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Abstract

The progression of prostate cancers (PCs) to locally invasive, androgen-independent and metastatic disease states is
generally associated with treatment resistance and disease relapse. The present study was undertaken to establish the
possibility of using a combination of specific oncogenic products, including epidermal growth factor receptor (EGFR), pAkt,
nuclear factor-kappaB (NF-kB) and macrophage inhibitory cytokine-1 (MIC-1) as biomarkers and therapeutic targets for
optimizing the management of patients with localized PC at earlier disease stages. The immunohistochemical and
immunofluorescence data have revealed that the expression levels of EGFR, Ser473-pAkt, NF-kB p65 and MIC-1 proteins were
significantly enhanced in the same subset of 76 cases of prostatic adenocarcinoma specimens during the disease
progression and these biomarkers were expressed in a small subpopulation of CD133+ PC cells and the bulk tumor mass of
CD1332 PC cells. Importantly, all of these biomarkers were also overexpressed in 80–100% of 30 PC metastasis bone tissue
specimens. Moreover, the results have indicated that the EGF-EGFR signaling pathway can provide critical functions for the
self-renewal of side population (SP) cells endowed with stem cell-like features from highly invasive WPE1-NB26 cells. Of
therapeutic interest, the targeting of EGFR, pAkt, NF-kB or MIC-1 was also effective at suppressing the basal and EGF-
promoted prostasphere formation by SP WPE1-NB26 cells, inducing disintegration of SP cell-derived prostaspheres and
decreasing the viability of SP and non-SP WPE1-NB26 cell fractions. Also, the targeting of these oncogenic products induced
the caspase-dependent apoptosis in chemoresistant SP WPE1-NB26 cells and enhanced their sensibility to the cytotoxic
effects induced by docetaxel. These findings suggest that the combined use of EGFR, pAkt, NF-kB and/or MIC-1 may
represent promising strategies for improving the accuracy of current diagnostic and prognostic methods and efficacy of
treatments of PC patients in considering the disease heterogeneity, thereby preventing PC progression to metastatic and
lethal disease states.
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Introduction

Prostate cancer (PC) remains among the most frequently

diagnosed solid tumors in men and the metastatic PC forms still

represent the second leading cause of cancer-related death [1]–[5].

Important advances in past few years have led to an earlier

diagnosis and effective therapeutic intervention by radical

prostatectomy and/or radiation therapy for the patients with

low-grade and organ-confined PCs [1], [4], [6], [7]. Disease

progression to locally advanced, metastatic and castration-resistant

prostate cancers (CRPCs) is associated with treatment resistance

and disease relapse [1], [4], [6]. Although current anti-hormonal

and chemotherapeutic regimens for highly invasive and metastatic

PCs generally have improved the quality of life, these therapies are

only palliative and culminate in the death of most patients after

about 12–19 months following diagnosis [1], [4], [6].

Numerous studies have been performed to establish the

etiopathological causes of PCs. The extrinsic and intrinsic factors

pre-disposing to PC development include intense oxidative stress,

inflammatory atrophies and fibrosis associated with severe tissue

injuries, hormonal deregulation and more particularly with

advancing age [8]–[13]. Initiation and progression of PC is

generally characterized by a down-regulation of diverse tumor

suppressor gene products, including phosphatase tensin homolog

deleted on chromosome 10 (PTEN) and p53, combined with an

up-regulation of the expression and/or activity of numerous

oncogenic signaling elements in PC cells [4], [13], [14]. The

interplay of complex signaling networks of distinct tumorigenic

pathways initiated by hormones, growth factors, cytokines and

chemokines through their cognate receptors is typically involved in

the PC progression to locally advanced and metastatic disease [4],

[10], [11], [13], [15]. Among the frequent deregulated gene

products, the enhanced expression and activation of diverse

receptor tyrosine kinases, including epidermal growth factor

receptor (EGFR), during the epithelial-mesenchymal transition

process may lead to the sustained activation of mitogen-activated

protein kinases, phosphatidylinositol 39-kinase (PI3K)/Akt, nuc-

lear factor kappa-B (NF-kB) and macrophage inhibitory cytokine-
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1 (MIC-1) [4], [13], [14], [16]–[32]. These oncogenic products

may cooperate to promote the sustained growth, survival, invasion

and metastasis of PC cells as well as for their acquisition of

androgen-independent (AI) and chemoresistant phenotypes, treat-

ment resistance and disease recurrence [4], [13]–[16], [18]–[21],

[23], [25]–[27], [30]–[39].

In addition, recent accumulating lines of experimental evidence

have also revealed that PC stem/progenitor cells, also designated

as PC- and metastasis-initiating cells, expressing stem cell-like

markers such as CD133, CD44high, aldehyde dehydrogense

‘‘ALDHhigh’’ and/or CXC chemokine receptor 4 can provide

critical functions in prostate carcinogenesis, metastases at distant

sites and tumor re-growth and disease recurrence after treatment

initiation [4], [10], [13], [14], [40]–[58]. It has been shown that

highly tumorigenic PC stem/progenitor cells were able to give rise

in vitro and in vivo to the bulk mass of differentiated PC cells

expressing secretory luminal phenotypes, including androgen

receptor and prostatic acid phosphatase, and reconstitute the

tumors in vivo with a histological architecture of a Gleason grade

comparable to the patient’s original tumors [13], [40]–[45], [47],

[48], [53]. It has also been observed that the PC stem/progenitor

cells, including side population (SP) isolated from PC cells by using

Hoechst dye efflux technique, which possess an AI phenotype and

express high levels of ATP-binding cassette (ABC) multidrug

transporters such as ABCG2, were also more resistant than their

differentiated progenies and non-SP cells to the anti-hormonal and

chemotherapeutic treatments [13], [14], [50]–[52], [59]. In spite

of these advances, additional studies are required to validate

distinct molecular biomarkers and therapeutic targets in PC stem/

progenitor cells and their progenies that could be used in

combination for optimizing the therapeutic management of PC

patients at earlier disease stages.

The present investigation was undertaken to determine the clinical

relevance of using a combination of multiple deregulated oncogenic

products, including EGFR, the phosphorylated form of Akt, NF-kB

p65 and MIC-1 as molecular biomarkers to predict the risk of PC

progression to locally advanced tumor and therapeutic targets to

eradicate the total PC cell mass. Therefore, the immunohistochem-

ical analyses of the expression levels and co-localization patterns of

these proteins were made on the same panel of PC tissues and

compared with non-malignant adjacent tissues and normal prostatic

tissue specimens. Moreover, the prostasphere-forming and -disinte-

gration assays and viability tests with SP cells endowed with stem cell-

like properties and the non-SP cell fraction from the highly

tumorigenic and invasive WPE1-NB26 cell line were performed

with or without exogenous EGF in the absence or presence of the

specific inhibitory agents of these oncogenic products. Overall, the

results have supported the benefits of combining these oncogenic

products as molecular biomarkers and therapeutic targets for

improving the accuracy of diagnostic and prognostic methods and

the efficacy of treatments of PC patients at earlier disease stages.

Materials and Methods

Materials
The human WPE1-NB26 cell line was originally obtained from

American Type Culture Collection (Manassas, VA). The parental

WPE1-NB26 cells were routinely maintained in keratinocyte serum-

free medium (SFM) supplemented with antibiotics (100 UI/ml

penicillin-100 mg/ml streptomycin), L-glutamine, bovine pituitary

extract and epidermal growth factor (EGF) according to the

manufacturer’s instructions in a 37uC incubator supplied with 5%

CO2. Keratinocyte-SFM, MitoTracker Red CMXRos dye and all

other culture materials were from Life Technologies (Carlsbad,

CA). Docetaxel, partenolide, Akt inhibitor VIII, and 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) were

purchased from Sigma-Aldrich (St. Louis, MO), LY294002 from

Calbiochem Corp (San Diego, CA) and gefitinib came from LC

laboratory (Woburn, MA). The rabbit polyclonal anti-CD133

antibody (H-284), mouse monoclonal anti-CD44 (HCAM, F-4)

antibody, rabbit polyclonal anti-ABCG2 antibody (B-25), rabbit

polyclonal anti-EGFR antibody (1005), goat polyclonal anti-

Tyr1173-phospho-EGFR antibody (1173) recognizing the EGFR

form phosphorylated at tyrosine 1173 and rabbit polyclonal anti-

NF-kB p65 protein subunit (C-20) were purchased from Santa Cruz

Biotechnology, Inc (Santa Cruz, CA). The mouse monoclonal anti-b-

actin antibody (clone AC-15) was provided by Sigma-Aldrich (St-

Louis, MO, USA) and the rabbit monoclonal anti-Ser473-pAkt

antibody (D9E) from Cell Signaling Technology, Inc. The rabbit

polyclonal antibody directed against the cleaved caspase-9 fragment

was purchased from Cell Signaling Technology (Danvers, MA,

U.S.A.) and mouse monoclonal anti-cytochrome c (6H2) antibody

provided by Santa Cruz Biotechnology, Inc (Santa Cruz, CA, U.S.A.).

Rabbit polyclonal anti-MIC-1 antibody was generated in our

laboratory against the C-terminal amino acid region of the mature

MIC-1 protein as previously described [27], [29]. The phycoerythrin-

conjugated monoclonal anti-CD133/2 antibody (293C3) was pur-

chased from Miltenyi Biotec. Inc. and employed according to the

manufacturer’s instructions. The Vectastain avidin-biotin complex

‘‘ABC’’ method peroxidase kit and 3,39-diaminobenzidine ‘‘DAB’’

substrate kit for the immunohistochemical staining were purchased

from Vector Laboratories (Burlingame, CA).

Immunohistochemical and double-
immunohistofluorescence analyses

Immunohistochemical studies on the expression levels and

cellular localization of EGFR, Ser473-pAkt, NF-kB p65 and MIC-

1 proteins in non-malignant and malignant prostate tissues were

carried out on prostate tissue microarrays made from formalin-

fixed and paraffin-embedded tissues purchased from Biomax Inc.

(Rockville, Maryland, USA) as previously described. The analyzed

tissue specimens include the PR954 tissue microarray slide

containing duplicate cores from 36 cases of patients with primary

prostatic adenocarcinoma (Gleason scores: 6–10; stages T2–T4)

and the corresponding matched non-malignant adjacent tissues

from the same patients, and PR483 tissue microarray slide

containing one core from 40 cases of patients with primary

prostatic adenocarcinoma (Gleason scores: 6–10; stages T2–T4)

and 8 normal prostate tissues from autopsy used as controls. In

addition, the expression of all of biomarkers was also analyzed in

30 bone metastasis tissues from PC patients (Gleason scores: 6–10)

(TriStar Technology Group, LLC, U.S.A.). The technique used

for immunohistostaining has been previously described [36], [38],

[52]. Briefly, the tissue sections were deparaffinized with EZ-

DeWaxTM (Bio Genex, San Ramon, CA) and rehydrated using

graded ethanol solutions. After washing the slides 3 times with

phosphate buffer saline (PBS) for 5 min, tissue sections were

submerged in microwave antigen retrieval solution consisting of

0.01 M citrate buffer pH 6.0 and subjected to microwave

irradiation 3 times during 3 min. The nonspecific immunostaining

was blocked in diluted vectastain normal horse serum (Vector

‘‘ABC’’ kit) for 10 min and the slides were then incubated with

primary anti-EGFR, -Ser473-pAkt, -NF-kB p65 protein subunit or

-MIC-1 antibody in a humidified chamber overnight at 4uC. After

washing with PBS, the slides were incubated with biotinylated

universal secondary antibody for 30 min and rewashed with PBS.

Endogenous peroxidase activity was quenched using 0.3%

hydrogen peroxide in methanol:PBS (1:1) for 10 min. After an
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additional wash, the slides were incubated with ABC vectastain

solution for 30 min. The tissue sections were submerged in a

staining solution containing 3,39-diaminobenzidine ‘‘DAB’’ sub-

strate as indicated in the manufacturer’s instructions and rinsed 3

times in water. A reddish-brown color precipitate observed on

tissue sections indicates a positive immunoreactivity with the tested

primary antibody. The slides were counterstained with hematoxy-

lin, dehydrated and permanently mounted with vectamount

permanent mounting media (Vector Laboratories). Images that

were captured on a Nikon Eclipse E400 light microscope (Nikon

Corporation, Tokyo, Japan) at different magnifications are

representative of analyzed samples.

For each tissue section, the intensity of immunoreactivity for

EGFR, Ser473-pAkt, NF-kB p65 or MIC-1 protein was semi-

quantitatively graded by a urologic pathologist (Dr. Johansson) on a

0 to +3 scale (0 = no staining, 1+ = week staining, 2+ = moderate

staining, and 3+ = strong staining). The percentage of PC cells positive

for each biomarker analyzed within a given tissue core was also scored

on a 1 to 4 scale (1 = 0–25% positive PC cells, 2 = 26–50% positive

cells, 3 = 51–75% positive cells, and 4 = 76–100% positive cells). The

score of the staining intensity and the percentage of immunoreactive

PC cells were then multiplied to obtain a composite score ranging

from 0 to 12. The staining intensity of different tested proteins in

prostate adenocarcinoma samples was scored and compared to the

normal prostate tissues, and the value was considered enhanced if the

staining intensity was higher by one or more points.

In addition, the double-immunohistofluorescence analyses of

the co-localization of stem cell-like marker, CD133 antigen

(prominin-1) with unphosphorylated EGFR or its activated

Tyr1173p-EGFR phosphorylated form, Ser473-pAkt, NF-kB p65

or MIC-1 were also carried out on deparaffinized and rehydrated

non-malignant and malignant human prostatic tissue specimens

from the patients obtained from UNMC’s tissue bank as previously

reported [52], [60]. The tissue slides were blocked in the presence

of 10% goat serum for 30 min followed by incubation with the

phycoerythrin-conjugated anti-CD133 antibody plus anti-EGFR,

anti-Tyr1173-pEGFR, anti-Ser473-pAkt, anti-NF-kB p65 or anti-

MIC-1 antibody for 2 h. The slides were washed twice with PBS

and processed for immunofluorescent detection as described below

for the confocal microscopic analyses of fixed cells.

Isolation of the SP and non-SP cell fractions and CD133+

PC cell subpopulation from human tumorigenic and
invasive WPE1-NB26 cell line by flow cytometry

The parental WPE1-NB26 cells (16106 cells/mL) were stained

with Hoechst buffer containing a final concentration of 2 mg/mL

fluorescent Hoechst dye at 37uC for 2 h. The small subpopulations

of SP and non-SP cells were isolated by fluorescence-activated cell

sorting (FACS) as previously described [52], [60], [61]. The analyses

and sorting of the viable SP and non-SP cell fractions were done

using a FACS Aria flow cytometer with a DIVA software (Becton

Dickinson Biosciences). The SP and non-SP cell fractions were

collected after FACS and the expression level of the CD133 stem

cell-like marker without apparent further phenotypic and differen-

tiation changes in these two cultured cell subpopulations was

obtained by maintaining the cells in serum-free keratinocyte culture

medium containing exogenous EGF (10 ng/mL) before their use.

Immunoblot analyses
The SP and non-SP cell lysates were prepared as previously

described [36], [38], [60]. The protein concentrations were

estimated by using a detergent-compatible protein assay kit from

Bio-Rad Laboratories, Inc. (Hercules, CA). The samples corre-

sponding to 20 mg proteins were resolved by electrophoresis on a 8

or 10% SDS-polyacrylamide gel under reducing conditions. The

proteins were transferred onto an immobilon-P transfer membrane

and blocked in 5% non-fat dry milk in PBS for 2 h and subjected to

the standard immunodetection procedure. At the end of incubation,

the blot was washed in TBST (50 mM Tris-HCl, pH 7.4, 150 mM

NaCl and 0.05% Tween) and incubated with horseradish peroxi-

dase-conjugated secondary antibody (Amersham Biosciences, Piscat-

away, NJ) for 1 h. Antibody-antigen complexes were visualized using

enhanced chemiluminescence kit (Amersham Biosciences).

Confocal microscopy analyses
The SP and non-SP cell fractions from the WPE1-NB26 cell line

were grown at a low density on sterilized cover slips for 24 h,

washed with PBS, and fixed in ice-cold methanol at 220uC for

2 min [36], [38], [52]. The cells were blocked in 10% goat serum

for 30 min and incubated with phycoerythrin-conjugated mono-

clonal anti-CD133/2 antibody (293C3), mouse monoclonal anti-

CD44 (HCAM, F-4) antibody, rabbit polyclonal anti-ABCG2

antibody (B-25), rabbit polyclonal anti-EGFR antibody (1105), goat

polyclonal anti-Tyr1173-pEGFR antibody (1173), rabbit monoclonal

anti-pAkt antibody (D9E), rabbit polyclonal anti-NF-kB antibody

(C-20), rabbit polyclonal anti-MIC-1 antibody or mouse monoclo-

nal anti-b-actin antibody (clone AC-15) diluted in PBS for 1 h at

room temperature. After three washes with PBS, the cells were then

incubated with fluorescein isothiocyanate (FITC)-conjugated goat

anti-mouse, FITC-conjugated donkey anti-goat and/or Texas red-

conjugated goat anti-rabbit secondary antibody (Jackson Immuno-

Research Laboratories, Inc., West Grove, PA) for 1 h. In addition,

the SP cells treated with different cytotoxic agents during 4 days

were stained with MitoTracker Red CMXRos in humidified

chamber at 37uC in the dark for 30 min prior to the fixation and

staining of SP cells with mouse monoclonal anti-cytochrome c

antibody for 1 h followed by an incubation with FITC-conjugated

goat anti-mouse for 1 h. Then, all of PC cells were washed again

with PBS, nuclei counterstained with diamidino-2-phenylindole

(DAPI) and mounted on glass slides in anti-fade Vestashield

mounting medium (Vector Laboratories, Burlingame, CA). Immu-

nofluorescence staining was observed under a confocal laser

scanning microscope (LSM 410, Zeiss, Gottingen, Germany).

Prostasphere-forming and disintegration assays
The SP and non-SP cell fractions isolated from the highly

tumorigenic and invasive WPE1-NB26 cell mass were maintained in

serum-free keratinocyte culture medium. The self-renewal capacity of

SP cells versus the non-SP cell fraction isolated from the highly

tumorigenic and invasive WPE1-NB26 cell line was estimated by

their ability to form the non-adherent aggregates designated as

prostaspheres in serum-free culture conditions under ultra-low

attachment plate (Corning, invitrogen). For prostasphere-forming

assays, 500 viable SP or non-SP cells obtained after cell sorting were

suspended in serum free-keratinocyte medium without or with

exogenous EGF (10 ng/ml) onto a 6-well ultra-low attachment plate

in the absence or presence of different drugs. The tested drugs include

a specific inhibitory agent of EGFR (gefitinib), PI3K (LY294002),

pAkt (pAkt inhibitor VIII), NF-kB (partenolide) and MIC-1 (anti-

MIC-1 antibody) as well as the current chemotherapeutic drug

docetaxel. All samples were plated in triplicate. After 7 days of

incubation, the numbers of prostaspheres formed were counted and

the representative pictures of SP WPE1-NB26 cell-derived prosta-

spheres were photographed by using Accu-scope phase-contrast

microscope at a magnification of 2006.

In addition, for the disintegration assays, 500 viable SP WPE1-

NB26 cells were grown in serum-free culture conditions under an
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ultra-low attachment plate during 7 days for the formation of

prostaspheres and then the tested drugs were added to culture

medium and incubated for 4 additional days. At day 11, the

representative pictures of disintegrated prostaspheres were photo-

graphed by using Accu-scope phase-contrast microscope at a

magnification of 2006.

TUNEL assay
The terminal deoxynucleotidedyl transferase dUTP nick end

labeling (TUNEL) assay was performed to detect the DNA

fragmentation indicative of apoptotic cell death induced by tested

cytotoxic agents on the SP WPE1-NB26 cell subpopulation. After

washing of fixed SP WPE1-NB26 cells with PBS, cells were

incubated in the TdT reaction mixture consisting of nucleotide-

labeling mix (TUNEL Label) contains fluorescein-dUTP and -dNTPs

plus TdT enzyme (Roche diagnostics, IN) in humidified chamber at

37uC in the dark for 1 h. The SP cells were washed three times in

PBS and incubated with a primary antibody directed against the

cleaved capsase-9 fragment for 1 h at room temperature, followed by

an incubation with FTIC-conjugate secondary antibody for 1 h.

After three rinses with PBS, cells were counterstained with DAPI for

nuclear stain and visualized by confocal fluorescence microscopy as

above mentioned.

Cell viability assays
For cell viability assays, the SP and non-SP cell fractions isolated

from the WPE1-NB26 cell line were seeded on 96-well plates at a

density of 36104 cells per well in a total volume of 200 mL free-serum

keratinocyte culture medium as previously mentioned [36], [38], [52].

After 3 days, the SP and non-SP WPE1-NB26 cells were untreated or

treated with different concentrations of tested drugs including gefitinib,

LY294002, pAkt inhibitor VIII, partenolide, anti-MIC-1 antibody or

docetaxel, alone or in combination. After 72 hours of incubation, the

cell viability was estimated by a MTT colorimetric test.

Flow cytofluorometric analyses
SP WPE1-NB26 cells were grown at a density of 56105 cells on

25 cm2 dishes as described previously. The SP cells were treated

with different concentrations of tested drugs, alone or in

combination with 5 nM docetaxel during four days. The apoptotic

effect induced by tested agents on the SP WPE1-NB26 cells was

estimated after DNA staining of each sample with the propidium

iodide by FACS analyses as previously described [36], [38], [52].

Statistical analyses
Statistical analyses were performed using the Student’s t-test to

compare the results with P values,0.05 indicating statistically

significant differences. More specifically, immunohistochemical

data were analyzed using Windows version 9.6.4.0. software. The

composite scores of biomarker expression were considered as

continous variables and compared using Student’s two-tailed t test

assuming unequal variance for independent samples.

Results

Immunohistochemical analyses of expression levels of
EGFR, Ser473-pAkt, NF-kB p65 and MIC-1 signaling
elements in non-malignant and malignant prostate
tissue specimens

The results from immunohistochemical analyses have indicated a

very weak to undetectable immunostaining for EGFR, Ser473-pAkt,

NF-kB p65 and MIC-1 in normal prostatic tissues of biopsy and

adjacent non-malignant prostatic tissues from PC patients (Figure 1).

In contrast, an enhanced expression of all of these biomarkers was

detected in 66–75% of the 76 cases of prostatic adenocarcinomas

(Gleason scores = 6–10) analyzed versus normal prostate tissues and

associated with the stages (T2–T4) of the disease progression (Table 1).

More particularly, a weak cytoplasmic and membrane immunostain-

ing for the EGFR protein were detected only in a small number of

basal and luminal prostatic epithelial cells in non-malignant prostatic

tissues while its expression varied from moderate to strong within the

cytoplasm and at the membrane respectively, in the malignant

epithelial cells localized in the intermediate and luminal compart-

ments in a subset of primary prostatic adenocarcinoma specimens

(Figure 1a). The staining intensity associated with the EGFR protein

expression was enhanced in 68% of 76 cases of primary prostatic

adenocarcinoma specimens analyzed, as compared with the normal

prostatic tissue from biopsy (Table 1). Moreover, the composite score

value obtained for EGFR expression in PC specimens (3.460.4) was

significantly superior to the value for normal prostate tissues

(0.460.2); *p,0.0001) (Figure 2a). As shown in Figure 1b and c,

the activated Ser473-pAkt phosphorylated form was also overex-

pressed in 66% of 76 cases of the prostatic adenocarcinomas analyzed

and detected in the cytoplasm in PC epithelial cells whereas an

enhanced expression of the p65 subunit NF-kB transcription factor

occurred in 75% of 76 cases of prostatic adenocarcinomas and was

mainly detected in cytoplasm and nuclei of PC epithelial cells. The

composite score values obtained for Ser473-pAkt and NF-kB p65

expression in PC specimens (3.360.4 and 2.760.3) were significantly

enhanced as compared to the value for normal prostate tissues

(0.360.1 and 0.360.2; p,0.0001), respectively (Figure 2b and c). In

addition, a stronger positive immunostaining was also seen for the

MIC-1 protein in the cytoplasm and near the membrane in PC

epithelial cells as well as for secreted MIC-1 in tumor stroma in 71%

of 76 cases of prostatic adenocarcinomas as compared to normal and

adjacent non-malignant prostate tissues analyzed (Figure 1d). The

composite score value obtained for MIC-1 expression in PC

specimens (3.760.4.) was significantly enhanced relative to the

value for normal prostate tissues (0.460.3; *p,0.0001) (Figure 2d).

Importantly, the results have also indicated that Ser473-pAkt, NF-kB

p65 and MIC-1 were co-expressed with EGFR in the same subset

corresponding at about 54–62% of PC tissue specimens analyzed

suggesting that these oncogenic signaling elements may all cooperate

to promote the malignant transformation of PC epithelial cells during

disease progression to a locally advanced disease state (Table 1).

Importantly, a positive immunostaining varying from moderate

to strong, within the cytoplasm and near the membrane or in

nuclei was also detected for EGFR, Ser473-pAkt, NF-kB p65 and

MIC-1 in PC cells in 80–100% of bone metastasis tissues analyzed

from 30 PC patients (Gleason scores = 6–10) (Figure 3; Table 1).

Moreover, MIC-1 immunostaining varied from very weak to

moderate intensity was seen in the stroma of PC bone metastasis

tissues (Figure 3d). The composite scores obtained for the

expression of all of these biomarkers in bone metastasis tissues

from PC patients were also superior to the values observed for

normal prostatic tissues and prostatic adenocarcinoma speciments

(Figure 2; *p,0.0001).

Double immunohistofluorescence confocal microscopy
analyses of the expression level of the CD133 stem cell-
like marker and its co-localization with EGFR, Ser473-pAkt,
NF-kB p65 and MIC-1 signaling elements in non-
malignant and malignant prostate tissue specimens

To obtain experimental evidence of the potential implication of

the enhanced expression and/or activation of EGFR, pAkt, NF-

kB p65 and MIC-1 in the malignant transformation of CD133+

Distinct Biomarkers and Targets in PC Cells

PLoS ONE | www.plosone.org 4 February 2012 | Volume 7 | Issue 2 | e31919



adult prostatic stem/progenitor cells into CD133+ PC stem/

progenitor cells, we have also characterized the co-localization of

the CD133 stem cell-like marker with these oncogenic signaling

elements in the non-malignant and malignant prostatic tissues

from patients (Figure 4). The results from double immunohisto-

fluorescence analyses have revealed that the expression levels of all

of these biomarkers were significantly enhanced in a small subset

of CD133+ PC cells dispersed through the intermediate compart-

ment in malignant prostate tissues as well as the bulk tumor mass

of CD1332 PC cells in prostatic adenocarcinomas relative to non-

malignant prostate tissue specimens from patients (Figure 4 and

Figure S1). More specifically, a positive immunoreactivity was

observed for EGFR and its phosphorylated Tyr1173-pEGFR

activated form, Ser473-pAkt and MIC-1 in the cytoplasm and

near or at the cell surface in intermediate and luminal PC cells

detected in prostatic adenocarcinoma specimens (Figure 4 and

Figure S1). Furthermore, a positive cytoplasmic and nuclear

staining was also detected in intermediate and luminal PC cells for

the NF-kB p65 subunit, which acts as a transcriptional signaling

effector of numerous growth factor cascades including the

activated EGFR pathway (Figure 4).

Western blot and immunofluorescence analyses of
expression levels of stem cell-like markers and EGFR,
Ser473-pAkt, NF-kB p65 and MIC-1 in SP and non-SP cell
fractions from parental WPE1-NB26 cell line

To further assess whether an enhanced expression and/or

activation of EGFR, PI3K/Akt, NF-kB and MIC-1 occur in PC

stem/progenitor cells during disease progression, a character-

ization of the expression levels of these signaling components

was performed using SP and non-SP cell fractions from highly

tumorigenic and invasive WPE1-NB26 cell line. The character-

ization of the parental WPE1-NB26 cell line by Hoechst dye

efflux technique has revealed the presence of a SP subpopulation

with a high Hoechst dye exclusion capacity corresponding to

about 0.61% of total WPE1-NB26 cell mass (Figure 5a).

Moreover, the FACS analyses after staining of WPE1-NB26

Figure 1. Immunohistochemical analyses of the expression levels of EGFR, Ser473-pAkt, NF-kB p65 and MIC-1 in non-malignant
prostate and prostatic adenocarcinoma tissues. Microarray sections of non-malignant and malignant prostate tissue specimens were probed
with an anti-EGFR, -Ser473-pAkt, -NF-kB p65 or -MIC-1 antibody after blocking with serum. All sections were examined under a microscope and the
immunoreactivity was judged by dark brown staining. Representative pictures of stained tissue specimens of normal prostate, non-malignant
adjacent tissues of prostatic tumor and prostatic adenocarcinoma obtained for (a) EGFR, (b) Ser473-pAkt, (c) NF-kB p65 and (d) MIC-1 are shown at
original magnifications of 6100 and 6400. The arrows indicate the localization of basal cells in normal and non-malignant prostate epithelium and
immunostaining detected for these biomarkers in prostatic adenocarcinoma tissue specimen. Moreover, the positive immunostaining detected for
secreted MIC-1 protein in the stromal compartment adjacent to prostatic tumor tissue is also indicated.
doi:10.1371/journal.pone.0031919.g001
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cells with phycoerythrin-labeled CD133 antibody has also

indicated the presence of a small WPE1-NB26 cell population

expressing a high level of CD133 stem cell-like marker

corresponding to about 0.60% of the total PC cell mass

(Figure 5b). The characterization of phenotypic features of the

SP cell subpopulation from parental WPE1-NB26 cells by

Western blot and immunofluorescence analyses has also

revealed that these immature cells expressed higher levels of

Figure 2. Comparison of the composite scores of expression levels of EGFR, Ser473-pAkt, NF-kB p65 and MIC-1 in non-malignant
and malignant tissues from PC patients. Box plots showing the expression levels of (a) EGFR, (b) Ser473-pAkt, (c) NF-kB p65 and (d) MIC-1 during
PC progression to metastatic disease stages. *, P,0.0001, indicates a significant increase between the composite scores obtained for prostatic
adenocarcinoma and PC bone metastasis specimens relative to composite scores obtained for normal prostatic tissues.
doi:10.1371/journal.pone.0031919.g002

Table 1. Immunohistochemical analyses of biomarker expression levels in prostate adenocarcinoma tissues and PC bone
metastasis specimens relative to normal prostate tissues.

Pathological diagnosis

aNumber of
cases

Positive staining
for EGFR

Positive staining
for Ser473-pAkt

Positive staining
for NF-kB p65

Positive staining
for MIC-1

Adenocarcinoma T2/42 cases 55% 62% 69% 71%

Adenocarcinoma T3/30 cases 83% 80% 80% 68%

Adenocarcinoma T4/4 cases 100% 100% 100% 100%

Adenocarcinoma T2-T4/Total: 76 cases 68% 66% 75% 71%

Adenocarcinoma T2-T4/Total:
76 cases

— 54% co-expressed
with EGFR

62% co-expressed
with EGFR

57% co-expressed
with EGFR

PC bone metastasis Total: 30 cases 93% 80% 93% 100%

aT-primary tumor: T2, tumor confined within prostate; T3, tumor extends through the prostate caspsule and T4, Tumor is fixed or invades adjacent structures other
than seminal vesicles.

doi:10.1371/journal.pone.0031919.t001
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Figure 3. Immunohistochemical analyses of the expression levels of EGFR, Ser473-pAkt, NF-kB p65 and MIC-1 in PC bone metastasis
tissues. Microarray sections of PC bone metastasis tissue specimens were probed with anti-EGFR, -Ser473-pAkt, -NF-kB p65 or -MIC-1 antibody after
blocking with serum. All sections were examined under a microscope and the immunoreactivity was judged by dark brown staining. Representative
pictures of stained PC bone tissue specimens obtained for EGFR, Ser473-pAkt, NF-kB p65 or MIC-1 are shown at original magnifications of 6100 and
6400.
doi:10.1371/journal.pone.0031919.g003
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CD133 and CD44 stem cell-like markers and ABC multidrug

transporter ABCG2 relative to the non-SP WPE1-NB26 cell

fraction (Figure 5c and d). Importantly, the SP and non-SP

WPE1-NB26 cell fractions also expressed different drug

resistance-associated molecules, including EGFR, Ser473-pAkt,

NF-kB p65 and MIC-1 (Figure 5c and d).

Figure 4. Immunofluorescence analyses of expression levels of EGFR, Ser473-pAkt, NF-kB p65 and MIC-1 signaling elements and
their co-localization with a CD133 stem cell-like marker in non-malignant and malignant prostatic tissues. The double
immunofluorescence analyses of the co-localization of the expression of markers in normal prostate and prostatic adenocarcinoma specimens
from patients was simultaneously done with fluorescein-labeled anti-EGFR, -Ser473-pAkt, -NF-kB p65 or -MIC-1 antibody (green) plus phycoerythrin-
labeled anti-CD133 antibody (red) after blocking with goat serum as described in Materials and Methods. The arrows indicate a double staining
(yellow/purple) detected by confocal analyses, which is indicative of the co-localization of these markers. Representative pictures are shown at the
original magnification of 6630.
doi:10.1371/journal.pone.0031919.g004
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Figure 5. Characterization of phenotypic features of SP and non-SP cell fractions from parental tumorigenic and invasive WPE1-
NB26 cells by the Hoechst dye efflux technique and FACS. a) Representative data of the Hoechst dye efflux profile obtained after staining of
parental WPE1-NB26 cell line with fluorescent Hoechst dye showing the SP cell subpopulation (green) and non-SP fraction (blue) detected in the total
mass of parental WPE1-NB26 cells. b) FACS profiles obtained after staining of parental WPE1-NB26 cells with phycoerythrin -labeled anti-CD133
antibody showing the percentage of CD133+ and CD1332 PC cells detected in the total mass of parental WPE1-NB26 cells. c) Comparative Western
blot analyses of expression levels of prostatic stem cell-like markers (CD133 and CD44), multidrug transporter ABCG2, EGFR, Ser473-pAkt, NF-kB p65
subunit and secreted MIC-1 proteins detected in the SP and non-SP cell fractions isolated from parental WPE1-NB26 cell line. d) Immunofluorescence
staining of methanol-fixed prostaspheres derived from SP cells and the adherent non-SP cell fraction isolated from the parental WPE1-NB26 cell line
were done with anti-EGFR plus Tyr1173-pEGFR, Ser473-pAkt, NF-kB p65 or MIC-1 primary antibody plus fluorescein (green) and/or Texas red secondary
antibody (red) and 49,6-diamidino-2-phenylindole (nuclear blue) after blocking with goat serum. Representative pictures showing the expression level
and cellular localization obtained for the stem cell-like markers including CD133 (red), CD44 (green) and ABCG2 (red) as well as overlaps of EGFR/
Tyr1173-pEGFR (red/green, hybrid yellow), Ser473-pAkt (red), NF-kB p65 (red) and MIC-1 (red) are shown at the original magnification of 6630.
doi:10.1371/journal.pone.0031919.g005
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Determination of the functions of EGFR, PI3K/pAkt, NF-
kB and MIC-1 signaling elements for the self-renewal of
SP cells versus the non-SP cell fraction from WPE1-NB26
cell line

The establishment of the functions of EGFR, PI3K/pAkt, NF-

kB and MIC-1 for the self-renewal of the SP cell subpopulation

versus the non-SP cell fraction isolated from the highly tumorigenic

and invasive WPE1-NB26 cell line was done by performing

prostasphere-forming assays in the absence or presence of specific

inhibitory agents of these signaling elements in serum free-

keratinocyte medium under an ultra-low attachment plate. As

shown in Figure 6a, the results from prostasphere-forming assays

have revealed that the SP cells from the WPE1-NB26 cell line

were able to generate many dense prostaspheres with a large size

in culture after 7 days in the absence of EGF. Moreover, the

addition of exogenous EGF into culture medium significantly

promoted the number and size of prostaspheres formed by SP

WPE1-NB26 cells indicating an important role of EGF-EGFR

system for the self-renewal of these immature PC cells (Figure 6b).

In contrast, the non-SP WPE1-NB26 cell fraction after FAC

sorting formed only a small number of diffuse, abortive and very

small primary prostaspheres in the absence or presence of EGF,

while no secondary prostasphere was formed at the second passage

as compared to the high prostasphere-forming capacity of SP

WPE1-NB26 cells that was retained upon serial passage (Figure 6a

and b). We have also observed that the 10 ml/ml of the pre-

immune rabbit serum was used as control has not significant effect

on the prostasphere-forming ability of SP WPE1-NB26 cells as

compared to 10 ml/ml anti-MIC-1 antibody (data not shown).

Also, the treatment with docetaxel has not significant effect on the

prostasphere-forming ability of SP WPE1-NB26 cells in the

absence or presence of EGF (Figure 6a and b).

Importantly, the data have also indicated that the number and

size of the primary prostaspheres formed by CD133+ SP WPE1-

NB26 cells without (basal level) and with EGF were significantly

reduced in the presence of different concentrations of specific

inhibitory agents of EGFR (gefitinib), PI3K (LY294002), pAkt (Akt

inhibitor VIII), NF-kB (partenolide) or MIC-1 (anti-MIC-1

antibody) (Figure 6a, b and c). In particular, the prostasphere

numbers were reduced up at 70% in the presence of 5 mM

gefitinib, 10 mM LY294002, 10 mM Akt inhibitor VIII or 10 mM

partenolide and about 60% for 10 ml/ml of the anti-MIC-1

antibody, indicating that EGF/EGFR, PI3K/Akt, NF-kB and

MIC-1 signaling elements can contribute to the high self-renewal

capacity of SP WPE1-NB26 cells (Figure 6c).

Determination of the cytotoxic effects induced through
the inhibition of EGFR, PI3K/pAkt, NF-kB and MIC-1
signaling elements on SP cells versus the non-SP cell
fraction from WPE1-NB26 cell line

The results from MTT analyses have indicated that a treatment

with increasing concentrations of gefitinib, Akt inhibitor VIII,

partenolide or anti-MIC-1 antibody for 72 hours significantly

reduced the number of viable SP and non-SP WPE1-NB26 cells

(Figure 7). We have also observed that 10 ml/ml of the pre-

immune rabbit serum used as control has not significant effect on

the viability of cells as compared to 10 ml/ml anti-MIC-1 antibody

(data not shown). Moreover, a treatment with the current

chemotherapeutic drug docetaxel induced only a small cytotoxic

effect on the SP WPE1-NB26 cell fraction while it markedly

reduced the number of viable non-SP WPE1-NB26 cells (Figure 7).

As shown in Figure 8a, a treatment with gefitinib, LY294002, Akt

inhibitor VIII, partenolide or anti-MIC-1 antibody for 4 days was

also effective at inducing the disintegration of the dense prosta-

spheres generated by SP WPE1-NB26 cells after 7 days of cultures

under ultra-low attachment plate while docetaxel had no

significant effect (Figure 8a).

In addition, in order to further investigate whether the

suppression of EGFR, PI3K/pAkt, NF-kB, MIC-1 activity with

specific inhibitory agents induced the cytotoxic effects on SP cells

via a mitochondria- and caspase-dependent apoptotic pathway, the

double-staining of cytochrome c plus MitoTracker Red CMXRos

dye that specifically stains the mitochondria as well as the cleaved

caspase-9 fragment plus TUNEL were performed. The data of

double-immunofluorescence analyses of cellular localization of

cytochrome c and MitoTracker Red have indicated that the

cytotoxic effects induced by tested agents on SP WPE1-NB26 cells

were associated with a loss of mitochondrial transmembrane

potential (DYm depolarization) as visualized by a decrease of the

red staining for membrane potential sensitive dye, CMXRos in

treated SP cells as compared to untreated SP cells used as controls

(Figure 8b). The SP cells treated with tested cytotoxic agents also

showed a diffuse green staining for cytochome c indicative of the

release of cytochrome c from mitochondria into cytoplasm as

compared to untreated SP cells (Figure 8b). Furthermore, the

results of double-staining for the cleaved caspase-9 fragment and

TUNEL have also revealed that the cytotoxic effects induced by

tested agents was accompanied by an increase of the number of

cleaved caspase-9 fragment- and TUNEL-positive SP WPE1-

NB26 cells (Figure 8c). Together these date suggest that the tested

cytotoxic agents may induce the cytochrome c release from

mitochondria, caspase activation and DNA fragmentation in SP

WPE1-NB26 cells which may results into the apoptotic death of

some treated SP cells.

In support with this, the quantitative analyses of the number of

cells detected in the sub-G1 phase by FACS have indicated that

increasing concentrations of the tested drugs induced a high rate of

apoptotic death on SP WPE1-NB26 cells as compared to

untreated SP WPE1-NB26 used as control (Figure 9). Importantly,

a combination of 5 mM gefitinib, 10 mM LY294002, 10 mM Akt

inhibitor VIII, 10 mM partenolide or 10 ml/mL of anti-MIC-1

antibody with 5 nM docetaxel was also more effective than

individual drugs at inducing the apoptotic effects on SP WPE1-

NB26 cells (Figure 9). This indicates that these drugs can

sensibilize the immature and chemoresistant PC cells to the

cytotoxic effects of docetaxel.

Discussion

There has been significant improvement in the diagnosis of

early stage PCs by using a combination of screening tests including

digital rectal examination, the measurement of serum prostate-

specific antigen (PSA) in blood, histological analyses of the

expression levels of PC-specific biomarkers in transrectal ultra-

sound-guided needle biopsy of prostatic tissues and imaging and

genetic tests [6], [7], [62]–[65]. These screening tests have led to

the identification of previously undetected cases of PCs. In spite of

this important advancement, there remains a lack of accurate

sensibility and specificity of the current diagnostic and prognostic

biomarkers, including the PSA [6], [7], [63–66]. Combined with

the limited tissue samples available in core biopsy specimens and

heterogeneity of the disease, these factors underline the urgent

need to validate novel PC-specific biomarkers to optimize the

current detection tests and allow individualized treatment of PC

patients [3], [6], [7], [63]–[67]. More recently, the development of

different multiplex strategies by using new biomarkers such as a-

methyl CoA-racemase ‘‘AMACR’’, pAkt and p63 with the

Distinct Biomarkers and Targets in PC Cells

PLoS ONE | www.plosone.org 10 February 2012 | Volume 7 | Issue 2 | e31919



conventional histological markers, including high molecular

weight cytokeratin ‘‘34betaE12’’, has given promising results for

optimizing conventional screening tests and improving the

accuracy of diagnosis and prognosis of PC patients [68]–[71].

Data from immunhistochemical analyses in the present investiga-

tion have indicated that EGFR, pAkt, NF-kB p65 and MIC-1

were overexpressed in the same subset of localized PC tissue

specimens as compared to adjacent and normal prostatic tissues

during PC progression to locally advanced disease as well as in

bone metastasis specimens from PC patients (Figures 1, 2, 3;

Figure 6. Determination of the effects induced by different drugs on the prostasphere-forming ability of the SP cell fraction from
highly invasive and tumorigenic WPE1-NB26 cell line. The SP and non-SP cell fractions from the WPE1-NB26 cell line were subjected to the
prostasphere formation culture on an ultra-low attachment plate in serum-free keratinocyte medium. The representative pictures of the dense
prostaspheres formed by SP WPE1-NB26 cells (a) without or (b) after a treatment with exogenous EGF as compared to diffuse, abortive and very small
aggregates formed by non-SP WPE1-NB26 cells are shown at a similar magnification of 6200. Moreover, the representative pictures of the
prostaspheres formed by the SP WPE1-NB26 cell fraction (a) without or (b) after a treatment with exogenous EGF in the presence of different drugs,
including a specific inhibitory agent of EGFR (gefitinib), PI3K (LY294002), pAkt (pAkt inhibitor VIII), NF-kB (partenolide), MIC-1 (anti-MIC-1 antibody) or
docetaxel, are also shown at a similar magnification of6200. The quantitative data of the number of prostaspheres formed by the SP WPE1-NB26 cell
fraction (c) without or (d) after a treatment with exogenous EGF in the absence (control) or presence of different inhibitory agents obtained from at
least 3 separate experiments are shown.
doi:10.1371/journal.pone.0031919.g006
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Table 1). Moreover, the immunofluorescence analyses of these

distinct molecular biomarkers with the CD133 stem cell-like

marker have also indicated that these oncogenic products were

overexpressed in a small subset of CD133+ PC cells and the bulk

mass of CD1332 PC cells in prostatic adenocarcinoma specimens

relative to normal prostatic tissues (Figure 4 and Figure S1).

These data suggest the potential implication of these oncogenic

products in the malignant transformation of PC stem/progenitor

cells with stem cell-like features and their progenies in clinical

settings.

Accordingly to these results, prior studies have also indicated

that a progressive increase of the expression and/or activation of

the individual biomarker EGFR, pAkt, NF-kB p65 or MIC-1

often occurred in PC stem/progenitor cells and their progenies

during the PC progression to AI, invasive and metastatic disease

states [15], [16], [18]–[21], [23], [25]–[27], [30]–[39],[52]. The

enhanced expression of these oncogenic products was directly

associated with treatment resistance, disease recurrence and a

poor outcome and survival of PC patients [15], [16], [18]–[21],

[23], [25]–[27], [30]–[39], [52]. More specifically, the

Figure 7. Cytotoxic effects induced by different tested drugs on SP and non-SP cell fractions isolated from highly tumorigenic and
invasive WPE1-NB26 cells. The SP and non-SP WPE1-NB26 cell fractions were untreated or treated with the indicated concentrations of gefitinib,
LY294002, pAkt inhibitor VIII, partenolide, anti-MIC-1 antibody or docetaxel for 72 hours and the cell viability was analyzed by MTT tests. The data are
the means of at least three different experiments done in triplicate. *, P,0.05, indicates a significant difference between the cytotoxic effects induced
by individual drugs on the SP cells versus the non-SP WPE1-NB26 cell fraction.
doi:10.1371/journal.pone.0031919.g007
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characterization of PC cells and animal models relevant to

prostate carcinogenesis has indicated that the persistent activa-

tion of EGFR and PI3K/Akt in PC cells with stem cell-like

features may contribute to their high self-renewal and tumori-

genic capacities, treatment resistance and tumor re-growth [13]–

[15], [21], [58], [72]–[74]. It has also been shown that the

enhanced expression and constitutive activation of NF-kB, which

may be induced through diverse growth factor cascades,

including EGFR/PI3K/Akt and chemotherapeutic drugs such

as docetaxel in PC cells, may result in an increase of the

expression levels of numerous oncogenic products and anti-

apoptotic factors [22], [24]–[26], [30], [75], [76]. The gene

products induced via the NF-kB transcription factor include

MIC-1, interleukin-6, Bcl-2 and survivin that in turn may

promote the survival, invasion and chemoresistance of PC cells

[22], [24]–[26], [30], [75], [76]. Especially, a marked increase of

the MIC-1 level has been observed in PC cells and serum

samples during the early stage of prostate carcinogenesis and

transition from localized PCs to AI and metastatic disease states

[30], [31], [39], [77], [78]. The enhanced expression of MIC-1

was associated with the development of resistance to docetaxel

and mitoxantrone and a poor outcome and survival of the

patients [30], [31], [39], [77], [78]. Consequently, the combined

immunohistochemical analyses of EGFR, pAkt, NF-kB p65 and/

or MIC-1 expression levels with the current histological

biomarkers in the patient’s prostate biopsies could be helpful

in predicting the risk of PC progression to locally invasive and

metastatic stages, treatment resistance and biochemical disease

recurrence. A combination of these molecular biomarkers could

also be used to optimize the individualized treatment of PC

Figure 9. Quantitative analyses of apoptotic effects induced by different tested drugs, alone or in combination with docetaxel, on
SP cells isolated from highly tumorigenic and invasive WPE1-NB26 cells. The SP WPE1-NB26 cells were untreated or treated with the
indicated concentrations of a specific inhibitory agent including EGFR (gefitinib), PI3K (LY294002), pAkt (pAkt inhibitor VIII), NF-kB (partenolide) and
MIC-1 (anti-MIC-1 antibody), alone or in combination with 5 nM docetaxel for 4 days, and the apoptotic cell death was analyzed by FACS. The panel
shows the apoptotic effect induced by the tested agents that are expressed as the percentage of apoptotic SP WPE1-NB26 cells compared to non-
treated SP cells (control). *, P,0.05, indicates a significant difference between the apoptotic effect induced by tested drugs plus 5 nM docetaxel
versus individual drugs on the SP WPE1-NB26 cell fraction.
doi:10.1371/journal.pone.0031919.g009

Figure 8. Estimation of the disintegration effects induced by different tested drugs on prostaspheres derived from SP WPE1-NB26
cell-and implication of the mitochondrial and caspase pathways. a) Representative pictures of the disintegration effect induced by a
treatment with tested drugs during 4 days on the prostaspheres derived from SP WPE1-NB26 cells. b) Immunofluorescence staining of SP WPE1-NB26
cells after a treatment with indicated cytotoxic agents was done with anti-cytochrome c primary antibody plus fluorescein (green) secondary
antibody and the mitochondria and nuclei stained with MitoTracker Red CMXRos (red) and DAPI (blue), respectively. Representative pictures showing
the expression level and cellular localization of mitochondria (red), cytochrome c in mitochondria (green/red; hybrid yellow) or cytoplasm (diffuse
green staining) are shown at the original magnification of 6630. c) Immunofluorescence staining of SP WPE1-NB26 cells after a treatment with
indicated cytotoxic agents was done with a primary antibody directed against the cleaved caspase-9 fragment plus Texas red secondary antibody
and TUNEL reactive mixture (green) and the nuclei counterstained with DAPI (blue). Representative pictures showing the expression level and cellular
localization of the cleaved caspase-9 fragment (red) and TUNEL and DAPI (green/blue; hybrid cyan) in SP WPE1-NB26 cells are shown at original
magnification 6630. The overlaps of double nuclear staining with TUNEL and DAPI (green/blue; hybrid cyan) associated with DNA fragmentation
which is indicative of the apoptotic nuclei in SP cells are indicated by arrows. d) The SP WPE1-NB26 cells were untreated or treated with the indicated
concentrations of a specific inhibitory agent including EGFR (gefitinib), PI3K (LY294002), pAkt (pAkt inhibitor VIII), NF-kB (partenolide) and MIC-1 (anti-
MIC-1 antibody), alone or in combination with 5 nM docetaxel for 4 days, and the apoptotic cell death was analyzed by FACS. The panel shows the
apoptotic effect induced by the tested agents that are expressed as the percentage of apoptotic SP WPE1-NB26 cells compared to non-treated SP
cells (control). *, P,0.05, indicates a significant difference between the apoptotic effect induced by tested drugs plus 5 nM docetaxel versus
individual drugs on the SP WPE1-NB26 cell fraction.
doi:10.1371/journal.pone.0031919.g008

Distinct Biomarkers and Targets in PC Cells

PLoS ONE | www.plosone.org 14 February 2012 | Volume 7 | Issue 2 | e31919



patients that are susceptible to respond to the cytotoxic agents

targeting these oncogenic products.

In addition, the results of the present investigation have also

revealed that the targeting EGFR, PI3K/Akt, NF-kB or MIC-1 by

using gefitinib, LY294002/Akt inhibitor VIII, partenolide or anti-

MIC-1 antibody significantly inhibited the basal and EGF-

promoted prostasphere formation by CD133+ SP WPE1-NB26

cells endowed with stem cell-like features (Figures 5 and 6). These

data suggest that these oncogenic products may contribute to the

self-renewal capacity of CD133+ SP WPE1-NB26 cells. In

particular, the data have indicated that a treatment with

exogenous EGF of CD133+ SP WPE1-NB26 cells significantly

enhanced their prostasphere-forming ability at least in part

through the stimulation of PI3K/Akt and NF-kB/MIC-1

suggesting that EGF/EGFR system can provide important

functions for the high self-renewal ability of these immature PC

cells (Figure 6). Of therapeutic interest, all of tested pharmaco-

logical agents, including gefitinib, LY294002/Akt inhibitor VIII,

partenolide or anti-MIC-1 antibody, were also effective at

reducing the viability of SP and non-SP WPE1-NB26 cell fractions

(Figure 7). Importantly, all of these cytotoxic agents also induced

the disintegration of CD133+ SP WPE1-NB26 cell-derived

prostaspheres and apoptotic effects through the caspase activation,

and sensibilized these chemoresistant SP cells to apoptotic effects

induced by the current chemotherapeutic drug, docetaxel

(Figures 8 and 9). Collectively, these results support the clinical

relevance to use a combination of these distinct oncogenic

products as molecular targets to develop a multitargeted therapy

for eradicating the total PC cell mass. Consistent with this, our

recent works combined with several prior studies have revealed

that the down-regulation of the expression and/or activity of

EGFR, PI3K/Akt, NF-kB or MIC-1 signaling element resulted in

growth inhibition and a high rate of apoptotic death of androgen-

dependent, AI and metastatic PC cell lines, including PC stem/

progenitor cells [34], [36], [38], [58], [75], [76], [79], [80]. More

specifically, we have shown that the co-targeting of EGFR and

sonic hedgehog pathways by using gefitinib and cyclopamine with

the chemotherapeutic drug, docetaxel or mitoxantrone resulted in

supra-additive anti-proliferative, anti-invasive and apoptotic effects

on diverse invasive and metastatic PC cell lines, including CD133+

SP WPE1-NB26 cells, as compared to individual agents and two-

drug combinations [36], [52], [79]. Moreover, the inhibition of

PI3K/Akt/mTOR signaling elements by using a specific inhibitor

of PI3K (LY294002), mTOR (rapamycin, RAD-001 (40-O-(2-

hydroxyethyl)-rapamycin or CCl-779) or dual PI3K/mTOR

inhibitor (PI-103 or NVP-BEZ235) has also been observed to

induce a growth inhibition and cytotoxic effects on the CD133+/

CD44+ cell fraction and the bulk PC cell mass detected by

cytometric analyses [74]. It has also been reported that a treatment

with the sesquiterpene lactone, partenolide, of parental and

CD44high and CD442/low PC cell fractions isolated from

metastatic cell lines (DU145, PC3, VCAP and LAPC4) and

primary PC tumor cells induced cytotoxic effects in vitro through an

inhibition of NF-kB and Src-related signaling components and

inhibited the tumor growth of CD44high DU145 cell xenograft

models in vivo [80]. Importantly, the natural compound parteno-

lide was also effective at inducing the cytotoxic effects on CD133+

primary prostate tumor cells while CD133+ normal cells from

benign prostate hyperplasia were insensitive to this treatment type

in vitro [58].

Taken together, these observations suggest that the combined

histological analyses of the expression levels of EGFR, pAkt, NF-

kB p65 and/or MIC-1 with the current molecular biomarkers

used clinically may constitute a promising strategy to optimize the

efficacy of diagnosis, prediction of prognosis, long-term follow-up

and choice of therapeutic treatment of PC patients. These data

also support the therapeutic interest in using the specific inhibitory

agents of EGFR, PI3K/pAkt, NF-kB and/or MIC-1 for

eradicating PC stem/progenitor cells and their progenies, and

thereby improving the anticarcinogenic efficacy of current anti-

hormonal and first-line docetaxel-based chemotherapeutic regi-

mens against locally invasive and metastatic CRPCs and

preventing the disease relapse and the death of patients.

Supporting Information

Figure S1 Immunofluorescence analyses of expression
levels of activated Tyr1173-pEGFR signaling element and
its co-localization with a CD133 stem cell-like marker in
non-malignant and malignant prostatic tissues. The

double immunofluorescence analyses of the co-localization of the

expression of markers in normal prostate and prostatic adenocar-

cinoma specimens from patients was simultaneously done with

fluorescein-labeled anti-Tyr1173-pEGFR (green) plus phycoery-

thrin-labeled anti-CD133 antibody (red) after blocking with goat

serum as described in Materials and Methods. The arrows indicate

a double staining (yellow/purple) detected by confocal analyses,

which is indicative of the co-localization of these markers.

Representative pictures are shown at the original magnification

of 6630.

(TIF)
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