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Abstract

Background: The severity assessment of lumbar disc herniation (LDH) on MR images

is crucial for selecting suitable surgical candidates. However, the interpretation of

MR images is time-consuming and requires repetitive work. This study aims to

develop and evaluate a deep learning-based diagnostic model for automated LDH

detection and classification on lumbar axial T2-weighted MR images.

Methods: A total of 1115 patients were analyzed in this retrospective study; both a

development dataset (1015 patients, 15 249 images) and an external test dataset

(100 patients, 1273 images) were utilized. According to the Michigan State University

(MSU) classification criterion, experts labeled all images with consensus, and the final

labeled results were regarded as the reference standard. The automated diagnostic

model comprised Faster R-CNN and ResNeXt101 as the detection and classification

network, respectively. The deep learning-based diagnostic performance was evalu-

ated by calculating mean intersection over union (IoU), accuracy, precision, sensitiv-

ity, specificity, F1 score, the area under the receiver operating characteristics curve

(AUC), and intraclass correlation coefficient (ICC) with 95% confidence intervals (CIs).

Results: High detection consistency was obtained in the internal test dataset (mean

IoU = 0.82, precision = 98.4%, sensitivity = 99.4%) and external test dataset (mean

IoU = 0.70, precision = 96.3%, sensitivity = 97.8%). Overall accuracy for LDH classi-

fication was 87.70% (95% CI: 86.59%–88.86%) and 74.23% (95% CI: 71.83%–

76.75%) in the internal and external test datasets, respectively. For internal testing,

the proposed model achieved a high agreement in classification (ICC = 0.87, 95% CI:

0.86–0.88, P < 0.001), which was higher than that of external testing (ICC = 0.79,

95% CI: 0.76–0.81, P < 0.001). The AUC for model classification was 0.965 (95% CI:

0.962–0.968) and 0.916 (95% CI: 0.908–0.925) in the internal and external test

datasets, respectively.
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Conclusions: The automated diagnostic model achieved high performance in

detecting and classifying LDH and exhibited considerable consistency with experts'

classification.
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1 | INTRODUCTION

Lumbar disc herniation (LDH)-induced low back pain (LBP) is a

significant global public health and socioeconomic concern.1,2 Related

studies reported that approximately 70%–80% of adults suffer from

LBP, which considerably impacts their daily lives and work.3 LDH

patients are grouped into three categories based on their clinical fea-

tures: Group I exhibits clear indications for operative intervention; Group

II comprises patients who do not require surgery; and Group III com-

prises those with less clear surgical indications.4 Magnetic resonance

(MR) imaging, an essential diagnostic tool, can accurately assess LBP and

measure the severity of LDH, which should influence the clinical decision

of lumbar discectomy, especially in group III patients.4,5

However, MR image reading is highly dependent on the subjective

judgments of observers, and interpreting these images is repetitive,

time-consuming, and burdensome. Stacked images of each disc layer

must be analyzed one after another.6 Consequently, various automated

diagnostic models have been explored in diagnosing lumbar diseases

for potential applicability over the past decade. In 2010, Alomari et al.7

developed three probabilistic Gaussian models according to Gibbs dis-

tribution for dichotomous classification of intervertebral disc degenera-

tion. In 2016, He et al.8 accurately and quickly identified the presence

or absence of foramina stenosis using a synchronized superpixel repre-

sentation model. However, due to the limited available data size, the

aforementioned diagnostic models, which were based on conventional

machine learning, require further validation.

With the advancement of graphics-processing-unit technology,

deep learning (DL) methods have become prominent. Some intelligent

diagnostic models that are based on DL algorithms have been devel-

oped, and researchers have observed that they are effective in diag-

nosing degenerative spinal diseases, such as spondylolisthesis,9 fresh

osteoporotic vertebral fractures,10 lumbar spinal stenosis,11 and

LDH.12 Notably, Jamaludin et al.13 proposed an automated diagnostic

system based on a convolutional neural network (CNN) to effectively

grade lumbar degenerative diseases such as disc degeneration and

central canal stenosis. However, many DL models for diagnosing lum-

bar disc degenerative diseases have been designed only for binary

classification (disease-absent vs. disease-present).12,14 In actual clinical

practice, analyzing complex biomedical images requires a detailed

description of LDH severity to guide surgical decision-making, espe-

cially for patients with unclear surgical indications. Although an auto-

mated LDH classification model has been developed to classify LDH

into four different morphology categories, namely normal disc, bulging

disc, protrusion, and extrusion,15 surgeons are still subjected to

uncertainty in the necessity and approach of operation without

detailed information on disc herniation size.

Because the Michigan State University (MSU) classification is

often considered an objective criterion for LDH surgical selection on

lumbar axial MR images,16 it has been widely applied in clinical prac-

tice.17,18 To comprehensively describe LDH severity according to disc

herniation size, this study aimed to develop an automated diagnostic

model using the MSU classification. Thus, surgeons can accurately

and rapidly make appropriate treatment options.

2 | MATERIALS AND METHODS

This study was approved by the Ethics Review Committees of two

participating institutions: the Fifth Affiliated Hospital of Sun Yat-sen

University and the Third Affiliated Hospital of Southern Medical

University (No. 2021 K53-1). The waiver of informed consent was

granted in light of the study's retrospective nature and the minimal

risk involved.

2.1 | Dataset collection

Figure 1 depicts the data allocation and processing flowchart. A

development dataset of 15 249 axial T2-weighted (T2W) MR images

was collected from 1015 lumbar spine patients administrated at the

Fifth Affiliated Hospital of Sun Yat-sen University (Zhuhai, Guangdong

Province, China), from January 2015 to May 2019. Additionally,

an external test dataset utilized for external validation comprised

1273 axial T2W MR images from 100 lumbar spine patients in the

Third Affiliated Hospital of Southern Medical University (Guangzhou,

Guangdong Province, China), from June 2016 to December 2017. The

development dataset was randomly divided into an internal training

set (12 012 images) and an internal test set (3237 images). Moreover,

all datasets were anonymized and numbered.

The inclusion criteria for screening study participants were LBP

patients who underwent routine lumbar spine MR scans.

The exclusion criteria were as follows:

1. inflammation, fractures, or deformities of the vertebral column;

2. a history of prior or concurrent malignancies;

3. previous spinal surgery and metallic implants at the corresponding

level;

4. suboptimal image quality.
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All patients underwent lumbar MR scans on a 3.0-T platform

(Magnetom Verio; Siemens, Germany) using T2W turbo spin echo

sequences. Scanning parameters differed between development and

external test datasets (echo time: 94–120 ms, repetition time: 3500–

3775 ms, slice thickness: 4–4.5 mm, field of view: 153 � 153 mm2,

bandwidth: 250 kHz). All MR images were stored as Digital Imaging and

Communications in Medicine (DICOM) files for subsequent analyses.

2.2 | Dataset labeling and reference standard

A spinal surgeon interested in reading lumbar MR images drew

bounding boxes manually to segment regions of interest (ROIs) at all

images using the MRIcro software. All LDH images were subsequently

interpreted by multiple radiology experts and senior spinal surgeons; all

experts reached a consensus as per the standard MSU classification cri-

terion.16 The aforementioned diagnostic results obtained from image

analysis were regarded as the reference standard. The manual analysis

of an axial lumbar MR image consumed approximately 2.3–6.5 s.

The LDH size of the MSU classification is reported in three

precise increments, described as Grades 1, 2, and 3. All grades are

measured by a herniated disc position relative to one intra-facet line

drawn transversely across the lumbar canal, starting and ending at the

medial edges of the left and right facet joint articulations.16 This mea-

surement requires only a single T2W axial MR image cut correspond-

ing to the maximal herniation. We divided LDH into four grades based

on the MSU classification, including the normal disc. Grade 0 denotes

no disc herniation; Grade 1 denotes disc herniation that extends up to

(less than) 50% of the distance from the non-herniated posterior

aspect of the disc to the intra-facet line; Grade 2 denotes disc hernia-

tion that extends more than 50% of the aforementioned distance; and

Grade 3 denotes the herniation that extends completely beyond the

intra-facet line. Supporting Information indicate detailed information

on the size grading of the classification utilized herein.

2.3 | DL model construction

We constructed a DL model by selecting Faster R-CNN as the detection

network and ResNeXt101 as the classification network, respectively.

First, Faster R-CNN located the effective image area for judging LDH.

Subsequently, the ResNeXt101 classified LDH using the effective area

after data augmentation. Figure 2 illustrates the detailed flowchart of

LDH detection and classification. The entire process consumed only

20 ms on average to automatically analyze an axial lumbar MR image.

2.3.1 | Detection network architecture

We trained a Faster R-CNN network of two modules to detect the

lumbar disc region from the MR images. The region proposal network

(RPN), a fully convolutional network, served as the first module to

F IGURE 1 Data allocation and processing flowchart. MR, magnetic resonance; N, number of patients; ROIs, regions of interest.
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generate each image's regional proposals, which were subsequently

fed into the second module. The second module extracted features

from the region proposals using a Fast R-CNN detector. These fea-

tures were further separately utilized as inputs of a 2-class softmax

classifier to detect lumbar disc regions and of a 4-class softmax classi-

fier to improve bounding box coordinates. The architecture of the

Faster R-CNN approach is illustrated in Figure 3. The core idea

entailed sharing the same convolutional layers for RPN and the Fast

R-CNN detector. Therefore, the lumbar axial MR images passed

through the CNN only once to produce and refine region proposals.

Figure 3 indicates that the images should be resized to a standard size

of before inputting the lumbar axial MR images into the Faster

R-CNN network. For more technical details, please refer to the

original Faster R-CNN study.19

2.3.2 | Classification network architecture

ResNeXt101, the classification network, was enhanced based on

ResNet.20,21 For the proposed ResNeXt classification network, we set

the neuron number of the last fully connected layer to 4, the same as

the LDH category. The structure diagram of the ResNeXt network block

is illustrated in Figure 4. First, to decrease the data's feature dimension

while also reducing the number of model parameters, a convolution layer

with a 1 � 1 convolution kernel was utilized. Subsequently, we utilized a

group convolution with a group number of 32 and a convolution kernel

of 3 � 3 for feature extraction. Furthermore, a convolution layer with a

1 � 1 convolution kernel was applied to increase the feature dimension.

Finally, the output of 1 � 1 the convolution layer was added to the origi-

nal input of the block to obtain the final result. The ResNeXt input data

F IGURE 2 Lumbar disc herniation detection and classification flowchart. MR, magnetic resonance; ROI, region of interest.

F IGURE 3 Faster R-CNN network for lumbar region detection. Bbox, bounding box; Conv, convolutional kernel; FC, fully connected layer;
RoI, region of interest; RPN, region proposal network.

F IGURE 4 ResNeXt block.
(A) A block is equivalent to B,
implemented as grouped
convolutions. (B) A block of
ResNeXt network.
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were the Faster R-CNN detected lumbar ROIs. Subsequently, we unified

the image size to 96 � 160 (the maximum size of lumbar ROIs) using

mirror filling because the input image size needed to be the same. Mean-

while, we standardized each image's pixel values to improve the model's

generalization ability. Random translation and rotation of images were

performed for data augmentation.

2.4 | Statistical analysis

The performance of the automated diagnostic model was evaluated

on two test datasets, namely internal and external. Based on inter-

section over union (IoU), we assessed ROIs detection for all bounding

boxes with a 0.5 threshold. Mean IoU, precision, and sensitivity were

applied to evaluate detection performance. After constructing the confu-

sion matrix, we measured the classification performance of the diagnostic

model by calculating accuracy, precision, sensitivity, specificity, F1 score,

the area under the receiver operating characteristics curve (AUC), and

intraclass correlation coefficient (ICC) with their 95% confidence intervals

(CI).22 ICC defined levels of agreement as follows: a 0–0.4 value is poor;

0.41–0.75 is moderate; 0.76–0.9 is good; and 0.91–1 is excellent. A

bilateral P < 0.05 was considered statistically significant. Python was used

to perform analyses.

3 | RESULTS

3.1 | Patient characteristics and reference
standard in datasets

The development dataset comprised 1015 patients of 49 ± 14 (age

range: 13–88) years. The external test dataset consisted of 100 patients

with an average age of 53 ± 16 (age range: 17–84) years. Table 1 lists

the patient characteristics for both datasets. Table 2 provides an

overview of standard reference grading for different datasets.

Predominantly, all datasets were biased toward Grades 0 and 1. In the

development dataset, Grades 2 and 3 accounted for 12.6% (1508 of

12 012) and 11.6% (377 of 3237) in the training and test sets, respec-

tively. Regarding the external test dataset, 17.6% (224 of 1273) of

labels were classified as Grades 2 and 3.

3.2 | ROIs detection

IoU measures the overlap between detected and reference standard

labels (bounding boxes). Concerning mean IoU, the proposed model

detection achieved 0.82 and 0.70 for the internal and external test data-

sets, respectively. At a 0.5 IoU matching threshold, the model correctly

recognized the ROIs with excellent detection performance. Bounding

boxes generated by model detection displayed 98.4% precision and

99.4% sensitivity in the internal test dataset. Similar results were found

in the external test dataset with 96.3% precision and 97.8% sensitivity.

3.3 | Internal test dataset classification

Figure 5 indicates the relevant statistics of the four MSU

classification grades. Table 3 provides detailed results pertaining to the

internal test dataset's accuracy, precision, sensitivity, specificity, F1

score, and ICC. Generally, predictive accuracy levels for Grades 0, 1,

2, and 3 were 92.86% (95% CI: 91.99%–93.77%, 3006 of 3237),

88.60% (95% CI: 87.52%–89.72%, 2868 of 3237), 94.66% (95% CI:

93.88%–95.44%, 3064 of 3237), and 99.30% (95% CI: 98.98%–

99.59%, 3214 of 3237). Furthermore, the F1 score of the four grades

was 92.98% (95% CI: 92.09%–93.90%), 84.64% (95% CI: 83.11%–

86.24%), 76.20% (95% CI: 72.78%–79.55%), and 56.60% (95% CI:

38.97%–72.41%) in sequence. A good consistency (ICC: 0.87, 95% CI:

0.86–0.88, P < 0.001) was observed between the model classification

and the reference standard. For the internal test, the model classifica-

tion AUC was 0.965 (95% CI: 0.962–0.968).

3.4 | External test dataset classification

Table 4 includes the external test dataset's accuracy, precision,

sensitivity, specificity, F1 score, and ICC details. The predictive accu-

racy of the four grades was 87.90% (95% CI: 86.04%–89.77%, 1119

of 1273), 78.00% (95% CI: 75.69%–80.43%, 993 of 1273), 86.33%

TABLE 1 Patient characteristics of development and external test
datasets.

Characteristics

Development

dataset (n = 1015)

External test

dataset (n = 100)

Age (years) 49 ± 14 (13–88) 53 ± 16 (17–84)

Women 492 (48.5) 51 (51.0)

Men 523 (51.5) 49 (49.0)

Note: Data are expressed as n (%), or mean ± standard deviation (range).

TABLE 2 Reference standard
classification of the LDH at axial lumbar
T2W MR images, n (%).

LDH severity Internal training dataset Internal test dataset External test dataset

Grade 0 5925 (49.3) 1647 (50.9) 550 (43.2)

Grade 1 4579 (38.1) 1213 (37.5) 499 (39.2)

Grade 2 1374 (11.5) 347 (10.7) 196 (15.4)

Grade 3 134 (1.1) 30 (0.9) 28 (2.2)

Total 12 012 (100) 3237 (100) 1273 (100)

Abbreviations: LDH, lumbar disc herniation; MR, magnetic resonance.
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(95% CI: 84.43%–88.36%, 1099 of 1273), and 96.23% (95% CI:

95.15%–97.30%, 1225 of 1273) in sequence. In addition, the F1 score

of the four grades was 84.78% (95% CI: 82.39%–87.19%), 70.95%

(95% CI: 67.62%–74.46%), 63.90% (95% CI: 58.81%–68.93%), and

45.45% (95% CI: 31.91%–58.59%) in sequence. A good overall agree-

ment in the external test dataset was shown with a 0.79 ICC value

(95% CI: 0.76–0.81; P < 0.001), which was relatively lower than that

in the internal test dataset. The model classification AUC was 0.916

(95% CI: 0.908–0.925) for the external test.

4 | DISCUSSION

The MR scan plays a crucial role in assessing LDH and in the

definite diagnosis of LBP.4,5,23 However, analyzing MR images can be

repetitive, intensive, and time-consuming.6 Therefore, an intelligent

diagnostic model that can reliably grade LDH severity is imperative.

Herein, we developed an automated diagnostic model based on the

MSU classification criterion to detect and classify LDH on axial lumbar

MR images.16 The results demonstrated that the detection and classi-

fication networks, which represented two components of the auto-

mated diagnostic model, performed effectively. Bounding boxes

generated by the detection network exhibited satisfactory consis-

tency with reference labels in the internal test dataset (precision:

98.4%, sensitivity: 99.4%) and external test dataset (precision: 96.3%,

sensitivity: 97.8%). Regarding classification, the overall LDH grading

accuracy was 87.70% (95% CI: 86.59%–88.86%) in the internal test

dataset and 74.23% (95% CI: 71.83%–76.75%) in the external

test dataset, respectively. The model achieved a strong classification

agreement with radiology experts and spinal surgeons both for the

F IGURE 5 Confusion matrices and receiver operating characteristics (ROC) curves of lumbar disc herniation (LDH) automated classification.
Confusion matrices of LDH grading in the internal test dataset (A) and external test dataset (B). ROC curves of LDH grading (C).

TABLE 3 Classification performance of the LDH diagnostic model in the internal test dataset.

Predicted
grading

Accuracy, %
(95% CI)

Precision, %
(95% CI)

Sensitivity, %
(95% CI)

Specificity, %
(95% CI)

F1 Score, %
(95% CI) ICC (95% CI)

LDH 87.70 (86.59–88.86) 87.70 (86.59–88.86) 87.70 (86.59–88.86) 95.90 (95.53–96.29) 87.70 (86.59–88.86) 0.87 (0.86–0.88)

Grade 0 92.86 (91.99–93.77) 93.07 (91.81–94.37) 92.90 (91.67–94.14) 92.83 (91.54–94.18) 92.98 (92.09–93.90)

Grade 1 88.60 (87.52–89.72) 85.46 (83.43–87.49) 83.84 (81.76–86.06) 91.45 (90.22–92.67) 84.64 (83.11–86.24)

Grade 2 94.66 (93.88–95.44) 72.89 (68.55–77.27) 79.83 (75.52–84.01) 96.44 (95.76–97.13) 76.20 (72.78–79.55)

Grade 3 99.30 (98.98–99.59) 65.22 (43.76–86.60) 50.00 (31.22–67.51) 99.75 (99.57–99.94) 56.60 (38.97–72.41)

Abbreviations: CI, confidence interval; ICC, intraclass correlation coefficient; LDH, lumbar disc herniation.

TABLE 4 Classification performance of the LDH diagnostic model in the external test dataset.

Predicted
grading

Accuracy, %
(95% CI)

Precision, %
(95% CI)

Sensitivity, %
(95% CI)

Specificity, %
(95% CI)

F1 Score, %
(95% CI) ICC (95% CI)

LDH 74.23 (71.83–76.75) 74.23 (71.83–76.75) 74.23 (71.83–76.75) 91.41 (90.61–92.25) 74.23 (71.83–76.75) 0.79 (0.76–0.81)

Grade 0 87.90 (86.04–89.77) 92.86 (90.56–95.21) 78.00 (74.47–81.56) 95.44 (93.90–96.99) 84.78 (82.39–87.19)

Grade 1 78.00 (75.69–80.43) 73.55 (69.36–77.86) 68.54 (64.46–72.92) 84.11 (81.45–86.77) 70.95 (67.62–74.46)

Grade 2 86.33 (84.43–88.36) 53.58 (48.01–59.73) 78.57 (72.62–84.53) 87.74 (85.73–89.89) 63.90 (58.81–68.93)

Grade 3 96.23 (95.15–97.30) 33.33 (21.05–45.83) 71.43 (53.66–89.22) 96.79 (95.77–97.80) 45.45 (31.91–58.59)

Abbreviations: CI, confidence interval; ICC, intraclass correlation coefficient; LDH, lumbar disc herniation.
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internal test (ICC: 0.87, 95% CI: 0.86–0.88, P < 0.001) and external

test (ICC: 0.79, 95% CI: 0.76–0.81, P < 0.001).

Various classification methods are available for LDH diagnosis.

Nevertheless, only a few methods could provide a simple, universal

description of disc herniation size and location that enabled surgeons to

accurately and objectively assess disease severity and optimize surgical

decisions. Fardon and Milette.24 divided disc herniation into protrusion,

extrusion, and sequestration. Nevertheless, because it is difficult to iden-

tify the exact size and location of disc herniation without reference to

the MR images, this classification exhibited a significant disadvantage.

Wiltse et al.25 and Mysliwiec et al.16 proposed some classification

methods to overcome the aforementioned issue. Wiltse et al.25 classified

disc herniation into distinct zones (medial-lateral, axial plane) and levels

(caudocranial, sagittal plane) according to anatomic location. However,

the disc herniation size was ranked as either normal, mild, moderate,

moderately severe, or severe; this subjective ranking fails to objectively

define and consider the individual anatomic differences. In contrast, the

MSU classification developed by Mysliwiec et al.16 determined LDH size

by measuring the relative position between the herniation and an intra-

facet reference line; thus, it is straightforward and objective. A herniation

size can be classified as 1-2-3. Several clinical studies have confirmed

that in regard to selecting appropriate LDH patients who urgently

require surgery, the MSU classification is more consistent with that of

surgeons.17,18 Patients with size-2 or size-3 lesions may account for a

higher proportion of satisfactory surgical outcomes when using the MSU

classification to guide surgical options.16 To our knowledge, this is the

first LDH diagnostic criterion closely linked with severity evaluation and

corresponding clinical decision-making.

Due to the development of artificial intelligence, automated LDH

diagnosis has become a reality. The automated diagnostic models

initially focused on binary classification, either disease-absent or

disease-present.12,14 Alomari et al.14 developed an LDH diagnostic

model that was based on a binary Bayesian classifier to automatically

categorize each disc as normal or herniated on lumbar MR images.

Their model achieved an average accuracy of 92.5% over 65 cases.

Recently, DL has exhibited prospective utility in diagnostic radiol-

ogy.26,27 Using deep-learning algorithms, a computerized diagnostic

model constructed by Tsai et al.12 could diagnose disc herniations

with an average precision of 92.4%. Although these previous

models displayed high-quality results, they failed to realize that LDH

multiclass classification critically impacts surgical selection.

The MSU classification could objectively divide LDH into several

size-based typologies and help the patient be selected for single-level

discectomy.16 Notably, this classification suggests no surgery for

patients with size-1 lesions, whereas patients with size-2 or size-3

lesions may benefit from micro discectomies.16 Relying on the MSU

classification, we proposed a novel, automated model that utilized

axial lumbar MR images to group LDH into four grades; thus, we opti-

mized severity assessment and the selection of suitable operative can-

didates. The proposed model achieved 87.7% and 74.2% average

accuracy for internal and external test datasets, respectively, which

indicated its superiority over other automated diagnostic models with

multiclass classification (67.1%–81.2% for neural foraminal stenosis;

and 70.6%–86.9% for central canal stenosis).28–30 We observed

74.2%–84.2% accuracy in LDH grading without automatic detection

in our prior research using a ResNet50 framework.30 By comparison,

this study further constructed a fully automated detection and classifi-

cation workflow for grading LDH, and it obtained more optimal accu-

racy. In addition, we found the trained model consumed only 20 ms

on average to automatically complete this workflow in test datasets.

The model was much faster than manual analysis, which required

approximately 2.3–6.5 s. This time range of manual analysis is roughly

similar to that needed to interpret one MR image (3–4 s).31 Because

the model exhibited satisfactory classification results in internal and

external test datasets collected from two hospitals, we believe it is a

promising tool to be generalized across various medical institutes.

Next, we will improve the deep-learning algorithm to further enhance

our model's robustness and generalization. A more extensive multi-

center longitudinal study will further validate the clinical effectiveness

and reliability of this automated diagnostic model in our subsequent

research. Beyond the preoperative application of the intelligent

model, we can utilize the model to postoperatively regrade the hernia-

tion at different time points and to evaluate the surgical outcome by

comparing herniation changes before and after surgery. Thus, the

model will play a crucial role in longitudinal follow-up.

There are some limitations in our study. First, this retrospective

study may be biased by potential selection. Further prospective stud-

ies should be strictly conducted to confirm the clinical feasibility and

effectiveness of this LDH automated diagnostic model. Second, LDH

Grades 2 and 3 exhibited a relatively low diagnostic precision, which

is probably attributed to data class imbalance. In future studies, we

will collect higher-quality image data, especially from high-grade LDH

patients, to further enhance diagnostic precision. Third, we utilized

only axial T2W MR images for DL. We would extract more informa-

tive features for automatic image analysis by integrating multiple MR

sequences and sagittal images with this model. In addition, all

bounding boxes were drawn by one expert spinal surgeon. Through a

consensus labeling approach, more accurate ROIs can be obtained. Finally,

we will optimize this diagnostic model with the latest deep-learning algo-

rithms to explore more lumbar diseases, such as lumbar spinal stenosis,

spondylolisthesis, and vertebral fracture.

5 | CONCLUSIONS

In this study, we developed an automated diagnostic model that can

accurately and rapidly classify LDH on axial lumbar T2W MR images

using deep-learning algorithms. The model effectively detected and

graded LDH based on the MSU classification criterion. Moreover, it

achieved a high consistency with specialists in classifying LDH, which

can objectively enable spinal surgeons to evaluate disease severity

and select appropriate treatment options.

AUTHOR CONTRIBUTIONS

Weicong Zhang and Zhihai Su conceptualized and designed the study,

and drafted the manuscript for intellectual content. Ziyang Chen and

ZHANG ET AL. 7 of 9



Zhengyan Wang constructed the deep-learning model and analyzed

the data. Jinjin Hai conducted statistical data analyses and evaluated

the performance of the deep-learning model. Chengjie Huang and

Yuhan Wang collected the data and conducted a literature search. Bin

Yan developed deep-learning algorithms. Hai Lu and Bin Yan edited

and reviewed the manuscript, and took responsibility for the integrity

of the work. All authors contributed to the study and approved the

manuscript for publication.

ACKNOWLEDGMENTS

This study was supported by Zhuhai City Innovation and Innovation Team

Project, Guangdong Province, China (ZH0406190031PWC), Zhuhai City

Industry-University-Research Cooperation Project, Guangdong Province,

China (ZH22017002210017PWC), and Joint Funding Scheme 2022 for

Scientific Research Projects (FDCT-GDST Projects) by the Science and

Technology Development Fund of Macau and the Department of Science

and Technology of Guangdong Province (2022A0505020019).

CONFLICT OF INTEREST STATEMENT

The authors declare no conflicts of interest.

ORCID

Hai Lu https://orcid.org/0000-0002-4212-3282

REFERENCES

1. Knezevic NN, Candido KD, Vlaeyen JWS, Van Zundert J, Cohen SP.

Low back pain. Lancet. 2021;398:78-92.

2. Amin RM, Andrade NS, Neuman BJ. Lumbar disc herniation. Curr Rev

Musculoskelet Med. 2017;10:507-516.

3. Paolucci T, Attanasi C, Cecchini W, Marazzi A, Capobianco SV,

Santilli V. Chronic low back pain and postural rehabilitation exercise: a

literature review. J Pain Res. 2018;12:95-107.

4. Weber H. Lumbar disc herniation. A controlled, prospective

study with ten years of observation. Spine (Phila Pa 1976). 1983;8:

131-140.

5. Qaseem A, Wilt TJ, McLean RM, et al. Noninvasive treatments for

acute, subacute, and chronic low back pain: a clinical practice guide-

line from the American College of Physicians. Ann Intern Med. 2017;

166:514-530.
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