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Hypertriglyceridemia is an important risk factor associated with insulin resistance and 𝛽-cell dysfunction. This study investigated
the effects of hypertriglyceridemia and fenofibrate treatment on insulin sensitivity and 𝛽-cell function in subjects with normal
glucose tolerance. A total of 1974 subjects with normal glucose tolerance were divided into the normal TG group (NTG group,
𝑛 = 1302) and hypertriglyceridemia group (HTG group, 𝑛 = 672). Next, 92 patients selected randomly from 672 patients with
hypertriglyceridemia were assigned to a 24-week fenofibrate treatment. The HTG group had increased waist circumference (WC),
body mass index (BMI), homeostasis model assessment of insulin resistance (HOMA-IR), and homeostasis model assessment
of 𝛽-cell function (HOMA-𝛽) and decreased high-density lipoprotein cholesterol (HDL-C) compared with the NTG group (all
𝑃 < 0.01). The 24-week fenofibrate treatment significantly decreased the WC, BMI, TG, HOMA-IR, and HOMA-𝛽 levels and
increased the HDL-C levels in the patients with hypertriglyceridemia (WC, BMI, and HOMA-IR: 𝑃 < 0.05; TG, HDL-C, and
HOMA-𝛽: 𝑃 < 0.01). The fenofibrate treatment significantly alleviated insulin resistance and reduced the secreting load of 𝛽-cells
in the hypertriglyceridemia patients with normal glucose tolerance.

1. Introduction

Type 2 diabetes is a growing health issue due to its increased
prevalence and lack of an ideal therapy [1]. Insulin resistance
and 𝛽-cell dysfunction are considered the main pathophys-
iologic mechanisms of type 2 diabetes [2]. Epidemiological
studies have demonstrated that hypertriglyceridemia is an
important risk factor associated with insulin resistance and
𝛽-cell dysfunction [3, 4]. Lipoprotein lipase (LPL) gene
knockout heterozygous mice, an animal model of genetic
hypertriglyceridemia, exhibited significant insulin resistance,
compensatory increased insulin secretion, and ultimately
impaired glucose tolerance [5].Therefore, itmight be possible
to prevent the development of type 2 diabetes mediated
through alleviating insulin resistance and 𝛽-cell dysfunction
by controlling hypertriglyceridemia.

Fenofibrate is a specific peroxisome proliferator-acti-
vated receptor 𝛼 (PPAR𝛼) agonist and is widely used as
a triglyceride- (TG-) lowering agent [6]. Our previous
study showed that fenofibrate increased tetrahydrobiopterin
level and decreased production of reactive oxygen species
through upregulating the level of intracellular guanosine 5󸀠-
triphosphate cyclohydrolase-I (GTPCH-I) in human umbil-
ical vein endothelial cells [7]. Some large-scale clinical
researches (FIELD and ACCORD) mainly focused on the
cardiovascular benefits of fenofibrate treatment in patients
with type 2 diabetes [8, 9]. Recently, many studies have shown
some beneficial effects of fenofibrate on glucose metabolism
in patients with prediabetes, type 2 diabetes, or metabolic
syndrome [10, 11]. However, there is lack of clinical evidence
supporting the effects of lowering TG for insulin sensitivity
and 𝛽-cell function in hypertriglyceridemia patients with
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normal glucose tolerance. In this study, we aimed to investi-
gate the effects of hypertriglyceridemia and fenofibrate treat-
ment on insulin sensitivity and 𝛽-cell function in subjects
with normal glucose tolerance.

2. Materials and Methods

2.1. Subjects. We enrolled 1974 subjects with normal glucose
tolerance who had undergone a routine physical examination
at the Beijing Chao-Yang Hospital affiliated to Capital Medi-
cal University from March 2012 to March 2014. Oral glucose
tolerance tests (OGTT) and blood pressure measurements
were performed at screening. Subjects with hypertension,
prediabetes, diabetes, coronary artery disease, liver or renal
function impairment, infectious disease, systemic inflam-
matory disease, or cancer were excluded. Subjects taking
agents known to influence glucose or insulin metabolism
and/or being treated with lipid-lowering drugs were also
excluded. Hypertriglyceridemia was defined by a plasma TG
level ≥1.7mmol/L according to the guideline of NCEP ATP
III and the Endocrine Society [12, 13]. Based on TG levels, all
subjects were divided into the normal TG group (NTG group,
𝑛 = 1302) and the hypertriglyceridemia group (HTG group,
𝑛 = 672). All enrolled subjects provided a written informed
consent.Theprotocol of this studywas approved by the Ethics
Committee of the Beijing Chao-Yang Hospital affiliated to
Capital Medical University.

2.2. Interventional Study. This study is not a randomized,
controlled trial. In the interventional study, 96 patients
were randomly selected from 672 patients with hypertriglyc-
eridemia. Four patients were excluded from participation
because they were planning to become pregnant. All patients
gave their informed written consent about the side effects
of fenofibrate treatment. Finally, 92 patients with hyper-
triglyceridemia were assigned to 24 weeks of fenofibrate
(200mg/d). Only 83 patients were investigated after 24 weeks
of fenofibrate treatment. The reasons for the 9 subjects
not completing the study were incompliance and loss of
contact. There were no changes in lifestyle interventions or
medications during the study period. Anthropometric data
and laboratory assays were performed three times: at baseline
and after 12 and 24 weeks of fenofibrate administration.

2.3. Clinical and Biochemical Measurements. A standard
questionnaire was used to collect the information about
health status and medications. Waist circumference (WC)
was measured on a horizontal plane at the level of the iliac
crest with an anthropometric tape. Height and weight were
measured to the nearest 0.1 cm and 0.1 kg, respectively, by
the same trained group. Venous blood samples were obtained
after overnight fasting. Plasma samples of all participants
were stored at −80∘C. High-density lipoprotein cholesterol
(HDL-C), low-density lipoprotein cholesterol (LDL-C), TG,
and total cholesterol (TC) were measured by colorimetric
enzymatic assays using an autoanalyzer (Hitachi 7170). Fast-
ing blood glucose (FBG) and fasting insulin (FINS) were
measured at the central chemistry laboratory in Beijing

Chao-Yang Hospital affiliated to Capital Medical University.
Bodymass index (BMI)was calculated as weight in kilograms
divided by height in meters squared. According to the fol-
lowing formula, the homeostasis model assessment of insulin
resistance (HOMA-IR) and that of 𝛽-cell function (HOMA-
𝛽) were calculated to test for insulin resistance and 𝛽-cell
function, respectively: HOMA-IR = [FINS (mIU/L) ∗ FBG
(mmol/l)/22.5] and HOMA-𝛽 = [20 ∗ FINS (mIU/L)/FBG
(mmol/l) − 3.5] [14].

2.4. Statistical Analysis. Data were analyzed using SPSS 17.0
(SPSS, Inc., Chicago, IL). Continuous data were expressed as
means ± SD. Because TG, FINS, HOMA-IR, and HOMA-
𝛽 did not follow a normal distribution, the values were
given as medians and upper and lower quartiles. After
logarithmical transformation, the data of TG, FINS, HOMA-
IR, and HOMA-𝛽 were fitted to a normal distribution for
comparison. Differences between groups were analyzed by
independent sample 𝑡-test and ANOVA test. Differences of
proportions were analyzed by a chi-square test. Pearson,
Spearman correlation, and covariance analyses were used.
Changes in parameters from baseline values within a group
were evaluated using a two-tailed paired 𝑡-test. Statistical
significance was inferred when 𝑃 < 0.05.

3. Results

3.1. Baseline Characteristics of the NTG and HTG Groups.
The baseline characteristics of the NTG and HTG groups are
summarized in Table 1.The two groups had similar sex ratios.
TheHTG group had higher age,WC, and BMI levels than the
NGT group (age: 42.37 ± 10.38 versus 40.89 ± 11.99 years,
𝑃 < 0.05; WC: 93.68 ± 6.62 versus 89.12 ± 5.42 cm, 𝑃 < 0.01;
BMI: 26.14 ± 3.85 versus 23.32 ± 4.40 kg/m2, 𝑃 < 0.01).
Increased plasma TC and LDL-C levels and decreased plasma
HDL-C levels were observed in the HTG group compared to
the NTG group (TC: 5.25 ± 0.90 versus 4.77 ± 0.85mmol/L;
LDL-C: 2.96±0.74 versus 2.79±0.72mmol/L; HDL-C: 1.06±
0.21 versus 1.34 ± 0.30mmol/L; all 𝑃 < 0.01). The HTG
group had significantly higher FBG, FINS, HOMA-IR, and
HOMA-𝛽 than the NTG subjects [FBG: 5.47 ± 0.34 versus
5.33 ± 0.38mmol/L; FINS: 16.17 (11.25–21.93) versus 9.80
(6.77–13.79)mIU/L; HOMA-IR: 3.86 (2.76–5.42) versus 2.30
(1.56–3.29); HOMA-𝛽: 164.15 (114.05–228.80) versus 110.30
(77.02–154.92); all 𝑃 < 0.01].

3.2. Correlation between Plasma TG and the Values of HOMA-
IR and HOMA-𝛽. The plasma levels of TG were positively
correlated with the values of HOMA-IR and HOMA-𝛽 in
all the participants (HOMA-IR: 𝑟 = 0.46, 𝑃 < 0.01,
95% confidence interval 0.42 to 0.51; Figure 1(a)) (HOMA-
𝛽: 𝑟 = 0.37, 𝑃 < 0.01, 95% confidence interval 0.31 to 0.41;
Figure 1(b)). These positive correlations were still observed
after adjusting for age, WC, and BMI (HOMA-IR: 𝑟 = 0.26,
HOMA-𝛽: 𝑟 = 0.23, all 𝑃 < 0.01).

Moreover, we still found a positive correlation between
plasma levels of TG andHOMA-𝛽 in all the participants, after
the adjustment for HOMA-IR (𝑟 = 0.06, 𝑃 < 0.05).
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Table 1: Baseline characteristics of the NTG and HTG groups.

Parameters NTG group (𝑛 = 1302) HTG group (𝑛 = 672)
Age, y 40.89 ± 11.99 42.37 ± 10.38∗

Gender, males/females 632/670 374/298
WC, cm 89.12 ± 5.42 93.68 ± 6.62∗∗

BMI, kg/m2 23.32 ± 4.40 26.14 ± 3.85∗∗

TC, mmol/L 4.77 ± 0.85 5.25 ± 0.90∗∗

LDL-C, mmol/L 2.79 ± 0.72 2.96 ± 0.74∗∗

HDL-C, mmol/L 1.34 ± 0.30 1.06 ± 0.21∗∗

TG, mmol/L 0.95 (0.71–1.26) 2.24 (1.95–2.88)∗∗

FBG, mmol/L 5.33 ± 0.38 5.47 ± 0.34∗∗

FINS, mIU/L 9.80 (6.77–13.79) 16.17 (11.25–21.93)∗∗

HOMA-IR 2.30 (1.56–3.29) 3.86 (2.76–5.42)∗∗

HOMA-𝛽 110.30 (77.02–154.92) 164.15 (114.05–228.80)∗∗

Data are means ± SD unless indicated otherwise. TG, FINS, HOMA-IR, and HOMA-𝛽 are shown as medians and upper and lower quartiles. WC: waist
circumference; BMI: body mass index; TC: total cholesterol; LDL-C: low-density lipoprotein cholesterol; HDL-C: high-density lipoprotein cholesterol; TG:
triglyceride; FBG: fasting blood glucose; FINS: fasting insulin; HOMA-IR: homeostasis model assessment of insulin resistance; HOMA-𝛽: homeostasis model
assessment of 𝛽-cell function. ∗Significantly different at 𝑃 < 0.05 versus control; ∗∗significantly different at 𝑃 < 0.01 versus control.
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Figure 1: Correlation between plasma TG and the values of HOMA-IR (a) and HOMA-𝛽 (b). The plasma levels of TG were positively
correlated with the values of HOMA-IR and HOMA-𝛽 in all the participants (HOMA-IR: 𝑟 = 0.46, 𝑃 < 0.01, 95% confidence interval
0.42 to 0.51; Figure 1(a)) (HOMA-𝛽: 𝑟 = 0.37, 𝑃 < 0.01, 95% confidence interval 0.31 to 0.41; Figure 1(b)).

3.3. Influence of Fenofibrate on the Anthropometric Parameters
and Lipid Profile. TheWC and BMI levels were significantly
decreased from baseline at 24 weeks of the fenofibrate
treatment (WC: from 93.00 ± 7.78 to 91.27 ± 7.59 cm; BMI:
from 25.67 ± 3.11 versus 25.08 ± 3.35 kg/m2; all 𝑃 <
0.05; Table 2). However, there were no significant changes in
these parameters at 12 weeks. Compared with the baseline,
fenofibrate decreased the TG levels and increased HDL-C
after 12 and 24 weeks of treatment [TG: 12 weeks: from 2.70
(1.93–3.56) to 1.75 (1.47–2.00) mmol/L; 24 weeks: from 2.70
(1.93–3.56) to 1.63 (1.21–2.04) mmol/L; all 𝑃 < 0.01] [HDL-C:
12 weeks: from 1.03 ± 0.18 to 1.29 ± 0.27mmol/L, 𝑃 < 0.05;
24 weeks: from 1.03 ± 0.18 to 1.40 ± 0.27mmol/L, 𝑃 < 0.01].
However, the fenofibrate treatment did not significantly affect
TC or LDL-C at 12 or 24 weeks.

3.4. Influence of Fenofibrate on the Parameters of Glucose
Metabolism. The fenofibrate treatment at 12 or 24 weeks did
not significantly change the FBG levels (Table 2). Fenofibrate
significantly decreased the FINS levels at 24 weeks compared
with baseline but not at 12 weeks [12 weeks: from 14.40 (8.85–
23.45) to 12.80 (8.90–17.10)mIU/L, 𝑃 > 0.05; 24 weeks:
from 14.40 (8.85–23.45) to 10.40 (7.10–15.40)mIU/L, 𝑃 <
0.05]. At 12 and 24 weeks, HOMA-IR and HOMA-𝛽 were
significantly decreased from baseline after the fenofibrate
treatment [HOMA-IR: 12 weeks: from 3.26 (2.53–5.18) to 2.59
(1.98–3.85); 24 weeks: from 3.26 (2.53–5.18) to 2.42 (1.46–
4.12); all 𝑃 < 0.05] [HOMA-𝛽: 12 weeks: from 124.31 (65.45–
194.17) to 110.00 (45.38–131.58), 𝑃 < 0.05; 24 weeks: from
124.31 (65.45–194.17) to 95.10 (48.75–123.07), 𝑃 < 0.01].
However, fenofibrate treatment did not cause a significant
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Table 2: Comparison of clinical parameters after fenofibrate treatment for 12 and 24 weeks in patients with hypertriglyceridemia (𝑛 = 83).

Parameters Baseline 12 weeks 24 weeks
Age, y 44.68 ± 10.51
Gender, M/F 50/32
WC, cm 93.00 ± 7.78 92.32 ± 7.26 91.27 ± 7.59∗

BMI, kg/m2 25.67 ± 3.11 25.29 ± 3.44 25.08 ± 3.35∗

TC, mmol/L 5.34 ± 0.68 5.11 ± 0.94 5.12 ± 0.66
LDL-C, mmol/L 2.79 ± 0.75 3.10 ± 0.72 3.02 ± 0.61
HDL-C, mmol/L 1.03 ± 0.18 1.29 ± 0.27∗ 1.40 ± 0.27∗∗

TG, mmol/L 2.70 (1.93–3.56) 1.75 (1.47–2.00)∗∗ 1.63 (1.21–2.04)∗∗

FBG, mmol/L 5.43 ± 0.49 5.45 ± 0.50 5.33 ± 0.46
FINS, mIU/L 14.40 (8.85–23.45) 12.80 (8.90–17.10) 10.40 (7.10–15.40)∗

HOMA-IR 3.26 (2.53–5.18) 2.59 (1.98–3.85)∗ 2.42 (1.46–4.12)∗

HOMA-𝛽 124.31 (65.45–194.17) 110.00 (45.38–131.58)∗ 95.10 (48.75–123.07)∗∗

Data are means ± SD unless indicated otherwise. TG, FINS, hsCRP, HOMA-IR, and HOMA-𝛽 are shown as medians and upper and lower quartiles. WC: waist
circumference; BMI: body mass index; TC: total cholesterol; LDL-C: low-density lipoprotein cholesterol; HDL-C: high-density lipoprotein cholesterol; TG:
triglyceride; FBG: fasting blood glucose; FINS: fasting insulin; HOMA-IR: homeostasis model assessment of insulin resistance; HOMA-𝛽: homeostasis model
assessment of 𝛽-cell function. ∗Significantly different at 𝑃 < 0.05 versus baseline; ∗∗significantly different at 𝑃 < 0.01 versus baseline.

decrease in HOMA-𝛽 at 12 or 24 weeks after adjustment for
HOMA-IR.

4. Discussion

In the present study, the hypertriglyceridemia patients
with normal glucose tolerance exhibited significant higher
HOMA-IR and HOMA-𝛽 levels compared to the NTG
group. The plasma levels of TG were positively correlated
with the values of HOMA-IR and HOMA-𝛽 after adjusting
for potential confounders. The fenofibrate treatment sig-
nificantly decreased the plasma TG levels and the values
of HOMA-IR and HOMA-𝛽 in the hypertriglyceridemia
patients with normal glucose tolerance.

Several epidemiological studies have shown that hyper-
triglyceridemia is associated with insulin resistance and type
2 diabetes [3, 4].Our study is consistentwith these studies and
demonstrated that the patients with hypertriglyceridemia
exhibited significantly higher HOMA-IR levels than the
control group [15]. The plasma TG levels were positively cor-
related with HOMA-IR after adjusting for age,WC, and BMI.
The mechanism connecting hypertriglyceridemia to insulin
resistance is still not fully understood. First, elevated plasma
TG provokes ectopic lipid storage in insulin targeted organs,
such as the liver and skeletal muscle, and induces the onset
of insulin resistance by interrupting the insulin signaling
pathway, activating oxidative stress and endoplasmic reticu-
lum stress [5, 16, 17]. Moreover, increasing plasma TG levels
caused a chronic inflammatory state by promoting hepatic
expression and circulating levels of proinflammatory factors,
such as tumor necrosis factor-𝛼 (TNF-𝛼) and interleukin-1𝛽
(IL-1𝛽) in a nuclear factor 𝜅B-dependent pathway [16, 17]. In
our study, the patients with hypertriglyceridemia had higher
WC and BMI levels than the NTG subjects, which suggested
that the patients with hypertriglyceridemia had obvious
central obesity and more visceral adipose. In obese subjects,
hypertrophic adipocytes and infiltration of inflammation

cells in white adipose tissue cause dysfunction of adipose
tissue and result in increased expression of proinflammatory
factors and decreased adiponectin expression, eventually
contributing to a chronic low-grade inflammatory state and
insulin resistance [18].

Our study also demonstrated that the patients with
hypertriglyceridemia exhibited significantly higher FINS and
HOMA-𝛽, which is similar to another recent study in nondi-
abetic subjects with hypertriglyceridemia [19]. These results
might suggest a compensatory increase in insulin secretion
and a higher secreting load of islet 𝛽-cells in patients with
hypertriglyceridemia. In our study, the participants were
at the state of normal glucose tolerance, and their islet 𝛽-
cells were still in the compensatory state. However, if this
is sustained, chronic overload of islet 𝛽-cells will contribute
to deterioration of 𝛽-cell function that accompanies the
development of type 2 diabetes [20, 21]. Moreover, long-term
elevated plasma lipids induce 𝛽-cell apoptosis and impair
insulin secretion mediated by deposition of fatty acyl-CoA
derivatives in islet 𝛽-cells [22, 23].

Type 2 diabetes is a growing health issue due to its
increased prevalence and lack of an ideal therapy [1], and
how to prevent type 2 diabetes is gradually becoming an
important hotspot issue. Recently, several prospective trials
demonstrated that a large proportion of prediabetic patients
developed type 2 diabetes even after a lifestyle intervention
and/or metformin treatment [24, 25]. The animal model
of genetic hypertriglyceridemia exhibited significant insulin
resistance and compensatory increased insulin secretion and
developed impaired glucose tolerance ultimately [5], which
suggested that the insulin resistance and chronic overload
of islet 𝛽-cells already existed before prediabetes happens.
The present study showed that, in the hypertriglyceridemia
patients with normal glucose tolerance, fenofibrate treatment
significantly attenuated the increased insulin resistance and
secreting load of islet 𝛽-cells. Therefore, fenofibrate might
be available to prevent the development of prediabetes and
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type 2 diabetes by improving insulin sensitivity and decreas-
ing the secreting load of 𝛽-cells in hypertriglyceridemia
patients with normal glucose tolerance.The exactmechanism
involved in the beneficial effects of fenofibrate on insulin
resistance and 𝛽-cell function has not been fully elucidated.
Our study showed that fenofibrate treatment did not cause
a significant decrease in HOMA-𝛽 after adjustment for
HOMA-IR, which might suggest that fenofibrate reduces
the secretory requirements for 𝛽-cells mainly by lowering
insulin resistance. Some recent studies have shown that the
PPAR𝛼 agonist significantly reduced muscle triglycerides
and long-chain ester acyl coenzyme A accumulation, total
liver triglyceride content, and visceral fat weight in high
fat-fed male Wistar rats, which suggested the effects of the
PPAR𝛼 agonist on reducing ectopic lipid storage [26, 27]. In
addition, increased insulin sensitivity was also connected to
reduced body weight [6]. In the present study, the fenofibrate
treatment significantly decreased the WC and BMI of the
patients with hypertriglyceridemia. Consistent results have
also been shown in hypertriglycemic patients and high fat-
fed animal models in other studies [11, 28]. The fenofibrate
treatment led to weight loss effect mediated through stim-
ulating mitochondrial biogenesis, thermogenesis, and fatty
acid oxidation in a peroxisome proliferator-activated recep-
tor gamma coactivator-1𝛼-dependent pathway [6]. A recent
study in diet-induced obese mice showed that fenofibrate
significantly triggered browning of white adipocytes through
stimulating irisin expression and uncoupling protein-1 tran-
scription and led to increased energy consumption [6]. In
addition, the fenofibrate treatment also decreased adipocyte
size and moderated adipose tissue dysfunction in high fat
diet-induced obese mice [29, 30]. In patients with impaired
fasting glucose, a fenofibrate-based treatment moderated
adipose tissue dysfunction and chronic inflammatory state
by increasing adiponectin levels and decreasing resistin and
interleukin-6 (IL-6) levels [31]. Furthermore, in our study, the
fenofibrate treatment significantly increased HDL-C levels,
which might also have beneficial effects on insulin resis-
tance and 𝛽-cell dysfunction [32–34]. HDL stimulated the
phosphorylation of AMP-activated protein kinase (AMPK),
increased glucose uptake of myocytes, and contributed to
improved insulin sensitivity [32, 33]. HDL-C also regulated
𝛽-cell function by removing cholesterol from 𝛽-cells [34].

It is worth mentioning that bezafibrate, another drug
of fibrates, also displayed some beneficial effects on insulin
resistance and glucose metabolism in patients with type 2
diabetes [35]. Different from fenofibrate, bezafibrate is a pan
PPAR agonist and activates three PPAR subtypes including
PPAR𝛼, PPAR𝛿, and PPAR𝛾 [36]. The activation of PPAR𝛾
improves insulin sensitivity by upregulating adipogenesis and
decreasing free fatty acid levels; meanwhile, the activation of
PPAR𝛿 correlates with enhancement of fatty acid oxidation
and adaptive thermogenesis [36]. Although the additional
activation of PPAR𝛾 and PPAR𝛿 might suggest a greater
improvement in glucose and lipid metabolism, the effect on
PPAR𝛾 may be related to a higher risk of water retention,
weight gain, and peripheral edema [36].

The present study has several limitations. First, our study
was not a randomized, controlled trial, and itmight introduce

some bias. Then, our study estimated 𝛽-cell function and
insulin resistance by HOMA-𝛽 and HOMA-IR, instead of
the precise methods such as the hyperglycaemic and hyper-
insulinemic clamp technique. It should also be recalled that
HOMA-𝛽 is a surrogate of insulin secretion and thus does
not directly measure the secreting load. Further randomized-
controlled researches using the glucose clamp technique
will likely be required to definitively confirm the beneficial
effects of fenofibrate we are reporting in the present study.
Last, one should acknowledge that long-term follow-up will
be necessary to evaluate whether the fenofibrate treatment
delays disease progression ultimately.

5. Conclusion

The elevated plasma TG is associated with insulin resis-
tance and increased insulin secretion of 𝛽-cells. The fenofi-
brate treatment significantly alleviated insulin resistance and
reduced the secreting load of 𝛽-cells in the hypertriglyc-
eridemia patients with normal glucose tolerance. Therefore,
fenofibrate might be available to prevent the development
of prediabetes and type 2 diabetes by improving insulin
sensitivity and decreasing the secreting load of 𝛽-cells in
hypertriglyceridemia patients with normal glucose tolerance.
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