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Introduction
The SARS-CoV-2 virus, which started in China, has continued to spread worldwide, 
infecting more than 235 million people and causing more than 4.8 million deaths 
(according to a WHO epidemiological update on October 5, 2021). The SARS-CoV-2 
virus is a spherical virion with a 30 kb positive-stranded RNA viral genome that is 
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SARS-CoV-2’s population structure might have a substantial impact on public health 
management and diagnostics if it can be identified. It is critical to rapidly monitor and 
characterize their lineages circulating globally for a more accurate diagnosis, improved 
care, and faster treatment. For a clearer picture of the SARS-CoV-2 population structure, 
clustering the sequencing data is essential. Here, deep clustering techniques were used 
to automatically group 29,017 different strains of SARS-CoV-2 into clusters. We aim to 
identify the main clusters of SARS-CoV-2 population structure based on convolutional 
autoencoder (CAE) trained with numerical feature vectors mapped from coronavirus 
Spike peptide sequences. Our clustering findings revealed that there are six large SARS-
CoV-2 population clusters (C1, C2, C3, C4, C5, C6). These clusters contained 43 unique 
lineages in which the 29,017 publicly accessible strains were dispersed. In all the result-
ing six clusters, the genetic distances within the same cluster (intra-cluster distances) 
are less than the distances between inter-clusters (P-value 0.0019, Wilcoxon rank-sum 
test). This indicates substantial evidence of a connection between the cluster’s line-
ages. Furthermore, comparisons of the K-means and hierarchical clustering methods 
have been examined against the proposed deep learning clustering method. The intra-
cluster genetic distances of the proposed method were smaller than those of K-means 
alone and hierarchical clustering methods. We used T-distributed stochastic-neighbor 
embedding (t-SNE) to show the outcomes of the deep learning clustering. The strains 
were isolated correctly between clusters in the t-SNE plot. Our results showed that the 
(C5) cluster exclusively includes Gamma lineage (P.1) only, suggesting that strains of P.1 
in C5 are more diversified than those in the other clusters. Our study indicates that the 
genetic similarity between strains in the same cluster enables a better understanding 
of the major features of the unknown population lineages when compared to some of 
the more prevalent viral isolates. This information helps researchers figure out how the 
virus changed over time and spread to people all over the world.
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translated into structural and nonstructural proteins. The Spike (S) protein is the most 
important surface protein of SARS-CoV-2 and is made up of a linear chain of 1273 
amino acids. The spike (S) contains several functional parts called domains that per-
form diverse biochemical activities such as signal peptides from 1 to 13 and two subu-
nits: S1 and S2. The S1 subunit starts from amino acid 14 to 685 and primarily includes 
the receptor-binding domain (RBD), which identifies receptors, followed by the S2 
subunit from 686 to 1273, facilitating membrane fusion. Thus, one of the most worry-
ing aspects of the SARS-CoV-2 spike protein (S) is how it moves or mutates over time 
as the virus evolves. Some of these mutations may change the biology of the spike and 
affect the virus’s transmissibility. Viruses change all the time, and SARS-CoV-2, the virus 
that causes COVID-19, is no exception. While SARS-CoV-2 mutations occur at a slower 
pace than other viruses such as influenza [1] and HIV [2], these genetic changes occur 
throughout time and can develop new variants with distinct features found in infected 
people as the pandemic progresses. The development of numerous prevalent SARS-
CoV-2 variants in human populations may resist existing prevention and treatments 
[3]. Thus, genomic surveillance played a significant role in responding to the epidemic. 
As the COVID-19 vaccines become available and are used, genetic modifications of the 
SARS-CoV-2 monitoring processes are essential. Therefore, the FDA has been aware of 
the SARS-CoV-2 viral alterations and their possible impact on humans.

As a newly discovered virus, it is essential to consider SARS-CoV-2 genetic diversity, 
its evolutionary history, and possible transmission pathways from its natural reservoir 
to people. Most research has examined features of SARS-CoV-2 development and strain 
diversity in the real world using phylogenetic trees [4–6]. A phylogenetic tree is a graph 
that depicts the evolution of biological organisms based on their genetic similarities 
[7]. The distances between things represent the degree of their connections. However, 
when population genomic datasets expand in size, phylogenetic analysis using simply 
pairwise genetic distances is unable to reveal the full population’s structure. By cluster-
ing related entities into clusters and finding the number of key subtypes or clusters, it 
becomes simpler to comprehend the population’s primary features. Usually, entities have 
been clustered using the distance matrix and the bifurcations between the branches of 
the phylogenetic tree’s leaves. However, as the number of entities increases, it becomes 
more difficult to separate the clades in the phylogenetic tree directly and properly. Addi-
tionally, alignment-based methods such as BLAST and the Burrows-Wheeler Aligner 
(BWA) have been used to classify genome sequences. Such methods are based on labe-
ling viral genes. Methods like BLAST have been very good at finding sequence similari-
ties. However, when these methods are used to look at thousands of complete genomes, 
they take a lot of time to run [8]. They say that the alignments assume that the genes are 
homologous, which means that they all have the same continuous structure. It is not 
always the case.

Clustering approaches have been extensively employed as a useful supplement to 
phylogenetic study, including tree building [9], ancestral connection identification [10], 
evolutionary rate estimate [11], gene evolutionary processes research [12], and popu-
lation structure analysis [13]. The clustering of SARS-CoV-2 lineages into subgroups is 
essential to biologists for many reasons [14]. Clustering representation offers a simpli-
fied understanding and analysis of the high-dimensional and large-scale biological data. 
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Also, scientists can differentiate mutations that are only present in developing lineages 
with changes that affect viral biology. Moreover, the clustering process may significantly 
minimize sequence set redundancy and downstream analysis and storage expenses. 
Clustering procedures must be stable and resilient, and they must allow for information 
compression compared to non-clustered representations.

Deep clustering

Clustering algorithms have emerged as more productive and robust approaches to 
grouping items. Several clustering approaches have emerged and applied to different 
data types such as text, images, and biological sequences. From the perspective of clus-
tering, the data is divided into subgroups (clusters) so that patterns in the same cluster 
are more similar to patterns in other clusters. Clustering is frequently used in unlabeled 
data to discover natural groupings. Recently, deep learning achieved excellent perfor-
mance in various supervised learning applications. This success motivates some unsu-
pervised deep clustering approaches for labeling and clustering unlabeled data. Deep 
clustering is a term that refers to grouping using a deep neural network-related tech-
nique [15]. There are many efficient approaches for combining deep feature learning 
and classical clustering, such as convolutional autoencoders (CAE) [16]. Convolutional 
autoencoders are neural networks that combine the best parts of convolutional neural 
networks CNN and autoencoders AE into a single network called a CAE neural network. 
CNN can quickly pull out important features from input examples. On the other hand, 
unsupervised AE is capable of encoding input instances into low-dimensional represen-
tations. Moreover, AE can properly reconstruct the input with a minimal reconstruction 
error from these representations. In a nutshell, CAE begins by automatically extracting 
features from input core data and reducing their dimensionality using under-complete 
fully convolutional autoencoders. It is well established that reducing the data dimension 
and clustering in the feature space rather than the data space improves clustering per-
formance [17]. In the second stage, the weights of the deep network are repeatedly fine-
tuned by optimizing feature learning and clustering assignment concurrently so that the 
network learns features that improve clustering effectiveness [15].

SARS‑COV‑2 lineages and nomenclature systems

There are currently three nomenclature systems to classify and monitor SARS-CoV-2 
genetic lineages: the Global Initiative on Sharing All Influenza Data (GISAID) [18], 
Nextstrain, and Pango [19]. Each system employs a scientific approach to classifying and 
naming lineages. All three methods were developed before variants of interest (VOIs) 
and variants of concern (VOCs) were identified. Due to the existence of numerous nam-
ing systems, the same variant may have many names, usually concurrently and without 
regard to the VOI and VOC characteristics. Therefore, it is difficult for individuals who 
are not specialists to connect such variations to scientific papers. Similarly, the employ-
ment of different nomenclature systems confuses health consultants, the public, and the 
media and inhibits a good link between all stakeholders’ ability to communicate effec-
tively to make timely choices on public health issues. The WHO encouraged organiza-
tions that have published phylogenetic-based categorization and nomenclature systems 
for SARS-CoV-2 variations, as well as specialists in virological and microbiological 
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nomenclature, to contribute to the development of a better naming scheme for VOCs 
and VOIs. Participants have proposed utilizing Greek alphabet letters, such as alpha, 
beta, gamma, and Delta, which will make communication with nonscientific audiences 
simpler and more practical. Table 1 illustrates the list of currently designated variants of 
concern (VOC) and their definitions in the three nomenclature systems.

Related works

The current section reviews artificial intelligence-based solutions that may supplement 
existing conventional ways of fighting COVID-19 in global healthcare systems. Using 
artificial intelligence (AI) approaches, chest X-rays (CXR), and CT scans of COVID-
19-suspected patients may assist in the diagnosis of COVID easily and quickly. A chest 
X-ray is one of the quickest techniques for identifying COVID-19 disease. Compared to 
other diagnostic techniques, X-ray pictures are regarded as a fast and cost-effective diag-
nostic technique. In recent years, in response to the need for speedy and precise analy-
sis of CXR images, computer-aided diagnostic (CAD) tools have been created to help 
clinicians interpret a CXR picture [20–22] and introduced the present state and prob-
lems of computer-assisted diagnosis (CAD), machine learning (ML), and deep learning 
(DL)-based algorithms for CXRs as primary modalities for COVID detection. They ana-
lyzed several CXRs with COVID-19 and achieved 95.8% classification accuracy using 
the VGG16 architecture. Reference [23] suggested a network structure with DenseNet 
for feature extraction and a DL model called DenseCapsNet to identify COVID-19 from 
chest X-ray images with 98% accuracy. However, the difficulty with chest X-rays is that 
they cannot reliably discriminate soft tissues, and hence cannot be input into AI models 
for an all-around assessment. CT scans may be utilized to overcome this. The AI model 
learns by itself to discriminate COVID CT scans from non-COVID CT scans after 
reviewing a series of pictures. Several studies [24, 25] demonstrate significant success in 
the use of AI and deep learning (DL) algorithms for effective illness identification from 
chest CT images.

In parallel to this, the modeling approaches available to the deep learning community 
have grown significantly, some of which are already beginning to affect genomics. Deep 
neural networks (DNN) may increase prediction accuracy by identifying complicated 
and important features. Here, we outline deep learning modeling methods and their cur-
rent uses in genomics. Recent publications have used deep learning for purposes such 
as viral prediction, viral host prediction, and prediction of a viral segment. For a more 
comprehensive examination of deep learning in genomics, we refer to a recent article in 
[26]. Here, Table 2 lists several state-of-the-art studies that used DNNs to analyze viral 

Table 1  Currently designated variants ofconcern (VOC)

WHO label Variant type First detection GISAID Nextstrain Pango

Alpha VOC UK GRY (formerly 
GR/501Y.V1)

20I/501Y.V1 B.1.1.7

Beta VOC South Africa GH/501Y.V2 20H/501Y.V2 B.1.351

Gamma VOC Brazil GR/501Y.V 20J/501Y.V3 P.1

Delta VOC India G/452R.V3 21A/S:478K B.1.617.2
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genome sequences. The objective of each study is described in the table along with the 
DNN employed, the input, the output, and the accuracy of the results. In addition to 
the biological disciplines and the input and output of the DNN, as shown in the third 
column of Table 2, the DNNs used in those references focus on using the advantages of 
convolutional neural networks (CNN) or long short-term memory (LSTM) in combina-
tion with a fully connected layer to improve classification and similarity score prediction 
accuracy.

Based on DL approaches [27], offered a way to aid in the identification of SARS-CoV-2 
during testing. A CNN architecture with four layers was used in order to extract the 
properties of the viral genomes and categorize SARS-CoV-2 as a member of the coro-
navirus family. The CNN received as input the whole genomic sequence of a virus. The 
nucleotides’ mapped numerical values were C = 0.25, T = 0.50, G = 0.75, and A = 1.0, 
respectively. Missing entries were assigned the value of 0.0. Experiments demonstrated 
that the CNN could accurately identify sequences even when noise was introduced 
to the genome, with accuracies ranging from 0.9674 (with noise) to 0.9875. (Without 
noise). The scientists also found a unique sequence for the SARS-CoV-2 virus based on 
their findings. This sequence was presented as a potential primer for PCR testing.

In [28], a method for classifying viruses utilizing contigs (fragments of the genome 
sequence) and two distinct reverse-complement (RC) neural network architectures (RC-
CNN and RC-LSTM) was described. Additionally, these models were applied to the 
SARS-CoV-2 virus. Their model is trained to differentiate between viruses that infect 
humans and viruses that infect other chordates (nonhuman). The authors show that it 
is not easy to find the negative (nonhuman) class, which shows that the host-related sig-
nal is strong, and that the learned decision boundary is a very good way to tell human 
viruses from other DNA sequences.

Coutinho et.al. [29] proposed an alignment-free approach based on the stacked sparse 
autoencoder technique for classifying genomic sequences of the SARS-CoV-2 virus at 
different taxonomic levels (realm, family, genus, and subgenus). They investigated the 
use of a k-mers picture representation of the whole genome sequence, which facilitates 

Table 2  Summary of state-of-the-art references

Ref Objective DNN Input Output Accuracy

[27] Viral classification CNN + FC The whole genomic 
sequences of a virus

Different viral 
classes

96.7% (with noise)
98.7% (without 
noise)

[28] Viral host prediction RC-CNN and RC-
LSTM

Contigs of a 
genome

Human or nonhu-
man host

91.7% CNN
86.3% LSTM

[29] Viral classification Stacked sparse 
autoencoder (SSAE)

Image represen-
tations of the 
complete genome 
sequences

Different classes 98.9% and 100%

[30] Predicting the 
mutation rate of 
SARS-CoV-2

LSTM-RNN Complete genome Mutation rate 
calculations

(RMSE) of 0.06 in 
testing and 0.04 in 
training

[31] Predicting the 
similarity score of 
the genome of 
“SARS-CoV-2” with 
other viruses

CNN + LSTM Genome sequence Similarity score 
with other viruses

99.27%
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the usage of genome sequences of any length and permits the use of fewer network 
inputs. The findings were presented using the confusion matrix for the validation and 
test sets, as well as the ROC curve for the validation set. All studies had accuracy rates 
ranging from 98.9 to 100%. These results demonstrate the relevance of the stacked sparse 
autoencoder approach for genome categorization issues.

Pathan et.al. [30] discussed the nucleotide mutation rate and pattern in the codon 
mutation set in this study. An RNN-based LSTM model has been developed to forecast 
the future rate of mutation in a COVID-19-infected individual’s body. In addition, they 
have described an LSTM-RNN model for time series prediction based on the nucleotide 
mutation rate of patients and forecasted the future mutation rate of the 400th patient. 
The root-mean-square error (RMSE) for this model is 0.06 in testing and 0.04 in training.

Rani et.al. [31] calculated the similarity score between the genome of “SARS-CoV-2” 
and the genomes of other viruses, including SARS-CoV, MERS-CoV, HIV, and HTLV. 
Working on the CNN- and LSTM-based “genome similarity predictor” model, which 
is used to classify genomes and predict the “SARS-CoV2” and other viruses’ “genomic 
similarity score.”

A recent study in [32] used deep embedding clustering [33] to group 16,873 strains. 
Six clusters on each continent have a distinct geographical distribution. This research 
analysis is restricted since more than 60% of SARS-CoV-2 strains are from the UK and 
USA. Africa and South America provide less than 2% of all strains. Sampling biases 
impact parameter estimation and clustering outcomes.

On the other hand, representing genomic data in unconventional ways has long been 
welcomed by researchers; for example, in recent work, the genome sequence was shown 
as a picture based on chaotic game representation to analyze diverse biological aspects 
[34]. On the other hand, a collection of 56 viral protein sequences from coronavirus, 
influenza, and Ebola were investigated and categorized using their auditory patterns 
[35].

To clarify the main population structure of the virus, grouping these strains into clus-
ters is necessary, as these clusters displayed the major types of the virus. The genetic 
similarities of coronavirus strains within the same cluster enable a better understanding 
of the major features of the unknown virus lineages when compared to some of the more 
prevalent viral isolates. Also, it may provide insights towards identifying an effective 
medicine for the treatment of the COVID-19 strain from previously found one. How-
ever, the review of relevant research works reveals a lack of studies attempting to deter-
mine the population clusters of the “SARS-CoV-2” using deep learning approaches.

To the best of our knowledge, there were no deep clustering approaches have been 
used in combination with protein’s physical and chemical characteristics for COVID-19 
population clustering based on unsupervised deep learning. Also, there was no mention 
of this method on other datasets in relevant papers. In this study, we aim to identify the 
main clusters of SARS-CoV-2 population structure based on convolutional autoencoder 
(CAE) trained with numerical feature vectors mapped from coronavirus Spike peptide 
sequences.

We begin by transferring the input sequences of coronavirus Spike protein into physi-
ochemical features through the Proter software package [36]. The encoder learns the 
input features and reduces their dimensionality into compressed numerical feature 
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vectors suited for clustering. It then uses a reduction in reconstruction loss to try to 
rebuild the original signal from the compressed such that useful information is not lost 
during the decoding process. The K-means clustering is used to learn the compressed 
feature vectors for determining the clustering labels for each spike protein. The proposed 
method’s effectiveness is validated by comparison with other state-of-the-art techniques 
such as K-means clustering without CAE and hierarchical clustering methods, using our 
available datasets. Furthermore, we used T-distributed stochastic neighbor embedding 
(t-SNE) to show the outcomes of the deep learning clustering. In short, the SARS-CoV-2 
population structure analysis in this work helps researchers learn more about how the 
virus has changed and spread through human populations around the world.

Methods
SARS‑CoV‑2 sample collection

A sufficient number of gene datasets, including the entire genome sequence of SARS-
CoV-2, are already accessible in the National Center for Biotechnology Information 
(NCBI) GenBank [37]. NCBI gave labels to virus sequences based on where they were 
found and when they were found. And each sequence had all the information about 
where the genes were written on it. We filtered the gene sequence, date of collection, and 
sample country among the various entities. COVID-19-affected genes are extracted from 
the human body. Additionally, there are a few incomplete genes in this collection. There-
fore, we screened them and only kept those that had the whole genome. The focus of this 
study has been on spike protein changes due to their critical role in human infection. We 
collected 29,017 protein sequences from the NCBI viral database [37] on May 18, 2021. 
The downloaded strains are from all over the world, each with an average length of 23000 
amino acids. At this time, we identified 42 distinct viral lineages in the collected sample. 
These lineages are mostly A, B, and B.1 according to Pango nomenclature, in addition to 
alpha, beta, delta, and gamma lineages according to WHO nomenclature. The resulting 
FASTA format sequences were required to be unique and complete Spike protein isola-
tions. In addition, we chose amino acid sequences over nucleotide sequences for inclu-
sion in our study because they give more reliable results.

SARS‑CoV‑2 proposed architecture

Figure  1 shows our proposed architecture that starts by transferring input sequences 
of Spike protein and reducing their dimensionality into relevant numerical feature vec-
tors suited for clustering by the “Protr” software package in R. Then, we used principal 
component analysis (PCA) to produce a projection of a dataset before fitting a model. 
Using PCA can reduce the input numerical representation of each sample before apply-
ing CAE. The reduced input variables are fed to the convolutional autoencoders (CAE) 
network.

Protein feature extraction

We aim to transfer the original data space (amino acid sequence) to a new space (numer-
ical feature vectors) suited for clustering. The process of creating a useful numerical 
representation consists commonly of three major descriptors: amino acid composition 
(AAC), dipeptide composition (DC), and composition/transition/distribution (CTD) 
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Fig. 1  The proposed architecture
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descriptors. The three descriptors are illustrated in detail in the next section. They are 
considered as numerical feature representations of proteins instead of their raw peptide 
data. By using this approach [38], the Spike protein sequences are converted into fea-
ture vectors, which include information on the existence, location, and order of k-tuples 
inside the protein sequence. With the Porter software package [21], protein sequences 
with comparable biological properties may be accurately classified, and links between 
spike sequences can be discovered. Here, we integrated amino acid decomposition 
(AAC), double decomposition (DC), composition-transition-distribution (CTD) fea-
tures, and convolutional autoencoder-based clustering to discover the population clus-
ters of the SARS-CoV-2 virus.

The Amino Acid Composition (AAC)

The amino acid composition (AAC) is one of the descriptors utilized in this work to con-
vert the characters in a protein sequence to a numerical representation suitable for train-
ing deep learning algorithms. Basically, a protein sequence containing N amino-acid 
residues is often represented as a series, including the residue at the ith position in the 
sequence. The labels i and j denote the location of amino acids in a sequence, whereas r 
and s denote the kind of amino acid (residue). AAC descriptor describes the makeup of 
each of the 20 naturally occurring amino acids found in protein sequences. The AAC is 
calculated as follows:

where Nr denotes the number of r residues inside the sequence and N denotes the 
sequence’s entire length. The calculated descriptor is a named vector, each element of 
which is labeled with the name of the corresponding residue r.

Dipeptide Composition (DC)

The dipeptide composition (DC) descriptor is the rate of dipeptide amino acids within 
the protein sequences. DC gives 400 feature vectors, defined as follows:

where  Nrs denotes the number of dipeptide rs residues inside the sequence and N 
denotes the sequence’s entire length.

Composition/Transition/Distribution (CTD)

The CTD global protein sequence descriptors divide the amino acids into three groups 
according to their physical and chemical characteristics. The sequence is encoded by one 
of the symbols I, II, or III according to which group it belongs to. The class distribu-
tion pattern was defined for each peptide attribute (hydrophobicity, normalized van der 
Waals volume, polarity, polarizability, charge, secondary structure, and solvent accessi-
bility) as shown in Table 3. This is how three descriptors were made for a certain attrib-
ute: composition (C), transition (T), and distribution (D). The composition descriptor 
set (C) contains information on the global percentage of each encoded group in the 

f (r) =
Nr

N
r = 1, 2, 3, . . . ., 20.

f (r, s) =
Nrs

N − 1
r, s = 1, 2, 3, . . . ., 20
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sequence. The resulting number of vectors is 21 (3 groups with 7 attributes each). At the 
same time, the transition descriptor set (T) reflects the percent frequency with which 
two classes transition along the sequence. There are 21 vectors in T (3 groups of 7 attrib-
utes each). The distribution set (D) is used to describe how each attribute is spread out 
in the sequence. Each characteristic has five “distribution” descriptions. They are per-
centages of the whole sequence for the first residue, 25%, 50%, and 75% of the whole 
sequence and 100% of the whole sequence for a certain encoded class [21]. Each vector is 
made up of three groups with seven attributes and five distribution places, which means 
a total of 105 feature vectors from the (D) descriptor only. The total number of scalar 
components in the parameter vector of these three descriptors is 21 (C) + 21 (T) + 105 
(D) = 147 scalar components. In this case, 147 biochemical and physical features were 
used to show how each protein sequence is made up of different parts.

The numerical representations of Spike protein using the three major descriptors, 
AAC, DC, and CTD descriptors, are 20, 400, and 147, respectively. Thus, each Spike pro-
tein sample will be represented by 567 feature vectors obtained by concatenating the 
three descriptors. The numerical features we identified here will be learned using the 
convolutional autoencoder CAE to produce clustered groups of Spike proteins in terms 
of efficiency and effectiveness. These SARS-Cov-2 population clusters may cut down on 
sequence set redundancy, as well as the costs of further analysis and storage.

Convolutional Autoencoder (CAE)

CAE can have multiple convolutions and pooling layers, each of which includes an 
encoder (which performs convolution and pooling operations) and a decoder (which 
performs un-pooling and deconvolution operations) [39]. The convolution layer in the 
encoder generates the jth feature map hj from the input sample xi as follows:

hj = σ xi ∗W
j
ij + bj

Table 3  The amino acid attributes and division of the amino acids into group

No. Attribute Group 1 Group 2 Group 3

1 Hydrophobicity Polar
{D/E/K/N/R/Q}

Neutral
{A/G/H/S/P/T/Y}

Hydrophobic
{C/I/L/F/M/V/W}

2 Polarizability (0–1.08)
{A/D/G/S/T}

(0.128–0.186)
{C/E/I/L/N/P/Q/V}

(0.219–0.409)
{F/H/K/M/R/W/Y}

3 Normalized van-der 
Waals volume

(0–2.78)
{A/C/D/G/S/T/P}

(2.95–4.0)
{E/I/L/N/Q/V}

(2.95–4.0)
{F/H/K/M/R/W/Y}

4 Polarity (4.9–6.2)
{C/F/L/I/M/V/W/Y}

(8.0–9.2)
{A/G/S/T/P}

(10.4–13.0)
{E/D/H/K/N/Q/R}

5 Solvent accessibility Buried
{A/L/F/C/G/I/V/W}

Exposed
{R/K/Q/E/N/D}

Intermediate
{M/S/P/T/H/Y}

6 Secondary structure Helix
{E/A/L/M/Q/K/R/H}

Strand
{V/I/Y/C/W/F/T}

Coil
{G/N/P/S/D}

7 Charge Positive
{R/K}

Neutral
{A/N/C/Q/G/H/I/L/M/F/
P/S/T/W/Y/}

Negative
{E/D}
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where xi is the input sample, Wj
ij denotes the jth filter between input channel i and filter j, 

and bj denotes the jth filter’s bias and σ is an activation function.

where oj is the jth feature map and Wj
oj is the jth filter of the un-pooling layer o and j and cj 

are the jth output layer’s filter and bias, respectively.
An important part of input reconstruction is the loss function. This is what determines 

how good the reconstruction will be when it comes out. Sometimes, the loss in recon-
struction is called the mean squared error (MSE), which is a way to measure how much 
difference there is between the original input and reconstructed input.

where xij is the original input and x̂ij represents the reconstructed input.
The bottleneck layer’s size has an impact on clustering performance. While one of 

the primary tasks of the proposed network design is automated feature extraction 
and dimensionality reduction, we discovered that having too few dimensions results 
in reduced clustering accuracy owing to increased reconstruction error. The network 
dimensions are determined by the problem’s complexity. For the most part, there is 
no set formula for determining the bottleneck dimension. Starting with a more com-
prehensive autoencoder and progressively decreasing the bottleneck dimension during 
pre-training until the reconstruction loss begins to noticeably increase is an empirical 
technique.

Implementation Algorithm

1.	 Select K as the number of SARS-COV-2 clusters (categories). Our objective was to 
have K viral clusters each represented by a centroid μk, k = 1, 2, …. K.

2.	 Spike protein dataset S = {s1, s2, s3…sm} with M samples and L length were obtained 
and configured to be unique and complete into K clusters each represented by μk, k 
= 1, 2, …. K.

3.	 Each Spike protein sample S is transformed into numerical representation using 
amino acid composition (AAC), dipeptide composition (DC), and composition/tran-
sition/distribution descriptors (CTD). Thus, the original input space S is transformed 
with descriptors mapping f: S → X into numerical vector representation with length 
P, where P < L.

4.	 For each sample, PCA is used to reduce the input numerical representation from 
P to N, where N < P before applying CAE.

5.	 A CAE model was designed to train the input matrix XM × N where M is the total 
number of protein sequences in S and N is the length of the numerical feature vector. 
In which, xij is defined as the value of the jth descriptor of the i-th protein sample.

xj = σ

(

oj ∗W
j
oj + cj

)

lMSE =

M
∑

i=1

N
∑

j=1

(

xij − x̂ij
)2
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6.	 Creating and training K-means model using the coded features with different k num-
ber of clusters. The silhouette score explored that the top choice is six clusters.

7.	 Using trained K-means model for predicting clustering classes.

The suggested technique was implemented using Python and the Keras package [40], 
and all of the experiments were performed on the Google Colaboratory (Colab) [41], 
a free cloud-based Jupyter Notebook for training machine learning and deep learning 
models on CPUs, GPUs, and TPUs.

Results and discussion
The focus of this study has been on spike protein changes due to their critical role in 
human infection. The dataset for this study included 29,017 samples of Spike protein, 
each with an average length of 23,000 amino acids. All the steps of transferring the input 
sequences of Spike protein into relevant numerical feature vectors suited for cluster-
ing are performed with the “Protr” software package in R. After data preprocessing, the 
input to CAE is a matrix with a total dimension of 567 × 29,017 (number of feature vec-
tors × number of samples).

The input vector consists of 567 features, whereas the compressed representation has 
45 features. This means that the output is twelve times smaller than the original input. 
Complex input characteristics impose typical unsupervised learning techniques, such as 
K-means and KNN, in this instance. However, including all characteristics would con-
found these algorithms. Applying an autoencoder, reducing input features, and extract-
ing relevant data should come first. Then, an unsupervised learning method should be 
applied to the compressed form. Thus, clustering algorithms achieve excellent perfor-
mance while producing more meaningful outcomes.

Our CAE network is composed of two modules: an autoencoder hCAE = {encoder 
(hE), decoder (hD)} for learning protein features, and a K-means clustering model hCL 
for unsupervised clustering. The schematic representation of the CAE-based clustering 
is depicted in Fig. 2 where the CAE consists of 14 layers. The encoder component hE is 
composed of two convolutional layers and two max-pooling layers. Each convolutional 
layer generates a feature map through convolution between the input (or preceding lay-
er’s feature map) and the learnable filter, followed by a max-pooling operation. The filter 
size in these convolutional layers is set to 3 × 3, and the number of filters is 16 and 2. 
The max-pooling method was introduced to determine the maximum value for each 2 
× 2 area in each feature map. As a result, the size of the feature map in the current layer 
will be reduced to half that of the preceding layer only after the max-pooling procedure 
is completed. The frequently used ReLU (nonlinear activation function) is used to acti-
vate the convolved features. The last layer in the encoder is referred to as the bottleneck 
layer, whereas two deconvolutional layers comprise the decoder hD. The decoder mod-
ule is trained to recover the original input from the encoder module using two upsam-
pling and two deconvolution layers. The last two layers in the network are dense and 
flattened layers.

Tenfold cross-validation was employed. Additionally, 80% of the nine folds were uti-
lized for training, while 20% were used for validation. We repeat the procedure of 
fine-tuning until the reconstruction error improves by no more than 6.4045e-04. The 
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lower-dimensional feature vector produced from the encoder module hE has 45 features 
only. The autoencoder is trained for 100 iterations and then fine-tuned for approximately 
6000 iterations. On a Google Colab [41], the entire pre-training and fine-tuning process 
took about 25 min, with the majority of that time spent on the fine-tuning step. After 
pre-training the autoencoder, we utilized the lower-dimensional feature space (coded 
vector) in K-means clustering. Thus, we do K-means clustering using 45 rather than 567 
characteristics. This could help with the classification of unlabeled data.

The effect of number of clusters

To pick an appropriate number of clusters and examine the impact of clustering, we 
used the number of clusters varied between two and eight to get diverse experimental 
findings. When working with higher dimensions, the silhouette score is beneficial for 
validating the clustering algorithm’s operation, since no visualization can be used to 
check to cluster when the dimensions exceed three. Additionally, we may utilize the 
silhouette score to determine the ideal cluster size. The silhouette coefficient some-
times referred to as the silhouette score is a statistic used to assess the quality of a 
clustering process. Its value is between −1 and 1. The complete experimental data are 
shown in Table 4 in terms of the number of clusters and the accompanying silhouette 

Fig. 2  Model architecture using Keras visualization
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score. As shown in Table 4, when the number of clusters is around 6, the algorithm 
could generate the highest silhouette score which tends to be reduced slightly as the 
number of clusters increases. As seen in Table 4, the accuracy of clustering reduces 
steadily as the number of clusters increases. We may conclude that the best number 
of clusters is six in the preceding case since its silhouette score is higher than that of 
other clusters.

The primary criterion for allocating a lineage to a cluster in this unsupervised study 
is a distance measurement, which includes the distance between items, the distance 
between the object and the cluster, and the distance between clusters. K-means 
groups things based on their distances from other objects and clusters.

Wilcoxon rank-sum test is a nonparametric statistical test used to compare two 
related samples, to see if their population mean ranks are different. The Wilcoxon 
test’s null hypothesis is commonly considered as equal medians instead of equal 
means. Rejecting the null hypothesis means that the median of two clusters differs, 
and they cannot be combined into a single cluster. Here we may infer that the median 
distance inside the cluster is lower than the median between clusters. In all six clus-
ters, the genetic distances within the same cluster are less than the distances of inter-
clusters (P-value 0.0019, Wilcoxon rank-sum test). This indicates substantial evidence 
of a connection between the cluster’s lineages. Following that, we used T-distributed 
stochastic neighbor embedding (t-SNE) to show the outcomes of the deep clustering. 
The strains were isolated correctly between clusters in the t-SNE plot. Comparative 
visualization of SARS-CoV-2 grouping into four, five, and six clusters was shown in 
Fig. 3. The visual results of clustered SARS-CoV-2 demonstrate that the best number 
of clusters was six as shown in the silhouette score.

Our clustering findings revealed six large SARS-CoV-2 population clusters (C1, C2, 
C3, C4, C5, C6) covered 43 unique lineages with 29,017 viral strains. In Table 5, we 
summarize the clustering groups across all lineages. The lineages are arranged within 
a cluster according to the highest distribution. The distribution of lineages in each 
cluster was determined by dividing the proportions of lineages from each cluster by 
the total number of strains within the cluster as shown in Table 5.

The clustering results showed that the viral strains of B.1.617.2 (or delta), B.1.526, 
and ten additional lineages were grouped into the same cluster (C1). Our study indi-
cates that the genetic similarity between these strains enables a better understanding 
of the major features of the unknown population lineages when compared to some of 

Table 4  The number of clusters and the corresponding silhouette score

No. of clusters Silhouette score

2 0.519

3 0.727

4 0.752

5 0.825

6 0.885

7 0.874

8 0.878
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Fig. 3  Comparing the t-SNE plots of the clustered SARS-CoV-2. a The four colored regions represent the 
partitions of the four clusters of SARS-CoV-2. b The five-colored regions represent the partitions of the five 
clusters of SARS-CoV-2. c The six colored regions represent the best performance clustering algorithms
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Table 5  The clustering groups across all lineages

Cluster No. of lineages within 
the cluster

Lineage Count of strains within 
the lineage

Distribution of 
lineage within the 
cluster

C1 1 A.1 1519 0.40

2 A 458 0.12

3 B 458 0.12

4 B.1.617.2 (delta) 453 0.119

5 A.3 450 0.118

6 B.1.526 241 0.063

7 A.2.2 62 0.016

8 C.36.3 40 0.0105

9 B.3 36 9.48 × 10−3

10 A.2 29 9.48 × 10−3

11 B.1.1.26 26 6.85 × 10−3

12 B.28 24 6.3 × 10−3

Total 3796
C2 1 D.2 7544 0.995

2 B.1 19 2.5 × 10−3

3 A.1 14 1.84 × 10−3

Total 7579
C3 1 D.2 181 0.387

2 C.37 135 0.288

3 C.36.3 66 0.141

4 B.1.1.207 35 0.074

5 B.1.621 33 0.0705

6 B.1.369 18 0.038

Total 468
C4 1 B.1 5841 0.433

2 B.1.2 1619 0.12

3 B.1.1 1065 0.079

4 B.1.5 898 0.067

5 B.1.243 644 0.047

6 B.1.351 (beta) 566 0.041

7 B.1.37 557 0.04

8 B.1.595 516 0.037

9 B.1.4 482 0.035

10 B.1.320 427 0.031

11 B.1.1.25 270 19.7 × 10−3

12 B.1.1.7 (alpha) 155 11.3 × 10−3

13 B.1.384 115 8.4 × 10−3

14 D.3 115 8.4 × 10−3

15 B.1.39 109 7.9 × 10−3

16 B.1.1.26 107 7.8 × 10−3

17 B.1.31 88 6.4 × 10−3

18 B.1.268 84 6.1 × 10−3

19 B.1.503 81 5.9 × 10−3

20 C.35 48 3.5 × 10−3

21 B.1.36 25 1.8 × 10−4

Total 13647
C5 1 P.1 (gamma) 974 1

Total 974
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the more prevalent viral isolates. On the other hand, the C4 cluster is the largest in 
size, which comprises 13,646 strains of 21 different lineages. Moreover, the C4 cluster 
has a large set of well-known lineages such as B.1, B.1.1, B.1.1.7, B.1.320, B.1.509, and 
B.1.351 (according to Pango SARS-CoV-2 lineage nomenclature).

Among these, the new variants B.1 (often referred to as the European variant), B.1.1.7 
(usually referred to as the UK variant or Alpha), and B.1.351 (commonly referred to as 
the South African variant) have been generally classified as variations of concern (VOCs) 
due to indications of enhanced transmissibility, illness severity, and/or possibly reduced 
vaccination effectiveness. The second-largest cluster is C2, with a total number of 
strains reaching 7578. The most confirmed and concentrated lineage in this cluster was 
D.2, which occupied about 99.5% of the strains in the (C2) cluster. Also, D.2 is partially 
found in C3 and C6 clusters with a population frequency of 0.022 and 0.059, respectively 
(Table 5). Our results showed that the (C5) cluster exclusively includes gamma lineage 
(P.1) only, suggesting that strains of P.1 in C5 are more diversified than those in the other 
clusters. The majority of lineages (36 out of 43) were uniquely distributed in one cluster 
only, while the remaining lineages (6 out of 43) were significantly enriched in more than 
one cluster, as illustrated in Table 6. The Venn diagram depicts the total number of line-
ages exclusively expressed in the six clusters (Fig. 4).

Discussion
The deep learning models proposed in [27–29] were successful in detecting the viral 
genome in the host cell. The convolutional neural network described in [23] could 
accurately identify sequences even when noise was introduced to the genome, with 
accuracies ranging from 0.9674 (with noise) to 0.9875 (without noise). For the catego-
rization of “SARS-CoV-2” from the provided genomic contigs into human and non-
human classes [28], the model obtained 91.7% and 86.3% accuracy using CNN and 
LSTM, respectively. However, it does not identify similarities between the various 
genomic sequences of viruses. Therefore, it provides little insight into drug discovery. 
However, the accuracy of the deep learning model presented in [29] was greater than 

Table 5  (continued)

Cluster No. of lineages within 
the cluster

Lineage Count of strains within 
the lineage

Distribution of 
lineage within the 
cluster

C6 1 B.1 372 0.145

2 D.2 486 0.1902

3 P.2 980 0.0407

4 A.23.1 437 0.0145

5 A.1 28 0.011

6 B.1.525 219 7.436 × 10−3

7 C.37 19 7.436 × 10−3

8 B.1.3 14 4.7 × 10−3

Total 2555
C1 + C2 + C3 + C4 + C5 + C6 = 29017
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Table 6  Lineages that develop in more than one cluster (overlapped cluster)

No. Lineage Total no. of strains Overlapped clusters The proportion 
of lineage in each 
cluster

1 D.2 8215 [C2] 0.918

[C3] 0.022

[C6] 0.059

2 B.1 6233 [C2] 3.04 × 10−3

[C4] 0.937

[C6] 0.059

3 A.1 1552 [C1] 0.979

[C2] 0.02 × 10−3

[C6] 0.018

4 B.1.1.26 133 [C1] 0.195

[C4] 0.805

5 C.37 154 [C3] 0.876

[C6] 0.123

6 C.36.3 106 [C1] 0.377

[C3] 0.622

Fig. 4  Venn diagram showing the total number of lineages expressed in the six clusters
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that of the model proposed in [27, 28] using the stacked sparse autoencoder approach, 
and the image representation of the whole genome sequence [31] calculated the simi-
larity score between the genome of “SARS-CoV-2” and the genomes of other viruses, 
including SARS-CoV, MERS-CoV, HIV, and HTLV. Working on the CNN- and LSTM-
based “genome similarity predictor” model, which is used to classify genomes and 
predict the “SARS-CoV2” and other viruses’ “genomic similarity score.”

The comparison with the previous works reveals a lack of studies attempt-
ing to determine the population clusters of the “SARS-CoV-2” using deep learning 
approaches. To the best of our knowledge, there was only one study that used deep 
embedding clustering [32] to group 16,873 strains. Six clusters on each continent 
have a distinct geographical distribution. Their research analysis is restricted since 
more than 60% of SARS-CoV-2 strains are from the UK and USA. Africa and South 
America provide less than 2% of all strains. Sampling biases impact parameter estima-
tion and clustering outcomes.

Our study’s contribution may be described as follows: This research proposes an effi-
cient convolutional autoencoder model in combination with protein’s physical and 
chemical characteristics for COVID-19 population clustering based on unsupervised 
deep learning. The proposed model first implements the genetic feature transforma-
tion into physicochemical feature representation for preprocessing. Second, build CAE 
for learning protein features and unsupervised K-means for clustering. The proposed 
method’s effectiveness is validated by comparison with other state-of-the-art techniques 
such as K-means clustering without CAE and hierarchical clustering methods, using our 
available datasets. With the Wilcoxon rank-sum test, the average sum of the intra-cluster 
distances in the proposed deep clustering method was considerably smaller than that of 
K-means alone and hierarchical clustering methods (with a P-value < 0.05). Our findings 
agree with the literature [5, 32] in revealing that the best number of clusters that charac-
terizes the SARS-CoV-2 population was six clusters.

Unfortunately, our study does not include the BA.1 Omicron variant of the SARS-
CoV-2 lineage since it was first found in specimens collected on November 11, 2021, 
after we received our data. In a future study, we suggest using soft clustering meth-
ods to look at more viral genes, such as the BA.1 Omicron variant of SARS-CoV-2. 
The fundamental drawback of deep clustering is that it is an unsupervised task, so 
we cannot test its performance on real data. Hyper-parameter testing must rely on 
benchmark datasets, which raises serious doubts about whether deep clustering algo-
rithms can be used in real-world contexts. Furthermore, our deep clustering tech-
nique does not explain why SARS CoV-2 protein sequences are grouped in a specific 
way, as opposed to alignment-based methods. As a result of this treatment, deep clus-
tering models were viewed as “black boxes” with no explanation for their classifica-
tion results. For our deep clustering models, we need far more training data than the 
alignment-based techniques, which only need one reference genome sequence for 
each class to work. A large number of instances must be provided to train a deep clus-
tering model. Instead of using genetic data, a deep clustering method was used to put 
the SARS Cov-2 protein samples into groups with similar characteristics.

In future research, we may evaluate the effect of increasing the number of con-
volutional layers on model performance and training time. This will depend on the 
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availability of computer resources, to discover a trade-off between model perfor-
mance and training time.

Conclusions
Understanding SARS-population CoV-2’s structure helps predict future infection risks. 
We analyzed 29,017 viral sequences to estimate population structure. We propose a con-
volution autoencoder-based deep clustering technique for grouping SARS-CoV-2 Spike 
proteins based on their physicochemical features instead of their genetic data. Our clus-
tering found six significant SARS-CoV-2 clusters with 29,017 strains. We used other 
methods to verify deep learning clustering results. We first evaluated genetic distances 
within and between groups. In each of the six clusters, average intra-cluster distances are 
fewer than inter-cluster distances (P-value 0.0019, using the Wilcoxon rank-sum test). 
We utilized t-SNE to display the deep learning clustering results. The proposed method 
beats K-means and hierarchical clustering. Our analysis shows that the genetic similarity 
between cluster strains offers a better knowledge of the unknown population lineages 
compared to more ubiquitous virus isolates. The recommended technique can monitor 
and characterize circulating SARS-CoV-2 lineages. This helps professionals deliver bet-
ter care, diagnose more accurately, and cure quicker.
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