severe COVID-19 and mortality (Lippi

et al., 2020). Two of the most intriguing proteins downregulated

in severe patients are platelet-expressing chemokines pro-

platelet basic protein (PPBP; also called macrophage-derived

growth factor) and platelet factor 4 (PF4). PF4 was identified as

a broad-spectrum HIV-1 inhibitor at the level of virus attachment

and entry via interaction with the major viral envelope glycopro-

tein gp120 (Auerbach et al., 2012). In a proteomic investigation of

sera in SARS patients, decreasing PF4 was found to be associ-

ated with poor prognosis (Poon et al., 2012), which is in consis-

tent with our findings in COVID-19.

Most enterochromaffin cell-derived serotonins (5-hydroxy-

tryptamine [5-HT]) are transported to platelets for storage and

release (Baganz and Blakely, 2013). Serotonin level decreases

as the severity of COVID-19 increases (Figure 4B) and so does

the platelet count (Zheng et al., 2020). Compared with the

healthy group, serotonin in non-severe and severe COVID-19

patients decreased by 2.07-fold (p = 1.86e-04) and 3.31-fold

(p = 9.07e-07), respectively.

Massive Suppression of Amino Acid Metabolism in the
Sera of COVID-19 Patients
Compared with the healthy controls, more than 100 metabolites,

amino acids and their derivatives, in the sera of COVID-19 pa-

tients were significantly decreased, whereas their levels were

either unchanged or even increased in the sera of non-COVID-

19 patients. Enriched in these metabolites are 10 metabolites

involved in arginine metabolism including glutamate, arginine,

N-(l-arginino)-succinate, citrulline, ornithine, glutamine, 2-oxo-

glutarate, N-acetyl-L-glutamate, urea, and fumarate. In addition,

some arginine derivatives such as argininate, asymmetric dime-

thylarginine, symmetric dimethylarginine, homoarginine, and N-

acetylarginine were also significantly decreased in the sera of
Figure 2. Separation of Severe and Non-severe COVID-19 Patients by

(A) Top 22 proteins and 7 metabolites prioritized by random forest analysis ranke

(B) Network of prioritized proteins appeared in the classifier. Red and green nodes

represent molecules not detected in our dataset.

(C) Receiver operating characteristic (ROC) of the random forest model in the tra

(D) Performance of the model in the test cohort (C2) of 10 COVID-19 patients.

(E) Performance of the model in the test cohort (C3) containing 19 COVID-19 patie

severe.
non-severe COVID-19 patients. This suggests hepatic dysfunc-

tion. Interferons have previously been shown to alter urea cycle

activity during viral infection (Lercher et al., 2019), leading to

regulation of multiple metabolites consistent with our data. It

has been reported that arginine metabolism is suppressed in se-

vere fever with thrombocytopenia syndrome caused by a SFTS

bunyavirus (SFTSV) (Li et al., 2018b). Decreased arginine levels

in SFTSV patients were associated with impaired anti-SFTSV

functions of T cells.

DISCUSSION

Classification of Severe COVID-19 Patients
Although COVID-19 can be diagnosed effectively by nucleic-

acid-based methods at an early stage, it is equally critical to

identify severe COVID-19 patients before the manifestation

of severe symptoms to minimize mortality. In this study, we

show that severe cases can be classified by molecular signa-

tures of metabolites and proteins using a machine learning

model based on the expression levels of 22 serum proteins

and 7 metabolites (Figures 2A and 2B). We achieved an overall

accuracy of 93.5% in the training set (C1). Classification of two

patients did not match clinical diagnosis. One of them (patient

XG3) is a non-severe individual who was the oldest patient in

the non-severe group, reflecting the complexity of clinical

cohort. In this training set (C1), five severe patients were

correctly identified based on the analysis of their serum sam-

ples collected 1 to 4 days before they were clinically diag-

nosed as severe patients (Figure 1), suggesting that their

serum protein and metabolite signatures at the sampling

time may already point to further deterioration into severe

state even when severe clinical symptoms have not started

to appear yet.

The proteins and metabolites used in our classifier (Figure 2A)

contain several known biomarkers for viral infections, such as

SAA2, SAA1, and CRP, which have already been used empiri-

cally to monitor the severity of COVID-19. Our study suggests

that more characteristic molecular changes at protein and

metabolite levels may be used to build a diagnostic model for

identification of severe cases. The classifier also included excep-

tionally high levels of other acute phase proteins, including

SERPINA3, among others (Figures 2A and 2B). Our data suggest

potential benefits of broader testing of these proteins in newly

diagnosed cases to identify which COVID-19 patients are likely

to progress to severe disease. The model contains molecules

involved in hepatic damage. The elevation of glucose, glucuro-

nate, bilirubin degradation product, and four bile acid deriva-

tives, suggests suppressed hepatic detoxification (Rowland

et al., 2013). Vascular cell adhesion protein 1 (VCAM-1), which
Machine Learning of Proteomic and Metabolomic Features

d by the mean decrease in accuracy.

indicate upregulated and downregulatedmolecules, respectively. White nodes

ining cohort (C1).

nts. Patients labeled in red received serum test before they were diagnosed as
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helps to regulate transendothelial migration of leukocytes by

stimulating production of reactive oxygen species (ROS), was

upregulated in our data. As a potent antioxidant and inhibitor

of VCAM-1-dependent cellular events (Keshavan et al., 2005),

bilirubin was found to be downregulated in our metabolo-

mic data.

Seven patients were correctly classified in the independent

test cohort (C2) containing 10 patients. Two of three incor-

rectly classified cases might be explained by the patients’

complex comorbidity and medication history. We further vali-

dated this classifier using a second test cohort (C3), leading

to 16 correct assignments out of 19 patients. The three incor-

rectly classified patients all had complex clinical history.

Nevertheless, the false negative rate and false positive rate

of C2 and C3 are 8%–33%, probably because of covariate

imbalance and relatively small sample size, necessitating

future validation studies in bigger cohorts with more rigorous

study design.

Molecular Insights for the Pathogenesis of SARS-CoV-2
Infection
Our data shed light on the molecular changes reflected in

COVID-19 sera, which could potentially yield critical diag-

nostic markers or therapeutic targets for managing severe

COVID-19 patients (Figure 5). These molecular derangements

may originate from binding of SARS-CoV-2 to alveolar macro-

phages via the ACE2 receptor (Hoffmann et al., 2020), result-

ing in release of interleukin-6 (IL-6) and tumor necrosis factor

alpha (TNF-a) (Mehta et al., 2020) by macrophages (Gabay

and Kushner, 1999). In response to elevated cytokines—espe-

cially IL-6, which triggers fever—various APPs are released by

liver. Activation of APPs is accompanied by immunogenetics

or organic damage (Gabay and Kushner, 1999). Our metabolo-

mics data also provide plausible evidence for hepatic injury. In

physiological condition, hormones or bilirubin binds to glucur-

onate, a derivative of glucose, for liver detoxification (Rowland

et al., 2013). The elevation of glucose, glucuronate, bilirubin

degradation product, and four bile acid derivatives in severe

patients indicates potentially declined liver detoxification func-

tion (Figures 4 and 5). Our data also revealed upregulation of

multiple APPs, including CRP and major attack complexes

(MACs) in the severe sera. CRP can activate the complement

system (Chirco and Potempa, 2018). This, on the one hand,

leads to enhanced cytokine and chemokine production,

potentially contributing to ‘‘cytokine storm’’; and on the other

hand, it overly recruits macrophages from the peripheral

blood, which could result in acute lung injury (Chirco and Po-

tempa, 2018; Narasaraju et al., 2011). Because about 50% of

platelets are produced in the lung (Lefrançais et al., 2017),

platelets may in turn respond to lung injury and activate mac-

rophages by degranulation (Mantovani and Garlanda, 2013),

which may further add to cytokine storm. A recent necropsy

report revealed alveolar macrophage infiltration and activation
Figure 3. Dysregulated Proteins in COVID-19 Sera

(A) Heatmap of 50 selected proteins whose regulation concentrated on three en

(B) The expression level change (Z-scored original value) of six selected proteins

Asterisks indicate statistical significance based on unpaired two-sided Welch’s
in severe COVID-19 patients (Liao et al., 2020), supporting our

findings.

Insights for COVID-19 Therapeutics
To date, few other therapies are proven effective for severe

COVID-19 patients. Most patients receive standard supportive

care and antiviral therapy (Wang et al., 2020). Corticosteroid

treatment was effective in suppressing MERS-CoV and SARS-

CoV (Arabi et al., 2018) but showed negligible effect on

COVID-19 patients and may even have induced lung injury (Rus-

sell et al., 2020). The molecular changes revealed in this study in

the COVID-19 sera might be useful for prioritizing therapeutic

strategies for the severe patients.

Our proteomic data showed that proteins related to platelet

degranulation were substantially downregulated in severe pa-

tients, a finding that was confirmed by low platelet counts (Zheng

et al., 2020). The association between thrombocytopenia and

viral infection has been observed in SARS-CoV (Zou et al.,

2004), hepatitis C virus (HCV) (Assinger, 2014), and Dengue virus

(Wilder-Smith et al., 2004). Thus, it might be useful to monitor

changes in platelets during treatment.

Complement activation suppresses virus invasion and may

lead to inflammatory syndromes (Barnum, 2017). Our data

showed a general upregulation of complement system pro-

teins, including MAC proteins such as C5, C6, and C8. Sup-

pression of complement system has been reported as an

effective immunotherapeutic in SARS-infected mouse model

(Gralinski et al., 2018). C5a has been reported as highly ex-

pressed in severe SARS and MERS patients as well (Wang

et al., 2015). Inhibition of C5a has been reported to alleviate

viral infection-induced acute lung injury (Garcia et al., 2013;

Jiang et al., 2018; Sun et al., 2015). Our data suggest that se-

vere COVID-19 patients might benefit from suppression of

complement system.

Our metabolomics results showed that more than 100 lipids

including glycerophospholipid, sphingolipids, and fatty acids

were downregulated in COVID-19 patient sera, probably

because of damage to the liver, which is also reflected in aber-

rancy in bilirubin and bile acids. Glycerophospholipid, sphingoli-

pids (one of the components of lipid rafts), and fatty acids have

been reported to play an important role in the early development

of enveloped viruses (Schoggins and Randall, 2013). Suppres-

sion of cholesterol synthesis by MbCD has been reported to be

effective in inhibiting release of SARS-CoV particles in infected

Vero E6 cells (Li et al., 2007). Drugs inhibiting lipid synthesis

such as statin have been proposed to treat HCV (Heaton and

Randall, 2011) and COVID-19 (Fedson et al., 2020). Our data

suggest these potential therapeutics might be helpful in the

treatment of severe COVID-19 patients.

Limitations of This Study and Outlook
SARS-CoV-2 is highly infectious, exerting huge pressure on

the medical system worldwide. Upon COVID-19 outbreak,
riched pathways.

with significant difference between non-severe and severe cases.

t test. p value: *, < 0.05; **, < 0.01; ***, < 0.001.
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Figure 5. Key Proteins and Metabolites Characterized in Severe COVID-19 Patients in a Working Model

SARS-CoV-2 may target alveolar macrophages via ACE2 receptor, leading to an increase of secretion of cytokines including IL-6 and TNF-a, which subsequently

induce the elevation of various APPs such as SAP, CRP, SAA1, SAA2, and C6, which are significantly upregulated in the severe group. Proteins involved in

macrophage, lipid metabolism, and platelet degranulation were indicated with their corresponding expression levels in four patient groups.
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limited information of this pathogen was available, which

restricted the collection of a large number of clinical speci-

mens for this study mainly because of biosafety constraints.

The median age of the severe patients is about 12 years older

than the non-severe patients in our cohort (Table 1), so the

impact of age on our data interpretation could not be precisely

defined. The severe patients also exhibit slightly higher BMI

and a higher proportion of comorbidities such as diabetes,

which may influence the metabolomic profiles (Table 1). Sam-

ples from some severe patients were collected before or after

the diagnosis of severe cases, although most of them were

collected close to the diagnosis date. Nevertheless, sex,

age, and variable hospitalization time and sampling time did

not substantially distort the biological differences in the global

proteomic and metabolomic profiles (Figures S2D and S2E).

Although these confounding factors might be alleviated in

future studies, we did identify multiple promising biomarker

candidates (Figure 2).
Figure 4. Dysregulated Metabolites in COVID-19 Sera

(A) Heatmap of 80 regulated metabolites belonging to 10 major classes as indica

(B) The expression level change (Z-scored log 2-scaled original value) of eight sele

severe cases. Asterisks indicate statistical significance as described in Figure 3.
The proteomic and metabolomic analysis in this study is not

absolute quantification. If the model is to be applied in clinic,

more rigorous quantification and extensive validation of these

molecules using standard peptides and metabolites are

required. Impact of drugs including traditional Chinese medicine

to the proteomic/metabolomic profiles have to be evaluated,

too. The sera samples were collected from different time points

along the disease course, which could be potentially utilized to

explore molecular dynamics during disease progression. How-

ever, the sample size is rather small. Future studies of sera

from more time points are required for rigorous temporal

analysis.

In conclusion, this study presents a systematic proteomic and

metabolomic investigation of serum samples from multiple

COVID-19 patient groups and control groups. We demonstrated

the potential of identifying COVID-19 patients who may eventu-

ally become severe cases based on analysis of a panel of serum

proteins and metabolites. Our data offer a landscape view of
ted.

cted regulatedmetabolites with significant difference between non-severe and
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blood molecular changes induced by SARS-CoV-2 infection,

which may provide useful diagnostic and therapeutic clues in

the ongoing battle against the COVID-19 pandemic.
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Serum samples from 65 COVID-19 patients

and 25 non-COVID-19 patients and 28 healthy

individuals

Taizhou Hospital This paper(Table S1-Patient ID)

Chemicals, Peptides, and Recombinant Proteins

Triethylammonium bicarbonate buffer (TEAB) Sigma-Aldrich Cat # T7408

Urea Sigma-Aldrich Cat # U1250

Tris (2-carboxyethyl) phosphine (TCEP) Adamas-beta Cat # 61820E

Iodoacetamide (IAA) Sigma-Aldrich Cat # I6125

Trypsin Hualishi Tech Cat # HLS TRY001C

Trifluoroacetic acid (TFA) Thermo Fisher Scientific Cat # 85183

Water Thermo Fisher Scientific Cat # W6-4

Acetonitrile Thermo Fisher Scientific Cat # A955-4

Formic acid (FA) Thermo Fisher Scientific Cat # A117-50

Ammonium hydroxide solution Sigma-Aldrich Cat # 221228

Methanol Sigma-Aldrich Cat # 34860

Critical Commercial Assays

TMTpro 16plex reagents Thermo Fisher Scientific Cat # A44520

C-reactive protein (CRP) Beckman Coulter Cat # OSR6199

Alanine aminotransferase (ALT) Beckman Coulter Cat # OSR6107

Aspartate Aminotransferase (AST) Beckman Coulter Cat # OSR6209

g-glutamyltransferase (GGT) Beckman Coulter Cat # OSR6120

Total bilirubin (TBIL) Beckman Coulter Cat # TB7074

Direct bilirubin (DBIL) Beckman Coulter Cat # DB7084

Creatinine Beckman Coulter Cat # OSR6178

Glucose Beckman Coulter Cat # GL7210

SARS-CoV-2 nucleic acid detection kit Shanghai Zhijiang Cat # Z-RR-0479-02025

Cat # Z-RR-0479-02-50

Cat # Z-RR-0479-02AT-50

Stromatolyser-4DL (FFD-200A) Sysmex Cat # ZG900003(BN724234)

Stromatolyser-4DS (FFS-800A) Sysmex Cat # 984-1721-6(114010116)

Cellsheath (SE-90L) Sysmex Cat # ZG801001(83400324)

Cellpack (PK-30L) Sysmex Cat # ZG801000(88408711)

Cellclean (CL-50) Sysmex Cat # 834-0162-1

Deposited Data

Mass spectrometry data This paper https://www.iprox.org/ (IPX0002106000 and

IPX0002171000)

Data analysis codes This paper https://github.com/guomics-lab/CVDSBA

Software and Algorithms

Xcalibur Thermo Fisher Scientific Cat # OPTON-30965

Proteome Discoverer Version 2.4.1.15 Thermo Fisher Scientific https://www.thermofisher.com/us/en/home/

industrial/mass-spectrometry/liquid-

chromatography-mass-spectrometry-lc-ms/

lc-ms-software/multi-omics-data-analysis/

proteome-discoverer-software.html
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R version 3.5.2 R Project https://www.r-project.org

Skyline version 20.1.1.12 MacLean et al., 2010 https://skyline.ms/project/home/begin.view

Metascape Zhou et al., 2019 https://metascape.org/gp/index.html#/main/step1

ClueGO 2.5.6 Bindea et al., 2009 https://cytoscape.org/

Ingenuine pathway analysis Krämer et al., 2014 https://www.qiagen.com/cn/

GeNet Li et al., 2018a http://apps.broadinstitute.org/genets#

Other

SOLAm Thermo Fisher Scientific Cat # 62209-001

ACQUITY UPLC Systems with 2D LC Technology Waters Corporation Cat # 186015001

ACQUITY BEH C18 column, 2.1 3 100 mm, 1.7 mm Waters Corporation Cat # 186008316

ACQUITY BEH Amide column, 2.1 3 100 mm, 1.7 mm Waters Corporation Cat # 186008315
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RESOURCE AVAILABILITY

Lead Contact
Further information should be directed to and will be fulfilled by the Lead Contact Tiannan Guo (guotiannan@westlake.edu.cn).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The proteomics and metabolomics data are deposited in ProteomeXchange Consortium (https://www.iprox.org/). Project ID:

IPX0002106000 and IPX0002171000. The project data analysis codes are deposited in GitHub (https://github.com/guomics-lab/

CVDSBA).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients and samples
Our team procured serum samples from 65 COVID-19 patients who visited Taizhou Hospital from January to March 2020. They were

diagnosed as COVID-19 according to the Chinese Government Diagnosis and Treatment Guideline (Trial 5th version) (NHCPRC,

2020). For diagnosing COVID-19, nucleic acid from sputum or throat swab was extracted using nucleic acid extractor (Shanghai Zhi-

jiang, China, EX3600) and virus nucleic acid extraction reagent (Shanghai Zhijiang, China, NO. P20200201) was used to extract nu-

cleic acid. Fluorescence quantitative PCR (ABI7500) and SARS-CoV-2 nucleic acid detection kit (triple fluorescence PCR, Shanghai

Zhijiang, China, NO. P20200203) were used for nucleic acid detection. This kit uses one step RT-PCR combined with Taqman tech-

nology to detect RdRp, E and N genes. Positive was concluded if RdRp gene was positive (Ct < 43), and one of E or N was positive

(Ct < 43). Patients were also diagnosed as positive if two sequential tests of RdRp were positive while E and N were negative. Ac-

cording to the abovementioned guideline, COVID-19 patients are classified into four subgroups: 1) Mild: mild symptoms without

pneumonia; 2) Typical: fever or respiratory tract symptoms with pneumonia; 3) Severe: fulfill any of the three criteria: respiratory

distress, respiratory rate R 30 times/min; means oxygen saturation % 93% in resting state; arterial blood oxygen partial pres-

sure/oxygen concentration % 300 mmHg (1 mmHg = 0.133 kPa); 4) Critical: fulfill any of the three criteria: respiratory failure and

require mechanical ventilation; shock incidence; admission to ICU with other organ failure. In this study, we included both severe

and non-severe patients, with the latter composed of mild and typical COVID-19 patients. We also procured 25 non-COVID-19 pa-

tients with similar clinical characteristics including fever and/or cough as COVID-19 patients however negative in the nucleic acid

test. Based on the Chinese Government Diagnosis and Treatment Guideline (Trial 5th version) (NHCPRC, 2020), patients are defined

as suspected COVID-19 cases when theymeet the following three clinical criteria: 1) fever or respiratory symptoms, 2) imagingmani-

festation of pneumonia, and 3) optional reduction of white blood cell or lymphocyte count at early stage. The patients only need to

meet at least two of the above three criteria if they have been exposed to COVID-19 individuals. Most non-COVID-19 patients ex-

hibited fever and cough. Causative analysis of the infection showed that four patients infected by herpes simplex virus, one patient

infected by varicella-zoster virus, one by respiratory syncytial virus, one by klebsiella pneumoniae and acinetobacter baumanii, and

one by enterococcus faecium. Some patients had other diseases including cancer, cerebral hemorrhage or lymphoma. No infection

was detected in the other patients according to respiratory tract virus antigen test. We also collected serum samples from 28 healthy

individuals as control. All the blood sampleswere drawn using serum separation tubes (ZhejiangGongDongMedical TechnologyCo.,

Ltd, China) between 6:00-6:30 am in the morning, stored for about 30 min in room temperature before sending the sample to the
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clinical chemistry laboratory using a biosafety transport box at 7 am. The laboratory obtained the sample about 7:30 am and centri-

fuged them at 1,500 g for 10 min. Then we collected the serum in new centrifuge tubes and immediately stored at �80�C. The sam-

ples from this study are from a clinical trial that our team initiated and registered in the Chinese Clinical Trial Registry with an ID of

ChiCTR2000031365. This study has been approved by the Ethical/Institutional Review Board of Taizhou Hoapital and Westlake Uni-

versity. Contents from patients were waived by the boards.

METHOD DETAILS

Proteome analysis
Serum samples were inactivated and sterilized at 56�C for 30 min, and processed as previously with some modifications. Five mL

serum from each specimen was denatured in 50 mL buffer containing 8 M urea in 100 mM triethylammonium bicarbonate (TEAB)

at 32�C for 30 min. The proteins were reduced with 10 mM tris (2-carboxyethyl) phosphine (TCEP) for 30 min at 32�C, then alkylated

for 45 min with 40 mM iodoacetamide (IAA) in darkness at room temperature (25�C). The protein extracts were diluted with 200 mL

100 mM TEAB, and digested with double-step trypsinization (Hualishi Tech. Ltd, Beijing, China), each step with an enzyme-to-sub-

strate ratio of 1:20, at 32�C for 60 min. The reaction was stopped by adding 30 mL 10% trifluoroacetic acid (TFA) in volume. Digested

peptides were cleaned-up with SOLAm (Thermo Fisher Scientific, San Jose, USA) following the manufacturer’s instructions, and

labeled with TMTpro 16plex label reagents (Thermo Fisher Scientific, San Jose, USA) as described previously. The TMT samples

were fractionated using a nanoflow DIONEX UltiMate 3000 RSLCnano System (Thermo Fisher Scientific, San Jose, USA) with an

XBridge Peptide BEH C18 column (300 Å, 5 mm 3 4.6 mm 3 250 mm) (Waters, Milford, MA, USA)(Gao et al., 2020). The samples

were separated using a gradient from 5% to 35% acetonitrile (ACN) in 10 mM ammonia (pH = 10.0) at a flow rate of 1 mL/min. Pep-

tides were separated into 120 fractions, which were consolidated into 40 fractions. The fractions were subsequently dried and re-

dissolved in 2% ACN/0.1% formic acid (FA). The re-dissolved peptides were analyzed by LC-MS/MS with the same LC system

coupled to a Q Exactive HF-X hybrid Quadrupole-Orbitrap (Thermo Fisher Scientific, San Jose, USA) in data dependent acquisition

(DDA) mode. For each acquisition, peptides were loaded onto a precolumn (3 mm, 100 Å, 20 mm*75 mm i.d.) at a flow rate of 6 mL/min

for 4 min and then analyzed using a 35 min LC gradient (from 5% to 28% buffer B) at a flow rate of 300 nL/min (analytical column,

1.9 mm, 120 Å, 150 mm*75 mm i.d.). Buffer A was 2% ACN, 98% H2O containing 0.1% FA, and buffer B was 98% ACN in water con-

taining 0.1% FA. All reagents were MS grade. Them/z range of MS1 was 350-1,800 with the resolution at 60,000 (at 200 m/z), AGC

target of 3e6, and maximum ion injection time (max IT) of 50 ms. Top 15 precursors were selected for MS/MS experiment, with a

resolution at 45,000 (at 200 m/z), AGC target of 2e5, and max IT of 120 ms. The isolation window of selected precursor was 0.7

m/z. The resultant mass spectrometric data were analyzed using Proteome Discoverer (Version 2.4.1.15, Thermo Fisher Scientific)

using a protein database composed of the Homo sapiens fasta database downloaded from UniProtKB on 07 Jan 2020, containing

20412 reviewed protein sequences, and the SARS-CoV-2 virus fasta downloaded from NCBI (version NC_045512.2). Enzyme was

set to trypsin with two missed cleavage tolerance. Static modifications were set to carbamidomethylation (+57.021464) of cysteine,

TMTpro (+304.207145) of lysine residues and peptides’ N termini, and variable modifications were set to oxidation (+15.994915) of

methionine and acetylation (+42.010565) of peptides’ N-termini. Precursor ion mass tolerance was set to 10 ppm, and product ion

mass tolerance was set to 0.02 Da. The peptide-spectrum-match allowed 1% target false discovery rate (FDR) (strict) and 5% target

FDR (relaxed). Normalization was performed against the total peptide amount. The other parameters followed the default setup.

Different immunoglobulins as appeared in the fasta file are included, while other post-translational modifications and protein isoforms

are not analyzed in this study, but they could be potentially analyzed in the future.

Quality control of proteome data
The quality of proteomic data was ensured at multiple levels. First, a mouse liver digest was used for instrument performance eval-

uation. We also run water samples (buffer A) as blanks every 4 injections to avoid carry-over. Serum samples of four patient groups

from both training and test cohorts were randomly distributed in eight different batches. Every batch contains a pooled sample, i.e., a

mixture of all peptide samples, as the control sample labeled by TMTpro-134N for aligning data fromdifferent batches and evaluation

of quantitative accuracy. Six samples were injected in technical replicates.

Metabolome analysis
Ethanol was added to the serum samples and shaken vigorously to inactivate any potential viruses, then dried in a biosafety hood.

The dried samples were further treated for metabolomics analysis. The metabolomic analysis was performed as described previous-

ly(Lee et al., 2019). Briefly, deactivated serum samples, 100 mL each, were extracted by adding 300 mL methanol extraction solution.

The mixtures were shaken vigorously for 2 min. Proteins were denatured and precipitated by centrifugation. The supernatants con-

tained metabolites of diverse chemical natures. To ensure the quantity and reliability of metabolite detection, four platforms were

performed with non-target metabolomics. Each supernatant was divided into four fractions: two for analysis using two separate

reverse-phase /ultra-performance liquid chromatography (RP/UPLC)-MS/MS methods with positive ion-mode electrospray ioniza-

tion (ESI), one for analysis using RP/ UPLC-MS/MS with negative-ion mode ESI, and one for analysis using hydrophilic interaction
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liquid chromatography (HILIC)/UPLC-MS/MS with negative-ion mode ESI. Each fraction was dried under nitrogen gas to remove the

organic solvent and later re-dissolved in four different reconstitution solvents compatible with each of the four UPLC-MS/MS

methods.

All UPLC-MS/MS methods used ACQUITY 2D UPLC system (Waters, Milford, MA, USA) and Q Exactive HF hybrid Quadrupole-

Orbitrap (Thermo Fisher Scientific, San Jose, USA) with HESI-II heated ESI source and Orbitrap mass analyzer. The mass spectrom-

eter was operated at 35,000 mass resolution (at 200 m/z). In the first UPLC-MS/MS method, the QE was operated under positive

electron spray ionization (ESI) coupled with a C18 column (UPLC BEH C18, 2.1 3 100 mm, 1.7 mm; Waters) was used in UPLC.

The mobile solutions used in the gradient elution were water and methanol containing 0.05% perfluoropentanoic acid (PFPA) and

0.1% FA; the gradient elution for methods using C18 columns was performed in a seven minutes run when the polar mobile phase

was gradually increased from 5% to 95%. In the second method, the QE was still operated under ESI positive mode, and the UPLC

used the same C18 column as in method one, but the mobile phase solutions were optimized for more hydrophobic compounds and

contained methanol, acetonitrile, water, 0.05% PFPA, and 0.01% FA. The third method had the QE operated under negative ESI

mode, and the UPLC method used a C18 column eluted with mobile solutions containing methanol and water in 6.5 mM ammonium

bicarbonate at pH 8. The UPLC column used in the fourth method was HILIC column (UPLC BEH Amide, 2.1 3 150 mm, 1.7 mm;

Waters), and the mobile solutions were consisted of water and acetonitrile with 10 mM ammonium formate at pH 10.8; gradient

elution for this method is performed in a seven minutes run with the polar mobile phase decreased from 80% to 20%. The QE

was operated under negative ESI mode. The QE mass spectrometer analysis was alternated between MS and data-dependent

MS2 scans using dynamic exclusion. The scan range was 70-1,000 m/z. The MS capillary temperature was 350�C, sheath gas

flow rate at 40, aux gas flow rate at 5 for both positive and negative methods.

After raw data pre-processing, peak finding/alignment, and peak annotation using in-house software, metabolites were identified

by searching an in-house library containing more than 3,300 standards with library data entries generated from running purified com-

pound standards through the experimental platforms. Identification of metabolites must meet three strict criteria: narrow window

retention index (RI), accurate mass with variation less than 10 ppm and MS/MS spectra with high forward and reverse scores based

on comparisons of the ions present in the experimental spectrum to the ions present in the library spectrum entries. Almost all iso-

mers can be distinguished by these three criteria. All identified metabolites meet the level 1 requirements by the Chemical Analysis

Working Group (CAWG) of the Metabolomics Standards Initiative (MSI) expect some asterisk labeled lipids which MS/MS spectral

were in silico matched.

Quality control of metabolome analysis
Several types of quality control samples were included in the experiment: a pooled sample generated by taking a small volume of

each experimental sample to serve as a technical replicate that was run multiple times throughout the experiment, extracted water

samples served as blanks, and extracted commercial plasma samples for monitoring instrument variation. A mixture of internal stan-

dards was also spiked into every sample to aid chromatographic peak alignment and instrument stability monitoring. Instrument vari-

ability was determined by calculating themedian relative SD (RSD) of all internal standards in each sample. The experimental process

variability was determined by calculating the median RSD for all endogenous metabolites present in the pooled quality control

samples.

Targeted protein analysis
Peptide samples were prepared in the sameway as the previous proteomic section except no TMT labeling was performed. Eksigent

NanoLC 400 System (Eksigent, Dublin, CA, USA) coupled with TripleTOF 6600 system (SCIEX, CA, USA) was applied for MRM-HR

experiment. The peptide digests were separated at a 5 mL/min with a 10 min gradient (buffer B: 5%–10% for 1 min, 10%–40% for

6 min, 40%–80% for 0.1min, maintained 80% for 2.9 min, 80%–5% for 1 min) using an analytical column (3 mm, ChromXP

C18CL, 120 Å, 150*0.3 mm). IDA mode (rolling collision energy, +2 to +5 charge states with intensity criteria above 2,000,000 cps

to guarantee all untargeted peptides will not be acquired) for time-scheduling was set up for 51 peptides including 10 iRT peptides

(Escher et al., 2012) with a mass tolerance of 50 ppm. Accumulation time for TOF-MS scan (350-1250 m/z) and MS/MS scans (100-

1500m/z) was 250ms and 50ms, respectively. The data acquired byMRM-HR experiment were analyzed by Skyline (MacLean et al.,

2010). The retention time was predicted by the iRT, and the isolation time window is 2 min. The mass analyzer for MS1 and MS/MS

was set as ‘‘TOF’’ with the resolution power of 30,000.

Targeted metabolite analysis
For semiquantitative assay of the seven potential metabolite markers in the 19 COVID-19 patients in the test cohort 2, the sample

preparation and analysis were carried out basically the same as detailed in the metabolomics assay. Briefly, each metabolite was

analyzed using one of the 4 UPLC-MS/MS methods: reverse phase UPLC coupled with negative ESI-MS/MS, reverse phase

UPLC coupled with positive ESI-MS/MS, reverse phase UPLC coupled with positive ESI-MS/MS for more hydrophobic metabolites,

and HILIC UPLC coupled with negative ESI-MS/MS. The target metabolites were manually curated, and their peak areas were ob-

tained using the Thermo Fisher Xcalibur 4.0 software.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis and machine learning
Metabolites and therapeutic compounds with over 80% missing ratios in a particular patient group were removed for the metabo-

lomics dataset containing endogenous metabolites while full proteomics features were used for the subsequent statistical analysis.

Missing values were imputed with the minimal value and zero in metabolomics and proteomics dataset respectively. Log2 fold-

change (log2 FC) was calculated on the mean of the same patient group for each pair of comparing groups. Two-sided unpaired

Welch’s t test was performed for each pair of comparing groups and adjusted p values were calculated using Benjamini & Hochberg

correction. The statistical significantly changed proteins or metabolites were selected using the criteria of adjust p value less than

0.05 indicated and absolute log2 FC larger than 0.25. From the training cohort, we selected important protein andmetabolite features

with mean decrease accuracy larger than 3 using random forest. In the random forest analysis, a thousand trees were built using R

package randomForest (version 4.6.14) with 10-fold cross validation, and this was repeated for 100 times. The normalized additive

predicting probability was computed as the final predicting probability. The larger probability for the binary classification was adop-

ted as the predictive label. For validation in the test cohort 2 (C3) generated by targeted proteomics and metabolomics, z-score

normalization was applied before running the model validation. Those selected important features were used for the random forest

analysis on the independent test cohort. We also ran the randomForest analysis with omics features after z-score normalization and

got same classification results.

Pathway analysis
Four network pathway analysis tools were used for pathway analysis using 93 differentially expressed proteins (DEPs). The top Gene

Ontology (GO) processes were enriched by Metascape web-based platform (Zhou et al., 2019). The GO terms is enriched using the

Cytoscape plug-in ClueGO (Bindea et al., 2009). Ingenuine pathway analysis (Krämer et al., 2014) of the regulated proteins identifies

most significantly relevant pathways with p value of determined based on right-tailed Fisher’s Exact Test with the overall activation or

inhibition states of enriched pathways were predicted by z-score. Functional co-expression network analysis by GeNet(Li et al.,

2018a) to represent statistical co-expressed protein modules.
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Supplemental Figures

Figure S1. Twelve Clinical Parameters of COVID-19 Patients and Non-COVID-19 Patients, Related to Figure 1

Significance indicated by the asterisks (unpaired two-sided Welch’s t test. p value: *, < 0.05; **, < 0.01; ***, < 0.001.)
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(legend on next page)
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Figure S2. Quality Control of Proteomic and Metabolomic Data, Related to Figure 1

(A) Coefficient of variation (CV) of the proteomic data is calculated by the proteins quantified in six quality control (QC) samples using the pooled samples from all

samples in training cohort. CV of the metabolomic data is calculated by twelve QC samples using a set of isotopic internal spiked-in standards.

(B) Uniform Manifold Approximation and Projection (UMAP) of sera samples using 791 measured proteins in the training cohort.

(C) UMAP of sera samples using 847 metabolites excluding drugs.

(D) UMAP analysis of the COVID-19 patients using 791 measured proteins.

(E) UMAP analysis of the COVID-19 patients using 847 metabolites.

In D and E, patients labeled in red received serum test before they were diagnosed as severe. Inside the brackets are the sex, age, time from disease onset to

admission and time from sampling to diagnose of severe case in sequence.
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(legend on next page)
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Figure S3. Differentially Expressed Proteins and Metabolites in Different Patient Groups in the Training Cohort, Related to Figure 4 and 5

(A-D) Volcano plots compare four pairs of patient groups as indicated in the plot. Proteins with log2 (fold-change) beyond 0.25 or below �0.25 with adjusted p

value lower than 0.05 were considered as significantly differential expression. (E-H) Volcano plots for themetabolomics data. Number of significantly down- (blue)

and up- (red) regulated proteins were shown on the top.
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Figure S4. Proteins and Metabolites Regulated in COVID-19 Patients but Not in Non-COVID-19 Patients, Related to Figure 4 and 5

Venn diagrams showing the overlaps between significantly regulated proteins (A) and metabolites (B) as identified in volcano plots. Proteins and metabolites

labeled in red are the shortlisted molecules which differentially expressed in the COVID-19 patients but not in the non-COVID-19 patients.
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(legend on next page)
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Figure S5. Identification of Specific Clusters of Proteins and Metabolites in COVID-19 Patients, Related to Figure 4 and 5

791 proteins (A) and 941metabolites (B) were clustered using mFuzz into significant discrete clusters, respectively, to illustrate the relative expression changes of

the proteomics and metabolomics data. The groups in proteomics and metabolomics data: 1: Healthy; 2: non-COVID-19; 3: non-Severe COVID-19; 4: Severe

COVID-19.
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Figure S6. Pathway Analysis of 93 Differentially Expressed Proteins in COVID-19 Patients, Related to Figure 4 and 5

(A) The Gene Ontology (GO) processes enriched by Metascape.

(B) The GO terms enriched using the Cytoscape plug-in ClueGO.

(C) Ingenuine pathway analysis of most significantly relevant pathways with the predicted activation or inhibition state.

(D) Functional network analysis by GeNet identifies several communities.
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