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Abstract In 2012, a novel human coronavirus emerged

and was tentatively named ‘‘Middle East respiratory syn-

drome coronavirus’’ (MERS-CoV). The high mortality rate

of MERS-CoV focused attention on the ecology of the

virus. It has been found that MERS-CoV belongs to the

group C lineage of the genus Betacoronavirus. Coronavirus

surveillance studies in different populations of bats have

suggested that they are probable reservoirs for this novel

virus, and phylogenetic analysis of both the spike (S1) and

RNA-dependent RNA polymerase proteins of MERS-CoV

have revealed that it is related to bat viruses. Recently, the

MERS-CoV and its neutralizing antibodies were detected

in dromedary camels. Despite the limited number of

reported cases of person-to-person transmission, the rapid

evolution of the virus poses a continuous threat to humans

worldwide. This paper reviews the current state of

knowledge regarding the virology, clinical spectrum, evo-

lution, diagnosis and treatment of MERS-CoV infections.

Introduction

Coronaviruses (CoV) are able to infect humans, birds and

many animal species [68]. In humans, coronavirus infec-

tions result mostly in mild respiratory, enteric and neuro-

logical diseases [65, 66]. In June 2012, a novel coronavirus

was detected in a Saudi patient who had experienced

pneumonia and renal failure. Virus genome sequencing

demonstrated that the virus belonged to lineage C of the

genus Betacoronavirus and was phylogenetically related to

the bat coronaviruses HKU4 and HKU5, which had pre-

viously been found in lesser bamboo bats and Japanese

Pipistrelle bats in Hong Kong.

In September 2012, another patient from Qatar with a

similar clinical picture also proved positive by means of

real-time reverse transcription polymerase chain reaction

(rRT-PCR) assay [5]. This finding was followed by the

detection of a closely related virus in archival samples from

two Jordanian patients who died in April 2012 after

unexplained respiratory illness [24].

The outbreaks of severe acute respiratory syndrome

coronavirus (SARS-CoV) infection in the year 2003 and

the Middle East respiratory syndrome coronavirus

(MERS-CoV) infection in 2012 showed that these viruses

can cause fatal human disease (death rates were *11 %

and *43 %, respectively) [6, 9]. Before the discovery of

MERS-CoV, five coronaviruses were known to infect

human populations. HCoV-229E and HCoV-OC43 were

identified in the early 1960s as the causative agents of

respiratory infection [29, 64] while SARS-CoV, HCoV-

NL63 and HCoV-HKU1 were identified in 2003, 2004

and 2005, respectively [53].

Most of the emerging infectious pathogens originated

from animals. Betacoronavirus A, OC43, possibly jumped

from a bovine source in the 1890s [69] while betacorona-

virus B, the SARS virus, jumped from bats to civets, then

to humans [37]. Like its counterparts, the emergence of

MERS-CoV may constitute another model of interspecies

transmission that has yet to be characterized in detail. The

current article provides a review of recent findings and

speculations regarding MERS-CoV.
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Taxonomy

Coronaviruses belong to the order Nidovirales, family

Coronaviridae and subfamily Coronavirinae, which con-

sists of four genera: Alphacoronavirus, Betacoronavirus,

Deltacoronavirus and Gammacoronavirus. Their taxon-

omy is based on antigenic relationships [44, 49] and has

subsequently been largely supported by gene sequencing

[35]. Human coronaviruses belong to two genera: Al-

phacoronavirus and Betacoronavirus. HCoV-229E and

HCoV-NL63 belong to the genus Alphacoronavirus. The

genus Betacoronavirus consists of four lineages, A-D.

SARS-CoV belongs to lineage B, but HCoV-OC43 and

HCoV-HKU1 belong to lineage A. Bat coronaviruses

(BtCoV) belong to lineages C and D of the betacoro-

naviruses. The sequencing data has suggested that the

sixth discovered human coronavirus, MERS-CoV, belongs

to lineage C betacoronaviruses. Based on the RdRp, a bat-

derived isolate, BtCoV/8-724/Pip_pyg/ROU/2009, shows

98 % identity to MERS-CoV [1]. Comparison of the S1

and RdRp gene sequences of different coronaviruses from

different species with those from MERS-CoV, including

available bat coronaviruses, has been conducted

(Table 1). Unfortunately, no available spike protein

sequence of BtCoV/8-724/Pip_pyg/ROU/2009 was avail-

able in the GenBank database and therefore this was not

included in the comparison. In phylogenetic trees, MERS-

CoV clearly clustered with lineage C of the genus Beta-

coronavirus (Fig. 1), relatively close to BtCoV/133/2005

and BtCoV HKU4-2, which had the highest S1 amino

acid sequence identity to MERS-CoV (60 %); however,

the amino acid sequence identity to MERS-CoV was

higher (up to 94 %) when the RdRp of BtCoV HKU5 and

BtCoV HKU5-3 were compared. Interestingly, Beta CoV/

KW2E-F93/Nyc_spec/ GHA/2010 showed 40 % and

92 % S1 and RdRp amino acid sequence identity to

MERS-CoV, respectively (Table 1). This finding suggests

that genotyping based on the polymerase gene should be

followed by confirmation based on S1 genotyping

(Table 1, Fig. 1). The phylogenetic relationship of the

Saudi Arabian MERS-CoV sequences revealed that they

are subdivided into two main clades: clade A, comprising

EMC/2012 and Jordan-N3 and clade B, comprising

Munich/AbuDhabi, England-Qatar, Riyadh-3, Bisha-1,

Riyadh-1 cluster, Hafr-AlBatin-1, Riyadh-2, Buraidah-1

and England2-HPA [15].

Nomenclature

Since its initial discovery, MERS-CoV isolates have

appeared under various names including human coronavi-

rus-Erasmus Medical Center (hCoV-EMC), human beta-

coronavirus 2c England-Qatar, human betacoronavirus 2C

Jordan-N3, betacoronavirus England 1 and novel corona-

virus (NCoV) [19]. Currently, the Coronavirus Study

Group (CSG) of the International Committee on Taxonomy

of Viruses has decided to refer to the new coronavirus as

Middle East respiratory syndrome coronavirus (MERS-

CoV) [19].

Table 1 Multisequence alignment of the S1 protein and RdRp of MERS-CoV with those of different coronaviruses

1576 A. S. Abdel-Moneim

123



Viral genome and proteins

The genome structure of MERS-CoV (30,119 nt) is similar

to that of other coronaviruses. RNAs are capped and

polyadenylated with the 50 two-thirds of the genome

encoding the non-structural proteins (NSPs) involved in

viral replication and the remaining 30 third of the genome

encoding the structural genes in addition to four accessory

genes interspersed within the structural gene region [67].

At the 50 end of the genome there is a leader sequence (67

nt), which is followed by an untranslated region (UTR). At

the 30 end of the RNA genome there is another UTR, fol-

lowed by a poly(A) sequence of variable length. Tran-

scription-regulatory sequences (TRSs: 50 AACGAA 30) are

found at the 30 end of the leader sequence and at different

positions upstream of genes in the genomic 30-proximal

domain of MERS-CoV [67]. The MERS-CoV genome

contains at least 10 predicted open reading frames (ORFs):

ORF1a, ORF1b, S, 3, 4a, 4b, 5, E, M and N [67], with

sixteen predicted nonstructural proteins being encoded by

ORF1a/b. Moreover, several unique group-specific ORFs

that are not essential for virus replication are encoded by

MERS-CoV [60]. The functions of these group-specific

ORFs are unknown; however, by analogy to other coro-

naviruses, they may encode structural proteins or interferon

antagonist genes [63]. Open reading frames ORF2, -6, -7

and -8a are translated from subgenomic mRNAs predicted

to encode the four canonical structural genes: a 180/90-kDa

spike glycoprotein (S), a *23-kDa membrane glycoprotein

(M), a small envelope protein (E) and a *50-kDa nucle-

ocapsid protein (N), respectively [67].

The spike (S) glycoprotein of coronaviruses is a

heavily glycosylated, petal-shaped, large protein on the

surface of the virion. The S glycoprotein is cleaved by a

cellular protease into S1 and S2 subunits, which remain

noncovalently on the viral envelop prior to fusion acti-

vation [26, 35]. S proteins of the alphacoronavirus group

are not cleaved [18]; however, cleavage of MERS-CoV-S

protein by trypsin, TMPRSS2 or -4 or cathepsin L is

required to activate the membrane fusion activity of S,

leading to virus entry and syncytium formation [54]. The

S1 protein forms the globular portion of the spikes and

possesses sequences that are responsible for receptor

binding on the surface of host cells. S1 sequences are

variable, with various degrees of deletion and substitu-

tions among different coronavirus strains or isolates.

Mutations in S1 sequences have been associated with

altered antigenicity and pathogenicity of the virus [4, 39].

Meanwhile, S2 sequences constitute the stalk of the

spikes and are less variable [17]. Recently, analysis of the

MERS-CoV genomes has revealed the expected accu-

mulation of genetic diversity, including changes in the S

protein [15].

MERS-CoV receptor

Dipeptidyl peptidase 4 (DPP4) (or so-called CD26) is a

766-aa type II transmembrane glycoprotein that has been

shown to be the functional receptor for MERS-CoV in

permissive cell lines [56]. Moreover, non-permissive cell

lines become susceptible to virus infection upon the

exogenous expression of this receptor. DPP4 is also

expressed on the cell surface in the kidneys, lungs, small

intestine, liver, parotid gland, spleen, testes, prostate and

activated leukocytes [43, 46, 56], which explains the

Fig. 1 Phylogenetic analysis of the S1 and RNA-dependent RNA

polymerase of MERS-CoV in comparison to those of selected

coronaviruses from the GenBank database. The betacoronavirus

strains were selected to be representative of different lineages and

were rooted to IBV-M41 Gammacoronavirus. The robustness of

individual nodes of the tree was assessed using 1000 bootstrap

replicates and bootstrap values 70 % and higher are indicated at key

nodes
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capacity of MERS-CoV to infect cells of these organs [56].

Interestingly, MERS-CoV can bind to bat DPP4 [56].

Clinical features

Globally, a total of 179 cases with 76 fatalities had been

reported up to 21 January 2014. The distribution of the

cases is as follows: two from Jordan, nine from Qatar,

twelve from the United Arab Emirates, three from Tunisia,

three from Oman, two from Kuwait, three from the UK,

two from France and one from Italy, with the rest (n:142)

coming from Saudi Arabia. Of the Saudi Arabian cases,

three were from Jeddah, sixty one from Riyadh, one from

Al-Qasim, one from Bisha, seven from Asir, five from Al-

Taif, eight from Hafr El-Batin, seven from Medina, two

from Al-Jouf, one from Wadi Al-Dawaser and forty six

from the Eastern district [24, 52, 61, 75]. All index cases in

Europe had a history of travel to the Middle East. The age

range was from 2 to 94 years and the recorded case fatality

was higher in males than in females: 52 and 24 %

respectively [50]. In confirmed cases of MERS-CoV,

individuals developed acute, serious respiratory tract dis-

ease. Of the first 47 cases in Saudi Arabia, 89 % required

management in intensive care and 72 % required

mechanical ventilation [2]. Typical symptoms have inclu-

ded fever, cough and breathing difficulties, myalgia, nau-

sea, vomiting and diarrhoea. An earlier fatal case that was

transferred from the UAE to Germany showed symptoms

of rapid onset of non-productive cough, then pneumonia

and thrombocytopaenia until day 14, when the patient

suffered from renal insufficiency, requiring dialysis [23].

Renal insufficiency or failure has indeed been noted for

many MERS patients; however, it is unclear whether this is

due to the infection or is a side-effect of anti-microbial

agents and other medications used in treatment, or indeed

whether it possibly influences disease progression, or some

combination of these factors. A cluster of cases in a hos-

pital in Saudi Arabia was centred on a dialysis unit, with 13

of 25 probable and confirmed cases involving end-stage

renal disease [3]. The number of asymptomatic cases in

which only mild symptoms were experienced has increased

recently. Fifteen mild cases have been identified through

contact tracing in late June and July 2013, including four

health-care workers in Saudi Arabia [71, 76]. Two out of

three Tunisian patients have also suffered from a mild

version of the disease, with complete recovery [75]. To

date, 46 subclincal cases of MERS-CoV were reported

worldwide [75]. Severe cases of MERS-CoV infection

have tended to be recorded in older patients with under-

lying conditions, while milder cases have been recorded in

younger persons who experienced contact infection.

Underlying comorbidity included diabetes, chronic renal

disease, chronic heart disease, hypertension, chronic pul-

monary disease [2], malignancy [30] and receiving a renal

transplant [28]. Co-infection with other pathogens,

including influenza A virus, parainfluenza virus, herpes

simplex virus and pneumococcus, has been reported [74]. It

can be speculated that co-infections serve to aggravate the

clinical consequences of MERS infection.

Virus morbidity

Coronaviruses spread very rapidly and effectively among

the susceptible hosts, and MERS-CoV morbidity is assumed

to be higher than recorded. It is possible that MERS-CoV

induces mild to moderate infections in healthy people;

however, severe disease occurs in immunocompromised

patients. This assumption can be discounted or confirmed

once virological and/or serological diagnostic tests specific

for MERS-CoV are adopted routinely. The first cases of

MERS-CoV infection outside the Arabian Peninsula have

usually been associated with a history of travel to those

countries where there is no evidence of contact with labo-

ratory-confirmed infected patients. The only logical expla-

nation for the widespread occurrence of the MERS-CoV

virus in these countries is that MERS-CoV can induce mild

to moderate disease across a widespread epidemiological

base that does not necessitate hospitalization, as speculated

above. Interestingly, in terms of testing for the disease, in

the case of one patient, false negative result was recorded

from nasopharyngeal swab, even though positive result was

obtained in a pulmonary lavage sample from the same

patient [58]. Lower respiratory tract samples are therefore

to be recommended whenever possible and nasopharyngeal

samples should only be used when lower respiratory tract

samples are not available.

Virus tracking and natural reservoirs

The rapid identification of the causative agent represents

the basis for an effective response for disease control. The

fact that respiratory diseases rarely result from a single

entity makes the rapid identification of novel causative

agents complicated; however, in the case of MERS-CoV

infection, confusion persisted until September 2012, when

the virus in a Saudi patient was identified as a previously

unknown coronavirus [77].

The role of bats

Bats have been found to be the reservoir hosts of dozens of

viruses, including severe acute respiratory syndrome
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coronaviruses (SARS-CoVs), henipaviruses, lyssaviruses,

filoviruses, adenoviruses, picornaviruses and herpesviruses

[1, 7, 12, 27, 36, 38, 40, 41, 62, 70]. Such viruses have

existed in bats for a long time, and the question, therefore,

is why they suddenly jumped to human hosts. The virus

might have been transmitted to humans in ancient times but

has only been discovered recently. It is more likely, how-

ever, that the jump to human hosts can be attributed to

changes in human lifestyle. Thus, one potential future plan

to restrict infection would be to limit direct and indirect

contact between bats and humans. In the meantime,

understanding these routes of transmission may help us to

prevent future outbreaks of known and/or currently

unknown diseases that leap from bats to humans directly or

via intermediate animal amplifiers. Although the natural

reservoir of MERS-CoV has not yet been identified, its

high sequence similarity to bat viruses is suggestive of an

origin in bats. A MERS-CoV sequence identical to that of

the virus isolated from an index-case patient in Bisha 2c

EMC/2012 was detected in a faecal pellet from Taphozous

perforatus. The bat sample was collected\12 km from the

home of the index case in an abandoned date palm orchard

and \1 km from his place of employment. The research

team observed roosting bats and guano in abandoned wells

and ruins in the nearby areas [45]. Interestingly, Al-Ahsa is

ranked among the most important date-palm-production

cities in Saudi Arabia. It is likely that food or water of farm

animals in areas with palm orchards may be contaminated

with bat guano, saliva, and/or urine, and this may constitute

an indirect mean of transmission to people. MERS-CoV-

related viruses have not yet been detected in fruit bats.

Meanwhile, drinking of raw sap is not known in the Ara-

bian Peninsula, so the scenario of drinking raw date palm

sap that has been identified as a risk factor for human

Nipah virus infection [42, 55] is an unlikely possibility.

Possible animal reservoirs

In contrast to SARS, the cultural and feeding traditions in

the Arabian Peninsula minimize the potential for an

effective amplifying host. Normally, well-cooked meat,

mainly from sheep, goats and camels, is used, thus

excluding a wide variety of meat-borne pathogens. Animal

slaughtering is routinely conducted under acceptable

hygienic conditions, and meat is sold commercially in a

chilled state. Although, there is no current evidence for the

presence of MERS-CoV in camel milk, non-heat-treated

raw camel milk is commonly consumed, especially in the

Bedouin culture, and this may constitute a source of

infection to humans. Recently, MERS-CoV neutralizing

antibodies were detected in dromedary camels from Oman

(100 %), the Canary Islands (14 %), and Egypt (94-98 %),

which suggests the widespread infection of camelids with

MERS-CoV or a closely related virus [51, 58]. This finding

raises a concern about the role of camels in the transmis-

sion of the disease to humans. Consumption of raw milk

and direct contact with camels could, therefore, be routes

of virus transmission. More recently, the presence of

MERS-CoV has been confirmed in three camels in a herd

of 14 animals. Animals exhibited either no symptoms or

only mild symptoms when samples were taken and

remained so during the following 40 days [72].

In a few cases, in Saudi Arabia and the Arabian Pen-

insula, native citizens consume the meat of lizards of the

genus Uromastyx after hunting, and this may constitute a

form of animal contact that is unique to the Arabian Pen-

insula. Although these lizards are almost exclusively her-

bivorous, analysis of faeces from Uromastyx has revealed

the presence of sheep droppings, date kernels and feathers

[16]. Interestingly, the remains of invertebrates, vertebrates

and stones have been detected in the faeces of Uromastyx

aegyptia microlepis, which suggests an element of scav-

enging in the feeding behaviour of this type of lizard [8].

Potentially, therefore, Uromastyx could play a role in the

ecology of MERS-CoV. In addition, baboons are present in

some mountain areas in the Arabian Peninsula, and there-

fore, people living in these areas may have direct or indi-

rect contact to baboons. The Eastern areas of Saudi Arabia,

including the Al-Ahsa district, where a large proportion of

cases have been reported, do not contain baboons, how-

ever. Of course, the presence of unknown amplifying hosts

is a distinct possibility, and there is an urgent need for

widespread seroprevalence and virological screening for

MERS-CoV in different fauna present in the Arabian

Peninsula in order to discover the amplifying host(s).

Experimental animal model

MERS-CoV has failed to replicate in Syrian hamsters

following intratracheal inoculation and inoculation via

aerosol [21], and the best-known current experimental

model for MERS-CoV infection is the rhesus macaque [22,

47]. Experimental infection using a combination of intra-

tracheal, nasal, oral and ocular routes (7 9 106 TCID50)

resulted in a transient lower respiratory tract infection after

24 h [47]. Symptoms included elevated temperature,

reduced appetite, increased respiration, piloerection, cough

and a hunched posture. Histopathological assays showed

multifocal to coalescent bright red lesions that developed to

dark reddish purple areas of pulmonary inflammation in the

lower respiratory tract [22, 47]. These were accompanied

by fibrous adhesions, and edematous, atelectatic and con-

solidation areas in the lungs. MERS-CoV replicated mainly

in the alveolar pneumocytes and resulted in interstitial
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pneumonia. The severity of the disease observed in humans

may be explained by the ability of MERS-CoV to replicate

in the lower respiratory tract [22]. Blood tests showed an

early elevated number of white cells, with other values

being within normal ranges, suggesting an asystemic but

organ-specific infection. These clinical findings were cor-

roborated by virological tests in which the virus was iso-

lated from lung tissues and quantified by means of RT-PCR

[47]. The rhesus macaque model therefore offers a pow-

erful tool to study the full replication cycle of the virus as

well as to develop efficacious antiviral drugs and vaccines.

Culture systems

MERS-CoV can replicate in different mammalian cell lines

[10]. In humans, it can replicate in the respiratory tract

(lung adenocarcinoma cell line A549, embryonic fibroblast

cell line HFL and polarized airway epithelium cell line

Calu-3), kidney (embryonic kidney cell line; HEK), liver

cells (hepatocellular carcinoma cell line; Huh-7), and the

intestinal tract (colorectal adenocarcinoma cell line; Caco-

2) [10]. The range of human tissue tropism is broader than

that for all other HCoVs, including SARS coronavirus,

HKU1, 229E, OC43 and NL63. MERS-CoV can also infect

cell lines originating from primates, pigs, bats, civet cats

and rabbits [10].

Diagnosis

Viral loads were highest in samples from the lower respi-

ratory tract (up to 1.2 9 106 copies per mL), followed by

oronasal swabs (5370 copies per mL). Low concentrations

of the virus were detected in urine and faecal samples, but

there was no evidence of the virus in blood, suggesting a

low infection risk during non-respiratory-care procedures

[23]. A diagnostic rRT-PCR assay is now available for the

detection of MERS-CoV [13, 14]. The rRT-PCR assays

have been rigorously validated and are highly specific and

sensitive. rRT-PCR assays for both upE and 1A can be

used in combination as detection and confirmatory assays.

Genotype sequencing-based assays for both the RNA-

dependent RNA polymerase gene (RdRp) and the N gene

have also been developed. Primers and probe sequences are

listed in Table 2. A simplified and biologically safe pro-

tocol for the detection of antibody response by immuno-

fluorescence microscopy has been developed using

convalescent patient serum. A highly specific assay for the

detection of antibodies against MERS-CoV using protein

microarray technology has also been developed [57].

Serology provides valuable information on the rates of

infection among populations and risk groups. A two-stage

approach for detecting antibodies to recombinant MERS-

CoV nucleocapsid (N) using ELISA, followed by a con-

firmatory test using either a whole-virus indirect fluores-

cent antibody (IFA) test or a microneutralization test, has

been developed by CDC [73]. A safe and convenient

pseudovirus-based inhibition assay has been developed to

detect MERS-CoV neutralizing antibodies and to screen

for viral-entry inhibitors [78].

Antivirals

The treatment of MERS-CoV-infected human airway epi-

thelium cultures with IFN of type I or III has been found to

efficiently reduce viral replication. This finding supports

the recommendation of IFN as a promising treatment for

MERS-CoV [33]. Interestingly, MERS-CoV was found to

be 50-100 times more sensitive to interferon-alpha (IFN-a)

treatment than SARS-CoV. Cyclosporin A is another

compound that inhibited the replication of MERS-CoV in

cell cultures [20]. An in vitro assay showed that the p38

mitogen-activated protein kinase (MAPK) inhibitor

SB203580 possesses a promising antiviral effect against

MERS-HCoV [32]. SB203580 also showed effective anti-

viral effects against encephalomyocarditis virus [31],

respiratory syncytial virus [59] and HIV [34]. A combi-

nation of ribavirin and IFN-a2b should be further evaluated

for the possible management of MERS-CoV, since treat-

ment of MERS-CoV-infected rhesus macaques with a

combination of ribavirin and IFN-a2b reduced virus rep-

lication and improved clinical outcomes [25]. IFN-b1b

with mycophenolic acid was also found to be a successful

combination that possessed antiviral activity against

MERS-CoV [11]. An important question is whether

MERS-CoV-infected patients who were on diabetes treat-

ment with DPP4 inhibitors could eliminate the virus due to

the inhibition of MERS-CoV S1 protein binding to the

DPP4 receptor, which consequently prevents viral entry

into the target cells. Monoclonal antibodies (mAbs) against

human CD26 derived from clone 2F9 had neutralizing

activity against MERS-CoV. The potential values of these

mAbs in MERS therapy, especially of the humanized mAb

YS110 used in a phase 1 cancer treatment study, should

therefore be subjected to further evaluation [48].

Conclusion and recommendations

Lessons learnt from the SARS outbreak were able to be

applied when MERS-CoV emerged in the Middle East

during 2012-2013. As a result of rapid data sharing, a

reliable and powerful diagnostic of MERS-CoV became

available worldwide within just a few months of the virus’s
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first isolation and identification. Like SARS CoV, MERS-

CoV is closely related to bat viruses with an as yet

unknown reservoir. The high prevalence of camels that are

seropositive for MERS-CoV, or a closely related virus, and

the isolation of MERS-CoV from camels are suggestive of

a possible amplifying host, and therefore, further studies to

monitor virus infections in camels are highly recommended

in order to assess their potential role in MERS-CoV virus

transmission. The transmission of the MERS-CoV to

humans in general needs further study to clarify the role of

the amplifying host and whether the virus is transmitted

from bats to camels and then to humans, or whether other

amplifying hosts are involved. The factors associated with

the increased virulence and mortality rate in men compared

to women should also be investigated. However, in the

Arab countries, people usually try to avoid hospitalisation,

which is more frequent for adults than children, and for

females more than males. Determinants of host suscepti-

bility to MERS-CoV should be carefully and intensively

studied, and whether this depends on the presence of spe-

cific receptors or whether there are other host metabolic

determinants. An important question that requires large and

comprehensive serological surveillance is whether MERS-

CoV was introduced to and circulated in the general pop-

ulation in the countries of the Middle East, or possibly

other countries worldwide, prior to the first reported cases.

Many reliable assays have been developed that allow

serological screening and surveillance should be conducted

on a wide scale among humans and different animal spe-

cies to determine the exact rate of spread of MERS-CoV.
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