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Abstract: Background/Objectives: By simultaneously integrating both genotyped and
non-genotyped animals into genetic evaluation, the single-step genomic BLUP method
enhanced the accuracy of genetic assessments. This study aimed to compare the increase in
prediction reliability (R2) between restricted maximum likelihood (REML) and single-step
genomic REML (ssGREML) in the Pura Raza Española (PRE) horse breed. Methods: The
dataset comprised reproductive records for seven fertility traits from 47,502 females, with a
total of 57,316 animals represented in the pedigree. A total of 4009 animals were genotyped
using the EQUIGENE 90K SNP array, and 71,322 SNPs were retained for analysis after
quality control. Genetic parameters were estimated using a multivariate model with the
BLUPF90+ v2.60 software. Results: Heritability estimates were similar between REML and
ssGREML, ranging from 0.07 for IF12 to 0.349 for ALF. An increase in R2 was observed
with ssGREML compared to REML across all traits, with overall gains ranging from 2.20%
to 3.71%. Among genotyped animals, R2 values ranged from 17.81% to 24.04%, while
significantly lower values (0.80% to 2.34%) were observed in non-genotyped animals.
Notably, individuals with low initial R2 values under the REML approach exhibited the
most significant gains using ssGREML. This improvement was particularly pronounced
among stallions with fewer than 40 controlled foals. Conclusions: Our results demonstrated
that incorporating genomic data improves the reliability of genetic evaluations for mare
fertility in PRE horses.

Keywords: equine; fertility; reliability; single-step GREML; SNP genotyping

1. Introduction
Maintaining high fertility is essential to a mare’s economic value, as successful breed-

ing and reproduction are crucial for sustaining a healthy and profitable equine operation.
Furthermore, the birth of a foal represents not only the continuation of a valuable bloodline
but also a significant investment of time and resources [1]. Therefore, obtaining reliable
genetic parameters and achieving high accuracy in estimated breeding values for economi-
cally important traits, particularly those with low heritability, such as fertility, is crucial for
successful genetic improvement programs.
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The Pura Raza Española (PRE) is a native Spanish equine breed, officially recognized
since the establishment of its studbook in 1912. It has an active population of 282,066 horses,
primarily located in Spain but also distributed across 67 other countries [2]. The breed-
ing program is managed by the Royal National Association of Spanish Horse Breeders
(ANCCE), with primary objectives focused on improving morphology, conformation, and
functionality, while maintaining genetic diversity, reducing inbreeding levels, and preserv-
ing the breed’s genetic heritage [3]. Nevertheless, many PRE breeders continue to follow
an in-line breeding system, which has been shown to increase inbreeding and contribute
to inbreeding depression, ultimately leading to a decline in reproductive efficiency [4].
Moreover, fertility is a complex polygenic trait with low heritability [5], influenced by
various environmental and management factors [6].

For these reasons, there has been growing interest in recent years in analyzing various
reproductive traits and understanding the genomic mechanisms underlying fertility in PRE
mares [7–9].

To date, PRE breeding improvement programs have relied on mixed models based on
the best linear unbiased prediction (BLUP) methodology. However, advancements in SNP
genotyping technologies, along with the recent development of a high-density chip specific
to this breed, have provided sufficient genomic information to enhance our understanding
of complex traits such as fertility.

Genomic selection has emerged as a powerful tool for accelerating genetic improve-
ment in breeding programs worldwide [10]. Several approaches have been developed
to incorporate genomic information into genetic evaluation models. The genomic best
linear unbiased prediction (GBLUP) approach [11] uses the realized relationships between
animals through the genomic relationship matrix, with the relatedness among animals
estimated using genomic markers. However, the practical implementation of genomic data
still faces challenges, including genotyping costs and the lack of phenotypic or genotypic
information for a large number of animals. In this context, the single-step genomic best
linear unbiased prediction (ssGBLUP) approach has been proposed for estimating genomic
breeding values [12,13]. This methodological approach allows for the simultaneous use of
all available information from both genotyped and non-genotyped relatives, along with
phenotypic data [14].

ssGBLUP has been shown to provide greater reliability than other methods of genetic
merit evaluation across various species [15–17]. However, there is limited evidence and
documentation regarding improvements and changes in fertility traits, particularly in the
equine species, since the introduction of genomic evaluations. In our previous study [18],
the ssGBLUP approach resulted in a substantial improvement in the reliability of genomic
prediction for morphological traits in PRE horses, making its extension to other traits within
this breed promising.

Therefore, the aim of this study was to compare the reliability of genomic breeding
values for fertility traits between the traditional REML and the single-step genomic REML
approaches in the Pura Raza Española, the most important horse breed in Spain.

2. Materials and Methods
2.1. Records and Pedigree

Data on Pura Raza Española (PRE) fertility traits were provided by the Royal National
Association of Spanish Horse Breeders (ANCCE). The reproductive data included records
of 47,502 females across seven fertility traits, calculated as described by Perdomo-González
et al. [4]. The traits under consideration included age at first foaling (AFF) in years, age
at last foaling (ALF) in years, average interval between foalings (AIF) in months, total
number of foalings (FN), average interval between first and second foalings (IF12) in
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months, productive life (PL) in years, and reproductive efficiency (RE). PL was calculated
individually for each mare from the age at first foaling and the age at which the mare was
culled from the breeding herd, or the age at her last foaling if she had not completed her
productive life. RE represents the relationship between the total number of foalings of a
mare and the optimal number of foalings she could achieve over her lifetime. For each
mare, the optimal number of foalings was determined based on the age at first foaling and
the age of reproductive culling or last recorded foaling, in the case she is still reproductively
active. This calculation assumed an optimal foaling frequency of one foaling per year,
starting from her initial foaling [7].

To obtain the genealogical kinship matrix, the ancestors of the controlled mares were
traced back through all generations, resulting in a total of 57,316 animals, spanning eight
complete generations and eleven equivalent generations.

2.2. Genomic Information

Genotypic data comprised 4009 individuals genotyped with the EQUIGENE 90K
SNP array, including over 90,000 SNPs per individual. Sample selection of the genotyped
horses was performed, aiming to capture the maximum variability of the population and
to include the most representative horses of the population, and was based on the low
average relatedness among individuals. These horses came from more than 600 different
studs and were chosen to reflect the variability of the PRE breed. The genomic data were
filtered for monomorphic SNPs, SNPs and individuals with a call rate lower than 95%, and
SNPs with a minor allele frequency less than 0.05. After quality control, 71,322 informative
SNPs were used in the analysis. SNP and sample quality control were performed using
PLINK v1.9 [19].

2.3. Statistical Analysis

The significance of the fixed effects for fertility traits was determined using the ‘GLM2’
package [20] in the R statistical environment V4.4.0 [21]. All the fixed effects had a sig-
nificant effect at the 0.05 significance level. The descriptive statistical parameters (mean,
standard deviation, minimum, maximum, and coefficient of variation) of the studied traits
were calculated using the R statistical environment V4.4.0 [21].

The genetic evaluation was performed using a multivariate model as follows:

y = Xb + Za + e

where y is the vector of phenotypes; b is the vector of fixed effects, including inbreeding as a
linear covariate, age at the mare’s last foaling as a linear covariate (except for AFF, ALF, and
IF12), ancestral origin (two classes: exclusively Hispanic origin—phenotypically with gray
coat color—and with influence of Central European and Arabian breeds—phenotypically
with non-gray coat color), geographic stud zone (three classes: Spain, the rest of Europe,
and the rest of the world), and average stud size in the decade of the mare’s first foaling
(three classes: less than 3 foals born per year, between 3 and 9 foals born per year, and more
than 9 foals born per year). a is the random additive genetic effect, and e is the random
residual effect. X and Z are incidence matrices relating observations to fixed and random
additive genetic effects, respectively. It was assumed that

E[y] = Xb,

where E[y] is the expected value of the vector of observed phenotypic records y, and b is
the vector of fixed effects as described above.
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The variance structures of a and e were assumed to be as follows:

var

[
a
e

]
=

[
A ⊗ G0 0

0 I ⊗ R0

]

where a is the vector of the additive genetic effect, e is the vector of the residual effect, A
is the numerator relationship matrix, G0 is the covariance matrix of the additive genetic
effects, and R0 is the covariance matrix of error among traits.

For ssGREML, the numerator relationship matrix A in the equation above was replaced
by H, as defined by Legarra et al. [22]. The H matrix was derived by integrating A with the
genomic relationship matrix G calculated using VanRaden [11] as follows:

G = 0.95
ZZ’

2∑n
i=1 pi(1 − pi)

+ 0.05A

where n is the number of SNP markers, pi is the allele frequency of marker i, A is the
pedigree relationship matrix, and Z is a centered incidence matrix of SNP markers.

Variance components and breeding values used in the REML and ssGREML models
were estimated using the restricted maximum likelihood approach with BLUPF90+ v2.60
software [23].

3. Results and Discussion
3.1. Phenotypic Values

Descriptive statistics for each fertility trait in the PRE breed are shown in Table 1. The
average phenotypic values were 63.83 months ± 32.99 for AFF, 172.74 months ± 66.85
for ALF, 19.89 months ± 10.13 for AIF, 6.36 ± 4.33 for FN, 18.97 months ± 13.44 for IF12,
136.27 months ± 63.49 for PL, and 47.83% ± 19.41 for RE. The coefficients of variation
ranged from 34.15% (AFF) to 71.32% (FN). Our mean values were similar to those observed
in previous studies of the same breed [7,9].

Table 1. Basic statistics of fertility traits in the Pura Raza Española breed.

Trait No.
Records Mean SD Min Max CV (%)

AFF, months 47,477 63.83 32.99 23 1287 51.69
ALF, months 39,620 172.74 66.85 45 481 38.70
AIF, months 39,497 19.89 10.13 6 323 50.94
FN 47,502 6.36 4.33 1 24 68.06
IF12, months 39,504 18.97 13.44 9 323 70.85
PL, months 22,646 136.27 63.49 7 433 46.59
RE, (%) 39,620 47.83 19.41 5.26 150 40.57

SD: standard deviation; CV: coefficient of variation; AFF: age at first foaling; ALF: age at last foaling; AIF: average
interval between foalings; FN: total number of foalings; IF12: interval between first and second foaling; PL:
productive life; RE: reproductive efficiency.

In the study by Gómez et al. [7] on other Spanish horse breeds, including Arab horses,
Spanish Sport Horses, Anglo-Arabs, and Spanish Trotters, the average values of AFF
and AIF were significantly higher than those of PRE mares. These findings suggest the
precocity (earlier sexual maturity) and reproductive superiority of PRE mares compared to
these breeds, allowing PRE females to conceive at a younger age. In addition to genetic
factors, it is important to emphasize that the age at first mating is also determined by
management practices and decisions—such as excluding the animal from reproduction
while it is competing, feeding, healthcare, and reproductive strategies—which can differ
significantly between the PRE breed and other breeds.
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3.2. Estimation of Variance Components and Heritability

Historically, routine genetic evaluations in the PRE breed have been based on the
BLUP methodology, utilizing only phenotypic and pedigree information. However, in
recent years, genotyping has been introduced in the PRE breed, alongside the development
of a breed-specific chip designed to maximize the number of highly informative markers
(with a minor allele frequency close to 0.5). This advancement enabled the application of
genomic evaluation for economically important traits in the breed.

The variance components and heritability (h2) estimates were almost similar in the
REML and ssGREML analyses, as shown in Table 2. The estimates of h2 ranged from low
to moderate, varying from 0.070 ± 0.007 (IF12) to 0.355 ± 0.010 (ALF).

Table 2. Estimates of variance components and heritabilities for fertility traits in the Pura Raza
Española breed using REML and ssGREML methods.

REML ssGREML

Trait σ2
a σ2

e h2 (SE) σ2
a σ2

e h2 (SE)

AFF 0.124 0.360 0.256 (0.010) 0.128 0.357 0.264 (0.010)
ALF 1.270 2.366 0.349 (0.010) 1.291 2.346 0.355 (0.010)
AIF 10.360 97.140 0.096 (0.008) 10.730 96.854 0.100 (0.008)
FN 0.835 5.289 0.136 (0.007) 0.866 5.268 0.141 (0.007)
IF12 12.030 159.780 0.070 (0.007) 12.420 159.400 0.072 (0.007)
PL 0.111 0.443 0.200 (0.012) 0.114 0.442 0.205 (0.012)
RE 49.310 167.800 0.227 (0.010) 50.761 166.470 0.234 (0.010)

σ2
a: additive genetic variance; σ2

e : residual variance; h2: heritability; SE: standard error; AFF: age at first foaling;
ALF: age at last foaling; AIF: average interval between foalings; FN: total number of foalings; IF12: interval
between first and second foaling; PL: productive life; RE: reproductive efficiency.

Our estimates closely align with the h2 observed by Laseca et al. [24], who utilized A
and H matrix relationships to estimate inbreeding depression in the same breed. Significant
differences were observed when comparing our values to those reported by Gómez et al. [7]
for other Spanish breeds, particularly the Spanish Sport Horse, which had heritability
estimates of 0.32 for AFF, 0.25 for ALF, 0.30 for AIF, 0.30 for IF12, and 0.20 for PL. In the
Anglo-Arab Horse, h2 values ranged from 0.04 (IF12) to 0.27 (AIF), while in the Spanish
Trotter Horse, they varied from 0.09 (AFF and ALF) to 0.42 (AIF). Karlau et al. [25] reported
lower values for AFF (0.16 ± 0.014) and RE (0.11 ± 0.013) and higher values for ALF
(0.19 ± 0.015) in Criollo Argentino horses compared to our estimates.

The differences in estimates between these breeds may be due to the different models
used, the quality of data and pedigree records, the number of available phenotypes, and
the level of data connectedness [26]. These factors are all known to impact the estimation
of genetic parameters. Additionally, it is important to note that management practices
(feeding, health, reproductive management, etc.) differ significantly between the PRE breed
and other breeds.

These substantial differences support the hypothesis that a genetic component in-
fluences the reproductive phenotypes of mares, contrary to the prevailing notion that
fertility traits in mares are predominantly shaped by environmental factors and exhibit
low heritability. The latter perspective suggests slower genetic progress compared to other
economically important traits, such as morphological and performance traits.

Since fertility traits have low reliability in genetic values (being expressed in only one
sex, having generally low heritability, and having often limited performance data, among
other factors), there is growing interest in obtaining highly reliable assessments as quickly
as possible to achieve significant genetic gain in the breed in the shortest period of time.
Additionally, these traits have been shown to be highly sensitive to inbreeding depression,
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which further complicates genetic progress. Several studies have demonstrated that fertility
traits are among the most affected by inbreeding depression in various species [24,27,28].
Furthermore, fertility traits are influenced by interactions between multiple genes and
genetic pathways [8], which can make it difficult to identify specific genes or genetic
markers associated with the traits analyzed. Therefore, improving female fertility in horses
is particularly challenging, as it is influenced by factors that often complicate the direct
identification of the underlying causes related to the animals themselves [29]. Despite
these limitations, the improvement of fertility traits in PRE mares could be achieved
through better recording of reproductive information, selective breeding, and the use of
advanced reproductive technologies, such as artificial insemination and embryo transfer [9].
Furthermore, these authors demonstrated that using selection indices theory, a substantial
increase in selection response occurs when both morphological and fertility traits are jointly
included as selection criteria, with the objective of increasing female reproductive efficiency.

3.3. Comparison of Reliability Between REML and ssGREML

The mean prediction reliability for fertility traits under the REML and ssGREML
methodologies is presented in Table 3. The results of this study showed that the overall
mean reliabilities using REML, calculated for all animals in the pedigree, ranged from 0.244
for IF12 to 0.487 for ALF. Meanwhile, the overall mean reliabilities obtained with ssGREML
varied from 0.249 for IF12 to 0.498 for ALF. This indicates that the reliabilities of breeding
values obtained from ssGREML were higher than those from the classic REML model for
all traits. The increases in reliability from ssGREML compared to REML, expressed as
percentage differences, were 3.00%, 2.32%, 2.98%, 3.71%, 2.20%, 3.56%, and 3.13% for AFF,
ALF, AIF, FN, IF12, PL, and RE, respectively.

Table 3. Comparison of reliabilities between the REML and ssGREML methods for fertility traits in
the Pura Raza Española horse breed.

Trait REML ssGREML Increase (%)

AFF 0.461 0.475 3.00
ALF 0.487 0.498 2.32
AIF 0.281 0.290 2.98
FN 0.356 0.369 3.71
IF12 0.244 0.249 2.20
PL 0.301 0.311 3.56
RE 0.406 0.419 3.13

R2: reliability; AFF: age at first foaling; ALF: age at last foaling; AIF: average interval between foalings; FN: total
number of foalings; IF12: interval between first and second foaling; PL: productive life; RE: reproductive efficiency.

Furthermore, the R2 values from the REML and ssGREML approaches were evalu-
ated based on various criteria, including sex, number of foals per sire, genotype status
(genotyped vs. non-genotyped), and initial REML reliability. The corresponding results
are presented in Table 4. The gain in reliability was distinctly higher in genotyped animals
(ranging from 17.81% to 24.04%) compared to non-genotyped animals (0.80% to 2.34%).
Additionally, the gain was greater in animals with lower initial REML reliability (2.30% to
3.84%), while those with higher initial REML R2 did not experience any improvement. The
increase in R2 was higher in stallions (ranging from 3.89% to 5.24%) than in mares (1.87%
to 3.44%). Among stallions, those with fewer than 40 controlled foals showed greater gains
(3.81% to 3.94%) compared to those with more than 40 controlled foals (0.51% to 3.16%)
across all traits.
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Table 4. Comparison of reliabilities between the REML and ssGREML methods for fertility traits
based on different criteria in the Pura Raza Española horse breed.

Criteria

Sex Number of Stallions’ Foals Genotyped Initial REML Reliability

Trait Stallions Mares ≥40 <40 No Yes ≥0.6 <0.6

AFF 4.63 2.73 0.75 3.21 1.83 18.90 −0.03 2.45
ALF 4.24 2.00 0.51 2.81 1.19 17.81 −0.36 2.30
AIF 4.57 2.68 1.76 3.42 1.55 22.20 0.00 3.08
FN 5.24 3.44 1.38 3.94 2.34 21.98 −0.03 3.26
IF12 3.89 1.87 2.00 2.85 0.80 21.00 0.00 2.63
PL 4.96 3.30 3.16 3.81 2.25 24.04 0.00 3.84
RE 4.84 2.83 0.96 3.47 1.83 20.72 0.13 3.08

AFF: age at first foaling; ALF: age at last foaling; AIF: average interval between foalings; FN: total number of
foalings; IF12: interval between first and second foaling; PL: productive life; RE: reproductive efficiency.

As an illustrative example, Figure 1 shows the comparison between the reliabilities
obtained from REML and ssGREML for the foaling number (FN) trait, which exhibited
the greatest overall increase in R2. It can be seen that animals with low REML reliability
experienced a larger improvement in reliability.

 
Figure 1. Comparison of reliabilities between REML (R2 REML) and ssGREML (R2 ssGREML)
methods for foaling number in the Pura Raza Española horse breed. The red line corresponds to the
linear regression fit between R2 values estimated by REML and ssGREML.

Regarding horses, Vosgerau et al. [30] reported that incorporating genotype infor-
mation led to an increase in the R2 of genomic predictions for both genotyped and non-
genotyped animals, with prediction accuracy improving as the number of phenotyped
and/or genotyped descendants increased. In a previous study, Haberland et al. [31] ob-
served that the additional increase in accuracy obtained from GEBVs was small compared
to traditional EBVs for animals with a large number of progeny records, which is consistent
with our findings.
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Genotype information was used in the analysis of fertility traits and inbreeding de-
pression in PRE by Laseca et al. [24], but these authors did not analyze its impact on genetic
parameters and reliability. Additionally, the number of genotyped animals was limited
to 1018 mares. In a preceding study on the estimation of genetic parameters using both
methodological approaches, with the population of genotyped animals extended to include
a total of 2916 animals, our research [18] compared the R2 of morphological traits. The
results showed that the R2 estimated with pedigree was lower than that estimated using
ssGREML, with the overall increase in R2 ranging from 1.56% for the direction of the hock
rear view to 13.30% for the angle of the croup.

The application of genomic selection in horse breeding remains scarce and is limited
to a few traits and a small number of breeds. Vosgerau et al. [30] reported that the ssGBLUP
model performed better than the pedigree-based BLUP model for height at withers in
German Warmblood horses, with a gain of 8.57%. Similarly, in the study by Haberland
et al. [31], the integration of genomic information significantly increased the reliability of
breeding value estimates, particularly for young horses (from 0.27 to 0.54). However, to
the best of our knowledge, no studies have been conducted on the estimation of genetic
fertility parameters in mares using genomic information, making the comparison of our
results with other studies impossible.

In dairy cattle, the first species to include genotype information in genetic evalua-
tions, previous studies have reported that the ssGBLUP method results in higher accuracy
compared to the traditional pedigree-based BLUP method [12,32]. Studies in dairy cattle
have been expanded to encompass a wide range of traits, including production, fertility,
longevity, and health traits. In dairy sheep, the reliability increased to 46.8% [33] and
47.98% [14], while in dairy goats, the increase in accuracy was from 5% to 7% for milk
traits [34]. So far, the single-step genomic evaluation method has not been applied to
fertility-related traits in small ruminants.

Single-step GBLUP has emerged as the preferred method for the genetic evaluation of
both genotyped and ungenotyped livestock. The observed increase in reliability could be
attributed to the additional variation in genomic information captured through Mendelian
sampling by a realized relationship matrix [15]. Hence, it was noted that the gain in accuracy
from pedigree to genomic predictions can be explained by improved relationships [11,35].

Several factors influence the reliability of genomic evaluation, including the extent and
distribution of linkage disequilibrium between markers and quantitative trait loci [35,36],
the size of the genotyped population [37,38], and the relationship between individuals
in the training and validation data [39]. Additionally, the composition of the reference
population [37,38,40], heritability [35,41,42], and the statistical method used to include
genomic information [43] significantly impact the prediction accuracy of breeding values.

ssGBLUP has been shown to outperform traditional methods in predicting low-
heritability traits, particularly those related to reproduction [44]. In the present study,
the R2 values obtained using ssGREML generally increased as the trait’s heritability de-
creased. These findings are consistent with the results reported by VanRaden et al. [45] and
Misztal et al. [46]. For lowly heritable traits, such as fertility, a very large genotyped popu-
lation is required to achieve high accuracy of GEBVs [35,44], which could be a challenge
for some breeds where the number of genotyped animals remains limited.

Breeding horses are characterized by a higher generation interval compared to other
farm animal breeds [47], which results in lower accuracies of breeding values [48]. However,
studies have shown that breeding programs with long generation intervals and traits with
low heritability can achieve substantial genetic gain when incorporating SNP genotyping
in genetic evaluations [29,49]. These insights support the demand to evaluate the potential
of ssGBLUP for horse breeding programs.
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Fertility traits are heavily influenced by environmental and management factors [50].
Also, phenotypic improvements in female reproductive performance have been achieved
through advances in reproductive management practices and the use of reproductive
biotechnologies, such as hormonal synchronization of estrus and ovulation, followed by
artificial insemination and embryo transfer. However, in equine species, in general, and the
PRE breed in particular, the adoption of these techniques remains limited. Thus, ssGBLUP
could enable more informed selection decisions at an earlier age, potentially reducing
generation intervals and accelerating genetic progress.

Although the incorporation of genomic information into breeding programs is ex-
pected to reduce the rate of inbreeding [51], several studies have reported that genomic
selection can actually lead to increased levels of inbreeding in the medium term [52–54].
This outcome arises from the rapid generational turnover enabled by the shortened genera-
tion interval, as young animals are increasingly used as parents [55]. As genetic variability
declines, the potential for future genetic improvement diminishes, and populations may
become more vulnerable to diseases and environmental stressors. Therefore, while genomic
selection offers significant short-term gains in performance, it must be carefully managed
to mitigate the risks of inbreeding and ensure long-term sustainability, especially in breeds
that already exhibit high levels of inbreeding, such as the Pura Raza Española.

4. Conclusions
The results of this study indicate that the breeding values obtained using single-step

genomic methods are more accurate than those derived from pedigree-based information
for the genetic evaluation of fertility traits in the Pura Raza Española breed. Nevertheless,
considerable challenges remain in incorporating genomic information into routine genetic
evaluations, implementing genomic selection, and managing inbreeding with genomic
selection in the PRE breed. While improving fertility is a desirable goal in the PRE breed,
over-selection for this trait may lead to unintended consequences, such as the neglect of
other important traits, including performance, conformation, or temperament—particularly
those that may be genetically negatively correlated with fertility. To date, no studies in this
species have demonstrated that intense selection for fertility negatively impacts other traits,
as has been observed in other species such as pigs and poultry.
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