
Cis-acting variation is common across regulatory layers
but is often buffered during embryonic development

Swann Floc’hlay,1,6,7 Emily S. Wong,2,3,6,7 Bingqing Zhao,4,6,7 Rebecca R. Viales,4

Morgane Thomas-Chollier,1,5 Denis Thieffry,1 David A. Garfield,4

and Eileen E.M. Furlong4

1Institut de Biologie de l’ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005 Paris, France; 2Molecular,
Structural and Computational Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010,
Australia; 3School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Kensington, New South Wales 2052, Australia;
4European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117 Heidelberg, Germany; 5Institut Universitaire de
France (IUF), 75005 Paris, France

Precise patterns of gene expression are driven by interactions between transcription factors, regulatory DNA sequences,

and chromatin. How DNA mutations affecting any one of these regulatory “layers” are buffered or propagated to gene

expression remains unclear. To address this, we quantified allele-specific changes in chromatin accessibility, histone modi-

fications, and gene expression in F1 embryos generated from eight Drosophila crosses at three embryonic stages, yielding a

comprehensive data set of 240 samples spanning multiple regulatory layers. Genetic variation (allelic imbalance) impacts

gene expression more frequently than chromatin features, with metabolic and environmental response genes being most

often affected. Allelic imbalance in cis-regulatory elements (enhancers) is common and highly heritable, yet its functional

impact does not generally propagate to gene expression. When it does, genetic variation impacts RNA levels through two

alternative mechanisms involving either H3K4me3 or chromatin accessibility and H3K27ac. Changes in RNA are more pre-

dictive of variation in H3K4me3 than vice versa, suggesting a role for H3K4me3 downstream from transcription. The im-

pact of a substantial proportion of genetic variation is consistent across embryonic stages, with 50% of allelic imbalanced

features at one stage being also imbalanced at subsequent developmental stages. Crucially, buffering, as well as the magni-

tude and evolutionary impact of genetic variants, is influenced by regulatory complexity (i.e., number of enhancers regu-

lating a gene), with transcription factors being most robust to cis-acting, but most influenced by trans-acting, variation.

[Supplemental material is available for this article.]

The development of amulticellular organism requires tight regula-
tion of gene expression in both space and time to ensure that re-
producible phenotypes are obtained across individuals and
environmental conditions. DNA regulatory elements (e.g., pro-
moters and enhancers) are essential to this process by integrating
regulatory information from sequence-specific transcription fac-
tors (TFs), RNApolymerase II (Pol II), and other regulatory proteins
to drive specific spatiotemporal patterns of expression during de-
velopment. But although gene expression patterns are typically
quite precise, the DNA regulatory elements that control these pat-
terns are replete with genetic variation (mutations), which can im-
pact transcriptional regulation at multiple levels, including TF
binding (Kasowski et al. 2010; Spivakov et al. 2012; Behera et al.
2018), chromatin state (Waszak et al. 2015), transcriptional start
site (TSS) usage (Schor et al. 2017), gene expression levels
(Garfield et al. 2013; Battle et al. 2015; Cannavò et al. 2017), and
transcript isoform diversity (Cannavò et al. 2017).

Although regulatory mutations can have large effects, many
behave effectively neutrally, making predictions of the functional
impact of genetic variants extremely challenging. Part of the diffi-

culty comes from a general lack of knowledge about which regions
of noncoding DNA have regulatory (not just biochemical) func-
tion. Another major challenge is the inherent robustness of gene
regulatory networks. At least within a laboratory context, sections
of regulatory DNA can be removed with little apparent impact on
phenotype or fitness (Ahituv et al. 2007). Similarly, divergent reg-
ulatory sequences from different species can be experimentally
swapped with few detectable changes in gene expression across
species (Borok et al. 2010). Developmental systems have built-in
redundancy that can “buffer” the effects of regulatory mutations,
for example, through compensation by other regulatory elements
with partially overlapping activities (Hong et al. 2008; Frankel et al.
2010; Cannavò et al. 2016).

The complex relationship betweenDNA sequence and regula-
tory output further complicates our understanding of how muta-
tions can impact gene regulation. For example, mutations
affecting TF binding motifs can have a large impact on chromatin
accessibility, Pol II occupancy, histonemodifications, and gene ex-
pression (Kircher et al. 2019). But in some contexts/tissues, TF
binding is driven by collective processes that can include pro-
tein–protein and protein–DNA interactions, such that mutations
affecting a single TF motif may not substantially affect TF recruit-
ment (Junion et al. 2012; Doitsidou et al. 2013; Uhl et al. 2016;6These authors contributed equally to this work.
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Khoueiry et al. 2017). Moreover, many sequence variants affecting
TF occupancy in vivo lie outside the TF’s cognate motif and are
likely owing to variation affecting the binding of co-occurring fac-
tors (Kasowski et al. 2010; Zheng et al. 2010; Reddy et al. 2012) or
an overall change in DNA shape (Levo et al. 2015). To make mat-
ters more complex, enhancer output is not a strict function of all
factors that occupy an enhancer; enhancers often contain binding
sites for multiple factors with redundant input, and in some cases,
different combinations of TFs can produce the same expression
output (Brown et al. 2007; Zinzen et al. 2009; Khoueiry et al.
2017). Even in cases in which an enhancer’s activity is abolished
by mutations, gene expression may not be affected as genes often
have many enhancers with partially overlapping activity (Hong
et al. 2008; Frankel et al. 2010; Cannavò et al. 2016). With a few
exceptions (Bullaughey 2011), this complex genotype-to-pheno-
type relationship cannot be modelled using regulatory sequence
information alone but rather must be evaluated empirically
(Khoueiry et al. 2017).

Allelic-specific data provide a unique opportunity to study
themolecular mechanisms of cis-acting variation and have uncov-
ered multiple regulatory processes through which cis-acting varia-
tion impacts transcriptional control (Kilpinen et al. 2013; Chen
et al. 2016). F1 crosses of inbred strains provide an elegant method
to determine the contribution of both cis and trans variation
(Wittkopp et al. 2004; Tirosh et al. 2009; Goncalves et al. 2012;
Wong et al. 2017). By using amultiline F1 design,we sought to bet-
ter understand how natural sequence variation impacts different
steps of gene regulation during embryonic development. We col-
lected Drosophila F1 hybrid embryos from eight crosses and quan-
tified allele-specific changes in TF occupancy (using open
chromatin [ATAC-seq] as a proxy), enhancer and promoter activity
(usingH3K27ac orH3K4me3 andH3K27acChIP-seq as proxies, re-
spectively), and gene expression (RNA-seq). By treating genetic
variation affecting each of these regulatory layers as a perturbation
to gene regulation, we could uncover functional relationships be-
tween different regulatory layers during embryonic development,
as well as their impact on gene expression.

Results

Quantifying gene expression and regulatory element activity

in hybrid embryos

To generate genetically diverse samples suitable for allele-specific
analyses, we mated eight genetically distinct inbred lines from
the Drosophila melanogaster Genetic Reference Panel (DGRP) col-
lection (Mackay et al. 2012) to females from a common isogenic
maternal line (Fig. 1A). The resulting half-sibling F1 panel contains
an average of 567,412 SNPs per cross and a total of 1,455,988
unique SNPs covering a range of minor allele-frequencies and lev-
els of conservation (phyloP scores) (Supplemental Fig. S1A;
Supplemental Table S1).

Embryos were collected at three stages of embryogenesis: 2–4
h after egg laying, consisting primarily of pregastrulation, unspec-
ified embryos (mainly stage 5); 6–8 h (mainly stage 11), when ma-
jor lineages within the three germ-layers are specified; and 10–12 h
(mainly stage 13), during terminal differentiation of tissues (Fig.
1A). For each developmental stage and F1 cross, we performed
RNA-seq (gene expression), ATAC-seq (open chromatin), and
iChIP for H3K27ac (marking active enhancers and promoters)
and H3K4me3 (active promoters) (Buenrostro et al. 2013; Lara-
Astiaso et al. 2014) from the same collection of embryos (fourmea-

surements × three stages × eight genotypes = 96 samples). In addi-
tion, we collected samples from the parental lines of one cross,
forming a parent/offspring trio that allowed us to partition genetic
differences between the parents into cis and trans (Wittkopp et al.
2004), defined here as genetic variation that affects the linked al-
leles of features on the same chromosome (cis) versus variation
that affects both alleles on any chromosome (trans). All measure-
ments were made in replicates, giving a total of 240 samples (192
F1 samples [96× two replicates] + 48 parental [four measurement
× three stages × two genotypes× two replicates]). Read counts
were highly correlated between biological replicates, with median
correlation coefficients of 0.98 for RNA, ATAC, and histone data
(Methods) (Supplemental Fig. S1B). As expected, correlations
were reduced between corresponding samples across genotypes,
reflecting the functional impact of genetic variation
(Supplemental Fig. S1C), and were reduced even further across
time points, reflecting dynamic changes in gene expression during
development.

To define noncoding features, ATAC-seq and ChIP-seq reads
from each cross were mapped to each parental genome indepen-
dently and the significant peaks merged into a combined peak
set used for all subsequent analyses. In total, we identified
11,211 genes with detectable expression, 31,963 ATAC peaks,
19,769 H3K27ac peaks, and 6648 H3K4me3 peaks active at one
or more stages (Supplemental Table S2). Of these, 93.9%, 95.8%,
95.2%, and 96.9%, respectively, contained at least one SNP that
distinguishes maternal and paternal haplotypes in at least one
line. TheCG12402 locus, a predicted ubiquitin-protein transferase,
illustrates the dynamics of the data, transitioning from low to high
expression from 2–4 h to 10–12 h (Fig. 1A), accompanied by quan-
titative changes in chromatin accessibility and, to a lesser extent,
histone modifications in its promoter region.

To examine the regulatory relationships between these differ-
ent signals,wedividednoncoding features intopromoter-proximal
(<±500 bp of an annotated TSS orH3K4me3peak [to capture unan-
notated promoters]) or -distal (putative enhancer; >±500 bp from a
TSS) elements. At promoter-proximal regions, all signals show the
expected enrichment and distribution around the TSS (Fig. 1B,
proximal), showing the quality of the data. The ATAC-seq signal
is highest directly at the promoter, representing occupancy of the
basal transcriptional machinery, whereas H3K27ac and H3K4me3
signals are highest at the +1 nucleosome, reflecting the predomi-
nantly unidirectional nature of Drosophila promoters (Core et al.
2012; Mikhaylichenko et al. 2018). Although all three regulatory
signals (ATAC-seq, H3K27ac, and H3K4me3) are highly correlated
at promoters of actively transcribed genes (i.e., with RNA-seq
signal), many promoter-proximal peaks (3907) marked by
H3K4me3 with ATAC signal and/or H3K27ac show no detectable
RNA signal (Fig. 1C, left upset plot).Manyof these regions (approx-
imately 850) correspond to known noncoding RNAs not captured
by poly(A)+ RNA-seq libraries, suggesting the presence of many ad-
ditional unannotated ncRNAs.

ThemajorityofH3K27ac (62.8%) andATACpeaks (63.9%) are
distal to an annotated promoter. Distal ATAC peaks lacking
H3K27ac signal (58% of the total) have a strong enrichment for
Polycomb and Su(Hw) ChIP signal (Supplemental Table S3), sug-
gesting that they represent repressed enhancers or other types of
regulatory elements (e.g., insulators). For the remaining 9007distal
elements, H3K27ac signal is bimodally distributed around the
ATAC-seq peak (Fig. 1B), suggestive of active enhancers.
Although most H3K27ac peaks (60%) overlap ATAC peaks, many
do not (Fig. 1C, right). This latter set often have ATAC signal below
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Figure 1. Quantifying gene expression and regulatory element activity in F1 embryos. (A, left) Experimental design and data structure. RNA-seq, ATAC-
seq, and iChIP of H3K4me3 and H3K27ac were performed on embryos at three developmental stages from eight F1 hybrids with a commonmaternal line.
(Right) Genome browser overview for the CG12402 locus showing all data for 2–4 h and 10–12 h for the genotype vgn28. Bottom track shows curated
enhancers (Kvon et al. 2014). (B, top) Density plots for representative cross (vgn ×DGRP-639) at 6–8 h showing read count signal for TSS proximal and
distal regions. Plots centered at TSS for promoter-proximal (left) and ATAC summits for distal (right) regions; shaded regions indicate 95% confidence in-
tervals. (Bottom) Heatmaps showing quantitative signal of the same data as above, where rows were sorted by mean RNA-seq (proximal) or ATAC-seq (dis-
tal) signal. (C)Upset plots show colocalization of signal for proximal and distal regions for all four data types over all genotypes and stages. Regions common
between data types (filled circle) are joined by a vertical bar. Horizontal bar plots indicate the number of unique genes/features. Pie charts indicate pro-
portion of features with statistically different total read counts between time points (color indicates the number of times [0/1/2] the feature is differentially
expressed).
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our threshold for peak calling (Supple-
mental Fig. S1D) and are enriched in a
range of factors including Elav (Oktaba
et al. 2015) and H3K27me3, suggesting
that they represent amixture of regulato-
ry features, including enhancers with ac-
tive and repressed states.

To quantify dynamic changes in
each of the four regulatory layers across
embryonic development, we pooled all
F1 sampleswithin a time point to formal-
ly test for changes in read counts across
time (treating the data as 16 replicates
per time point). Both proximal and distal
sites, gene expression (RNA-seq), and
noncoding elements (based on ATAC-
seq and chromatin signatures) show sim-
ilar dynamics, with the majority (72%–

96%) of features showing statistically sig-
nificant changes in total counts between
developmental time points across all F1
lines (Methods) (Fig. 1C, pie charts).

Taken together, these features show
both the quality and richness of the data
and their usefulness to further annotate
the regulatory landscape of the Droso-
phila genome at these important stages
of embryogenesis.

Allele-specific variation

is common across genotypes

and regulatory layers

To quantify the impact of cis-acting ge-
netic variation, we compared the num-
ber of reads mapping to the maternal
and paternal chromosomes in each F1
cross, using informative SNPs to assign
reads to parent of origin (Methods) and
an empirical Bayes framework to formal-
ly test for imbalance in the ratio ofmater-
nal:paternal reads at each locus per line
and time point combination (Supple-
mental Fig. S2A). As expected, most
genes and regulatory features had allelic
ratios centered at 50:50 across autosomes
(Fig. 2A; Supplemental Fig. S2B), with a
slight elevation in the magnitude of alle-
lic imbalance (AI) at distal sites (Supple-
mental Fig. S3A). RNA allelic ratios were
also concordant with the direction of
change of embryonic eQTL (Supplemen-
tal Fig. S3B), previously quantified in the
same paternal lines at the same stages of
embryogenesis (Cannavò et al. 2017),
further verifying our approach and the
quality of the data. The early embryonic
time point (2–4 h) is an expected excep-
tion to this balanced maternal/paternal
ratio owing tomaternally deposited tran-
scripts and the presence of unfertilized
eggs (Supplemental Fig. S2B). We

E F
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C

D

Figure 2. Allelic imbalance (AI) is common across regulatory data types. (A) Density plot of allelic count
distribution for representative cross (vgn ×DGRP-028) at 10–12 h and matching box plots showing total
read count abundance (log10) in autosomes at TSS proximal (left) and distal (right) regions. Density plots
for all crosses shown in Supplemental Figure S2B. (B) Box plot shows the distribution of maternal allelic
ratios on the X Chromosome compared with genomic DNA (gray). (C) Pie charts show AI genes/features
at promoter-proximal (left; TSS ±500 bp) and promoter-distal (right; 500–1500 bp ± from TSS) regions
for all data types (FDR<0.1). (Top) AI events in at least one F1 line at any time point. (Bottom) AI events
detected in all eight F1 lines in all time points, on a per line and time basis. (D) Smoothed histograms
showing distribution of coefficients of genetic variation for all features with significant between-line var-
iances within each regulatory layer. (E) Box plots show the distribution of coefficient of genetic variation
(CVg; y-axis) for chromatin accessibility (left) and H3K27ac signal (right), for promoter-proximal and pro-
moter-distal sites. Genetic influences are more pronounced at distal elements in ATAC and H3K27ac. (F)
Three examples of individual lines having distinct expression variation on specific genes. Relative expres-
sion values are typically larger for RNA than noncoding features, an effect that often results from one or
two lines as shown here.
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therefore removed the 2–4 h time point RNA samples from all al-
lele-specific analyses.

To evaluate sex ratios in the embryo pools and to set a refer-
ence point for evaluating AI and dosage compensation on the X
Chromosome (Lucchesi and Kuroda 2015), we sequenced the ge-
nomic DNA (gDNA) of each cross. This confirmed that our embry-
onic pools were relatively sex balanced, with the expected X
Chromosome allelic ratio of approximately 0.66 observed for
gDNA (Fig. 2B). Sex-chromosome dosage compensation in
Drosophila is achieved by a two-fold up-regulation in gene expres-
sion of X Chromosome genes in XY males (Georgiev et al. 2011).
Consistent with this, we observed a maternal:paternal ratio of
0.74 for RNA, closely matching the expected 0.75 ratio (Methods)
(Fig. 2B). A proposed hypothesis for this twofold up-regulation in
gene expression on the male X Chromosome is that it is due to
a twofold increase in the loading of polymerase at the correspond-
ing promoter (Conrad et al. 2012). However, thematernal:paternal
ratio that we observe for chromatin data does not fully reflect this
up-regulation: For both chromatin accessibility and histone modi-
fications, the observed ratios at X Chromosome sites are more sim-
ilar to the observed genomic ratio of 0.66 than to the expected 0.75
ratio under full dosage compensation (H3K27ac = 0.688,H3K4me3
=0.692) (Fig. 2B). This indicates that dosage compensation in
Drosophila does not involve a linear increase in chromatin accessi-
bility on themaleXChromosome (althoughwe do observe a slight
increase in accessibility; ATAC=0.693) (Fig. 2B; Urban et al. 2017;
Pal et al. 2019). Regardless of its cause, we used the empirically ob-
served average ratio for X Chromosome features for each data type
to form the null hypothesis in subsequent beta-binomial tests
for AI.

Overall, AI is common, with 46% of genes and between 18%
and 25% of noncoding chromatin features showing statistically
significant AI in at least one line at one or more time point (FDR
<0.1) (Fig. 2C). Themagnitude of AI is generally evenly distributed
across SNPs with a range of minor allelic frequencies. However,
highly imbalanced peaks show a strong enrichment for extremely
rare SNPs found uniquely in thematernal line relative to theDGRP
panel (χ2 test, P<2.2 ×10−16) (Supplemental Fig. S3C), highlight-
ing the disproportionate impact of rare mutations on expression
phenotypes (Cannavò et al. 2017).

AI is more frequently observed for RNA than for other regula-
tory layers (Fig. 2C), in contrast to mammals (Goncalves et al.
2012; Wong et al. 2017). Additionally, Drosophila promoter-prox-
imal sequences appear to evolvemore rapidly than distal elements
(putative enhancers); proximal elements are slightly more poly-
morphic (pair-wise differences [pi] = 0.132 vs. 0.129; Wilcoxon
test, P=1 ×10−10) and evolve faster (phyloP=0.514 vs. 0.560;
Wilcoxon test, P<2.2 ×10−16) (Supplemental Table S4). Despite
this, distal peaks of open chromatin and H3K27ac show larger
(Tukey’s ASD, P<1 ×10−4) and slightly more frequent (χ2 test, P<
2.2 ×10−16) AI than their proximal counterparts (Supplemental
Fig. S3A).

To understand how allelic imbalance relates to heritable var-
iation at the total count level, we took advantage of the fact that
our measured F1 lines share a commonmaternal line but have un-
related, genetically diverse paternal lines. As a result, differences
among F1s are expected to be proportional to heritability, or the
degree to which phenotypic variation can be explained by genetic
factors (Lynch and Walsh 1998). Expressed as percentage devia-
tion from the mean phenotype (coefficient of genetic variation),
the impact of genetic variation on chromatin features is relatively
modest, with the average peak varying by ∼5%–10% of the mean

phenotype among crosses (Fig. 2D). The magnitude of heritability
genetic variation is generally higher at distal, compared with prox-
imal, regulatory elements (P<1×10−5; Methods) (Fig. 2E), consis-
tent with the greater magnitude of AI at distal sites. In contrast to
chromatin features, themagnitude of effects is generally higher for
RNA, with an average coefficient of genetic variation of ∼9% and a
tail extending to ∼40%. In many of these cases, high coefficients
are driven by one or a few lines showing highly divergent patterns
of expression (Fig. 2F), suggesting the presence of large effect, like-
ly cis-acting mutations.

AI is pronounced in metabolism and environmental

response genes

Categorical enrichment for AI (Methods) identifiesmore extensive
imbalance for genes associated with fast-evolving, Drosophila-spe-
cific genes (Mi et al. 2003; Turner et al. 2008) andmetabolic genes,
whereas TFs and their associated regulatory elements are depleted
(Supplemental Fig. S4; Supplemental Table S5), consistent with
our previous eQTL study (Cannavò et al. 2017). Selection may
play a role in these AI differences; regulatory regions in the vicinity
of TFs show reduced nucleotide diversity (pi, rank biserial correla-
tion=−0.052; P<1 ×10−4) and harbor more low-frequency SNPs
(rank biserial correlation=−0.173; P=2.8 ×10−3) (Supplemental
Table S5) compared with background. However, this difference
in AI may also be explained by different sensitivities between
gene categories to mutations, a point we explore below.

For most gene categories, AI is equally likely to favor the ma-
ternal or the paternal allele. However, immunity and insecticide
resistance genes show a clear paternal bias (Supplemental Fig.
S5A; Supplemental Table S6).Cyp6g1, for example, is not expressed
in embryos of our laboratory-derived maternal line (Supplemental
Fig. S5B) but is strongly up-regulated in every measured paternal
haplotype from the wild, and its expression contributes to DDT
resistance in multiple Drosophila species (Supplemental Fig. S5B;
Daborn et al. 2001; Battlay et al. 2016). Highly imbalanced
genes like Cyp6g1 (Supplemental Table S6) often overlap genes
whose expression varies extensively among lines (P<1×10−6)
(Supplemental Fig. S5C) and have high levels of heritability, sug-
gesting a close link between cis-acting variation and selection to
changing environments.

The impact of cis-acting genetic variation is largely consistent

across development

Gene expression is highly dynamic across development
(Arbeitman et al. 2002) and is largely driven by dynamic changes
in enhancer usage (Wilczyński and Furlong 2010; Reddington
et al. 2020). However, the extent to which this dynamism shapes
the impact of regulatory variation is not well understood. We
thus examined how allelic ratios at individual loci changed during
embryogenesis.

Overall, we observed considerable constancy of AI between
embryonic time points; imbalanced features at one time point
have a ∼50% chance of being imbalanced in the subsequent
time point (Fig. 3A; Supplemental Fig. S6A). To further quantify
this, we constructed a series of linear models comparing the effect
sizes of genetics (genotype/line) versus developmental stages
(time), and the interaction between the two (GxT), for both total
counts and allelic ratios.

For total counts, developmental timewas the greatest contrib-
utor to variation across all data types (Fig. 3B, upper panel), consis-
tent with the clear time-specific clustering by principal

Dissecting the functional impact of DNA variation

Genome Research 215
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266338.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266338.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266338.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266338.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266338.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266338.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266338.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266338.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266338.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266338.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266338.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266338.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266338.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266338.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266338.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266338.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.266338.120/-/DC1


component analysis (PCA; Methods) (shown for RNA in Fig. 3B,
lower panel). Time effects aremore pronounced at distal compared
with proximal ATAC peaks (Fig. 3D), reflecting both the constitu-
tive accessibility of many promoters and the dynamic usage of en-
hancers during development (Wilczyński and Furlong 2010;
Reddington et al. 2020). Interaction effects (GxT) occur frequently
and are particularly common for gene expression, making up
∼30% of all analyzed models (Supplemental Table S7), consistent
with our previous analyses at the total count level (Cannavò
et al. 2017).

In contrast, the impact of time is significantly reduced com-
pared with genetic effects for allelic ratios (Fig 3C, upper panel).
Correspondingly, there is a lack of time point–specific clustering
of allelic ratios in PCA (Fig 3C, lower panel), although there are
some examples of allelic ratios that change over time in a coordi-
nated manner between regulatory layers (Supplemental Fig. S6B).
Unlike total counts, there is little evidence for interaction effects
(Supplemental Table S7), consistent with the rarity of gene × envi-
ronment effects reported for AI (Moyerbrailean et al. 2016;
Knowles et al. 2017).

In summary, allelic effects are often larger at distal compared
with promoter regions, with effects at both regions being largely

consistent across developmental time points. In contrast, total
counts vary markedly between embryonic time points, with inter-
actions between genotype and developmental stage (GxT) being
common.

Genetic variation affects gene expression through chromatin by

two different mechanisms

Althoughhighly correlated, the causal relationships between chro-
matin accessibility, histonemodifications, and gene expression re-
main unclear. To assess this, we used allelic ratios as a perturbation
to different regulatory layers and modelled the paths by which ge-
netic variation impacts regulatory phenotypes. Like total counts,
allelic ratios are highly correlated among regulatory layers (Fig.
4A; Supplemental Fig. S7), and in all cases, we could reject the
null hypothesis of independence (all P-values < 4.2 ×10−17). Co-
occurrence of statistically significant imbalance (intersection-
union test, FDR<0.1) is pronounced for chromatin features, in par-
ticular H3K4me3 and H3K27ac, at promoter regions, with a log-
odds greater than 2.0 (Methods) (Fig. 4B). For chromatin accessibil-
ity and H3K27ac, the co-occurrence of AI is more pronounced at
promoters than enhancers (distal) (Fig. 4B), despite AI being

BA
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Figure 3. AI is generally not predictive of developmental time. (A) The relationship of AI across time for RNA (top) and chromatin accessibility (bottom).
Proportions of AI and non-AI features shown in black and gray, respectively, and represented by the thickness of line (exact numbers indicated). Data for
RNA at 2–4 h are not included owing to presence of maternal transcripts. (B, top) Box plots show distribution of time (T) and line (L) effect sizes obtained
frommixed linear models for total counts. (Bottom) Principal component analysis (PCA) of gene expression for total counts. (C, top) Box plots showing the
distribution of time (T) and line (L) effect sizes obtained from mixed linear models for allelic ratios. (Bottom) PCA of gene expression for allelic ratios. (D)
Results frommixed linear models examining the effect of developmental time versus line (genotype) between proximal and distal ATAC-seq peaks for total
count data. Distal peaks show a larger time effect compared with genotype effect (Mann–Whitney U test, P<2.2 × 10−61). This is only slightly evident for
promoter-proximal peaks (Mann–Whitney U test, P<8.5 × 10−5).
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more frequent (P<2.2 ×10−16) (Fig. 2C) and being of greater mag-
nitude (Supplemental Fig. S3A) at distal sites. This suggests that
H3K27ac and chromatin accessibility are more functionally cou-
pled at promoters compared with enhancers, perhaps reflecting

the fact that not all active enhancers seem to require H3K27ac
(Bonn et al. 2012; Pradeepa et al. 2016).

To identify potentially causal relationships across regulatory
layers, we used partial correlation to identify independent,

BA
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Figure 4. AI is propagated through regulatory layers via different epigenetic paths. (A) Heatmaps show Pearson correlation coefficient of allelic ratios
between each data type for promoter-proximal (left) and promoter-distal (right) regions. Data restricted to 6–8 h and 10–12 h and features/genes whose
allelic ratio exceeds 0.5 ± 0.06. (B) Log odds (intersection-union test) of co-occurrence of AI between two regulatory layers: 6- to 8-h and 10- to 12-h data
shown; bars (from dots), 95% confidence intervals. (C) Stepwise example of partial correlation analysis of allelic ratios between chromatin accessibility and
gene expression (ATAC&RNA; top), and promoter-proximal chromatin accessibility and H3K4me3 (ATAC&H3K4me3; bottom). Venn diagram schematics
(top left) illustrate the variance of each variable and its shared proportion (orange), measured by linear regression (orange lines). (Left panels) Pearson’s
correlations for the two comparisons are significant. (Middle) Regression of each initial variable against a third, confounding variable (H3K4me3, upper
row; RNA, lower row). Residuals of the initial variables (colored lines) represent the nonoverlapping part of the circle of the same color in the schematic.
(Right) Correlations of the residuals, excluding shared variance by the confounding factor (dashed circle in schematic). This resulting partial correlation
is significant in the top, and not in the bottom, examples. (D) Partial correlation and directional dependency regression for total counts (left) and allelic ratios
(right). Significant partial correlations (solid lines) suggest direct dependencies among regulatory layers. For each significant edge (P<0.01), copula regres-
sion was used to assign directionality (arrows; delta > 0.01). Line thickness indicates the value of partial correlations; dashed lines indicate nonsignificance.
Promoter-proximal and promoter-distal results shown separately.
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pairwise correlations between multiple covarying variables be-
yond their global correlations, after thresholding on allelic ratios
to remove features/genes with low information content
(Methods) (Fig. 4C; Supplemental Fig. S8A; Lasserre et al. 2013;
Pai et al. 2015). For total count data, our results closelymirror those
of Lasserre et al. (2013) in CD4+ and IMR-90 cells, including find-
ing a clear relationship between gene expression levels and the to-
tal abundance of H3K27ac that is independent, at least at a
statistical level, of the correlation between expression and
H3K4me3 (i.e., there is little independent correlation between
changes in RNA and changes in H3K4me3 total counts) (Fig. 4D,
left). We also observed a statistically significant relationship be-
tween open chromatin and gene expression, confirming that al-
though RNA levels are influenced by post-transcriptional
processes, genetic variation at cis-regulatory elements contributes
directly to differences in gene expression among individuals.

This relationship is even more pronounced for allelic ratios,
which show a clear link between open chromatin and gene ex-
pression at both proximal and distal elements (Fig. 4D, right).
H3K27ac and open chromatin are also significantly correlated
at promoters, although we see little evidence for a direct relation-
ship between H3K27ac and gene expression itself (Fig. 4D, right).
The latter is a marked difference from what is observed with total
count data and suggests that although H3K27ac at promoters is
highly correlated with, and even predictive of (Karlic et al.
2010), gene expression, they may not be mechanistically directly
linked. In contrast, allelic ratios for promoter-proximal H3K4me3
show strong evidence of a direct correlation with gene expression
that is independent of allelic differences in chromatin accessibil-
ity or H3K27ac (Fig. 4D, right). Taken together, this analysis
suggests two independent pathways by which segregating muta-
tions influence gene expression: one affecting open chromatin
and promoter-proximal H3K27ac and the other influencing
H3K4me3.

To explore these relationships further, we analyzed each edge
identified by partial correlations using copula directional depen-
dence analysis (Kim et al. 2008; Lee and Kim 2019), a statistical ap-
proach based on copula regression that evaluates the directionality
of pairwise relationships while allowing for nonlinearities
(Methods). For TSS-proximal regions, our analysis placed RNA up-
stream of both H3K4me3 and open chromatin (Fig. 4D, right, ar-
row). Although counterintuitive at first glance, this suggests that
gene expression is relatively robust to variation in H3K4me3,
whereas conversely, variation in RNA is more predictive of
H3K4me3 signal. This may reflect buffering processes but is also
consistent with the hypothesis that H3K4me3 is not functionally
required for transcription but is rather deposited as a consequence
and may be involved in post-transcriptional events (Howe et al.
2017). Similarly, allele-specific variation in RNA better explains
variation in chromatin accessibility compared with the reverse;
that is, not all variation in open chromatin leads to a correspond-
ing change in gene expression (Fig. 4D, right).

In summary, by measuring informative dependencies on
the impact of cis-acting genetic variation, we identified multiple
epigenetic pathways affecting transcription. Specifically, genetic
variation acts to change gene expression levels via the interplay be-
tween at least two different promoter-proximal paths: open chro-
matin and H3K27ac, or H3K4me3. Moreover, the flow of
information suggests that gene expression is often buffered against
cis-actingmutations (presumably affecting TF binding) at associat-
ed regulatory elements, although we cannot rule out post-tran-
scriptional processes that may also help to buffer allelic ratios.

Regulatory buffering varies depending on gene function and local

chromatin architecture

Genes often differ in the complexity of their regulatory landscapes.
Metabolic genes, for example, typically have relatively simple and
compact regulatory landscapeswith few enhancers that are located
close to the gene’s promoter (Zabidi et al. 2015; Corrales et al.
2017). TFs, in contrast, have many enhancers often with partially
overlapping spatial activity (“shadow enhancers”), located at vary-
ing distances from the gene’s promoter (Spitz and Furlong 2012;
Long et al. 2016), which may help to buffer TFs against mutations
in regulatory DNA (Xiong et al. 2002; Cretekos et al. 2008;
Montavon et al. 2011; Cannavò et al. 2016; Lu and Rogan 2018).
We evaluated this hypothesis in twoways. First, we assessed the ex-
tent towhich AI in the expression of different gene categories is in-
dependent of, or buffered from, imbalance in their associated
regulatory elements using conditional probabilities. Among all
comparisons, the expression of ancient genes (conserved bilater-
ian processes) and of genes coding for TFs, transmembrane pro-
teins, and signaling components is most robust to imbalance in
their regulatory regions, whereas genes involved in metabolism
have high sensitivity (Fig. 5A, cf. blue and orange).

Second, we directly assessed the relationship between AI and
regulatory complexity (ATAC-seq peak number within a gene’s ±
1.5-kb TSS regulatory domain). Imbalanced genes have fewer asso-
ciated ATAC peaks genome-wide (Kruskal–Wallis, P=1.1 ×10−16)
(Fig. 5B), a trend that is most pronounced for single-peak genes,
which have significantly more AI than genes associated with mul-
tiple regulatory elements (Mann–Whitney U test, P = 6.4 ×10−6).
Furthermore, genes associated with previously characterized, par-
tially redundant “shadow enhancers” (Cannavò et al. 2016) have
a modest reduction in the frequency of AI compared with genes
without (x2 = 5.3, P= 0.02) (Fig. 5C). However, AI at multiple en-
hancers in the vicinity of a gene can have a cumulative influence
on gene expression, as genes with multiple regulatory elements
are more likely to be imbalanced when multiple associated peaks
show unbalanced allelic ratios (Fig. 5D).

In summary, the degree to which a gene’s expression is influ-
enced by noncoding genetic variation in its regulatory elements is
influenced by the gene’s regulatory complexity, with more regula-
tory elements providing a degree of buffering against genetic
perturbations.

Trans-acting variation influences the heritability

of gene expression

Regulatory differences between individualsmay also be influenced
by trans-acting genetic variation. To assess the influence of trans-
acting variation, we measured the same regulatory features in em-
bryos from our maternal line (vgn) and one paternal line (DGRP-
399), forming a trio of embryos from both parental lines (F0)
and their F1 embryos. This allowed us to quantify trans effects by
comparing the difference between parental lines (from both cis-
and trans-acting variants) to allelic ratios (cis only) measured in
the F1 (Landry et al. 2005; Tirosh et al. 2009; Goncalves et al.
2012; Wong et al. 2017) using a maximum likelihood framework
that classified genes and features as cis, trans, cistrans, or conserved
(Wong et al. 2017).

Among noncoding chromatin features, cis-acting effects are
more common than trans (59% vs. 41%; P<2.2 ×10−16, χ2;
Methods) (Fig. 6A; Supplemental Table S8). This enrichment is par-
ticularly pronounced for histone modifications, with nearly twice
as many cis influenced peaks compared to trans (Fig. 6A;
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Supplemental Fig. S9A). For both open chromatin and H3K27ac,
cis effects are slightly more common at promoters than enhancers
(ATAC=0.32 vs. 0.29, H2K27ac =0.30 vs. 0.27; P<1×10−4).

Gene expression, in contrast, is more strongly influenced by
trans-acting genetic variation (55% trans vs. 45% cis; P=0.0073,
χ2) (Fig. 6A). Moreover, a higher fraction of cistrans genes have
more trans, compared with cis, variation (trans proportions 0.67
vs. 0.53; P=2.77×10−5) (Supplemental Fig. S9A), whereas cis and
trans are balanced for cistrans classified noncoding features.

Previous studies suggest that trans-
influenced features generally show non-
additive inheritance (Lemos et al. 2008;
Meiklejohn et al. 2014; Wong et al.
2017) and are thus less likely to be
directly influenced by natural selection
(Lynch and Walsh 1998). Our data sug-
gest that open chromatin features,
whether influenced by cis or trans, have
primarily additive inheritance (Supple-
mental Fig. S9B), consistent with the
finding that most variation affecting TF
binding is inherited additively (Wong
et al. 2017). In contrast, for gene expres-
sion, an additive model could be rejected
for 32% of genes, with trans influenced
genes departing from an additive model
more frequently than cis (24% vs. 2%;
χ2, P< 1×10−4) (Fig. 6B). Trans effects
are most common for genes associated
with complex regulatory landscapes
(Supplemental Table S9), and corre-
spondingly, genes showing nonadditive
inheritance have more ATAC peaks
(2.19 peaks per gene vs. 1.82; Wilcoxon
test, P=1.4 ×10−3). This suggests that in
addition to buffering genes from cis-regu-
latory variation, complex regulatory
landscapes can influence patterns of
heritability, with downstream conse-
quences for how selection can act on
gene expression phenotypes (Supple-
mental Fig. S9).

Discussion

In this study, we generated an extensive
F1 data set to better understand the func-
tional impact of genetic variation in reg-
ulatory DNA on embryonic gene
expression and to shed light on how
these effects are propagated or buffered
through different regulatory layers. Our
analysis revealed several new insights
into the impact of regulatory mutations
on transcriptional phenotypes.

First, although cis-acting genetic
variation is common in development,
its effects are not equally distributed
across the genome. Allelic variation
both is more frequent and has greater
magnitude at distal regulatory elements
(putative enhancers) compared with pro-

moters, despite genetic variation itself beingmore common at pro-
moters. This may in part be owing to differences in the relative
importance of sequence content at promoters and enhancers:
Many promoters, particularly for broadly expressed genes, have
high tolerance to genetic variation (Schor et al. 2017). But despite
having a greater magnitude, AI at distal elements is less likely to be
propagated to other regulatory layers (Fig. 3), suggesting that en-
hancer mutations are often effectively buffered, a hypothesis
that fits well with the observed robustness of gene expression to
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Figure 5. Regulatory buffering varies across gene categories and with local chromatin structure. (A)
Conditional probability of AI in gene expression given AI in associated chromatin (left) and H3K27ac
(right) peaks across gene categories. X-axis shows log2 fold change; background is genome-wide expec-
tation. Gene categories enriched (orange) or depleted (blue) for imbalance are indicated (FDR >0.1,
Fisher’s exact test). n = number of genes per category combined across all lines and both 6- to 8-h and
10- to 12-h samples. (B) Box plots showprobabilities of AI in gene expression based on numbers of neigh-
boring ATAC peaks (TSS < 1.5 kb). Genes with more ATAC peaks are less likely to show AI. (C) Pie charts
show the proportion of genes with AI in RNA associated to ATAC-seq peaks overlapping known partially
redundant/shadow enhancers (top) or not (bottom). Genes associated with shadow enhancers are less
likely to have AI (determined using a beta-binomial model; x2=5.3, P=0.02). (D) Box plots show the
probability of AI in gene expression (P-value from a beta-binomialmodel; y-axis) as a function of the num-
ber of ATAC-seq peaks with AI (left) or not imbalanced (right).
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deletions that remove distal regulatory elements (Hong et al. 2008;
Cannavò et al. 2016).

Second, although all data types (open chromatin, histone
modifications, RNA levels) are highly correlated, their explanatory
values (potential causal relationships) as revealed by partial corre-
lation analysis are not equal. By using cis-acting variation as pertur-
bations to development, we observed a strong, likely direct,
relationship between variants affecting open chromatin (TF bind-
ing) at proximal and distal sites to a degree that was not observed at
the total count level. We also uncovered a strong, potentially caus-
al, link between allelic imbalance in H3K4me3 signal and AI in the
expression of the corresponding genes,whichwas largely indepen-
dent of imbalance in H3K27ac signal. Our copula analysis placed
H3K4me3 downstream from RNA (Fig. 4D), suggesting that al-
though AI at the RNA level is predictive of AI in H3K4me3, muta-
tions impacting H3K4me3 often do not directly impact RNA. This
placement of RNA upstream of H3K4me3, inferred from our anal-
ysis of the functional impact of genetic variation, is supported by
recent genetic ablation studies showing that RNA transcription
does not require H3K4me3 (Clouaire et al. 2012, 2014; Margaritis
et al. 2012) and is consistent with suggestions that H3K4me3 is
deposited as a consequence of transcription and may be required
in more downstream post-transcriptional events (Howe et al.
2017).

Third, the impact of cis-acting variation on gene expression is
influenced by regulatory complexity, with genes having more reg-
ulatory elements being less likely to show AI (Fig. 5). This may re-
flect selection against variation in regulatory elements associated
with these genes, and indeed, we observe less AI in regulatory ele-
ments associated with developmental regulators, extending previ-
ous findings (Cannavò et al. 2016). But even accounting for
reduced overall AI, TFs and other genes with complex regulation
show more independence from AI in associated regulatory layers.
Although we cannot rule out a role for allele-specific post-tran-
scriptional processes (Pai et al. 2012; Sun et al. 2018), these results
suggest an active buffering process resulting from the presence of
multiple regulatory inputs (Lu and Rogan 2018; Waymack et al.

2020). That said, as the number of regulatory elements with AI
near a gene increases, so does the probability that the gene will
show AI, suggesting that such buffering is not absolute.

Finally, trans-acting variation is more common for RNA than
other regulatory layers, particularly for genes with complex regu-
latory landscapes such as TFs. This later observation, likely owing
to the buffering effects of complex cis regulatory landscapes
(Scholes et al. 2019; Waymack et al. 2020), has potentially coun-
terintuitive evolutionary consequences: Although reduced in ge-
netic variation overall, predominantly trans-influenced genes are
more likely to show nonadditive, and thus less selectable, pat-
terns of inheritance. As a result, trans-acting variation in genes
such as TFs may remain in populations even as negative selection
and buffering act to reduce the influence of cis-acting mutations.
Why trans-acting variation is more common for RNA is not im-
mediately clear but may reflect the accumulation of variation im-
pacting both transcriptional and post-transcriptional processes
(Liu et al. 2019).

In summary, allelic variation in chromatin accessibility and
histone modifications at regulatory elements is prevalent and ca-
pable of propagating across regulatory layers. The extent of this
information flow, or propagation, depends on the type of
regulatory element and appears mitigated at developmental
regulators.

Methods

Fly husbandry, crosses, and embryo collection

F1 hybrid embryoswere generated by crossingmales fromeight ge-
netically distinct inbred lines from the DGRP collection (Mackay
et al. 2012) to females from a common maternal “virginizer”
line. The virginizer line contains a heat-shock-inducible proapop-
totic gene (hid) on the Y Chromosome (Starz-Gaiano et al. 2001) of
a laboratory reference strain (w1118) that kills all male embryos af-
ter a 37°C heat-shock.

BA

Figure 6. Chromatin features are more heritable than gene expression. (A) Scatter plots of F1 allelic ratio (x-axis) against the maternal/paternal ratio ob-
served in (normalized) parental, total count libraries (y-axis). Genes/features along the diagonal are exclusively influenced by cis-acting variation, whereas
vertically distributed genes/features show exclusively trans influences. Colors indicate maximum likelihood classification into cis, trans, and cistrans (a mix-
ture of cis and trans) or conserved genes/features. (B, top) Bar plots showing the magnitude of deviation from additivity (parental mean) for cis versus trans
(BIC≥2) features. (Bottom) Pie charts showing fraction of additive and nonadditive genes for cis (left) and trans (right) classes.
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RNA-seq, ATAC-seq, and iChIP

For three developmental stages (2–4 h, 6–8 h, and 10–12 h after egg
laying), we performed RNA-seq, ATAC-seq, and iChIP for H3K27ac
and H3K4me3 for pooled embryos of each F1 strain. All
experimentswere performed in biological replicates from indepen-
dent embryo collections. iChIP experiments were performed as
previously described (Lara-Astiaso et al. 2014). Detailed library in-
formation can be found in the Supplemental Methods, pages 13
through 15.

Sequencing read processing

Strain-specific genomes and annotations were constructed by in-
serting genetic variants and indels into theDrosophila dm3 assem-
bly (version 5 from FlyBase) and translating the reference
annotations (r5.57) to the personalized genomes using pslMap
(Zhu et al. 2007). ATAC-seq andChIP-seq readsweremapped using
BWA (Li and Durbin 2010), whereas RNA-seq reads were mapped
using STAR (Dobin et al. 2013) followed by quality filtering and
the assignment of reads to parent of origin using SNP overlaps
(for more details, see page 16 in the Supplemental Methods).

Demarcation of distal peaks

We evaluated the Spearman’s correlations of allelic ratio between
ATAC-seq and histone mark peaks to gene expression based on
peaks at increasing distances from the genes’ TSS up to a distance
of 10 kb. We defined a distance of 1.5 kb from the TSS to be a con-
servative demarcation between proximal and distal peaks based on
the presence of reasonable correlations between genes and associ-
ated peaks at this distance.

Test for allele-specific imbalance

Because of the extensive maternally deposited transcripts still pre-
sent at 2–4 h, we excluded the RNA-seq data from this time point
from all downstream allele-specific analysis to avoid potential
confounding effects in AI measurements. To test for AI, an empir-
ical Bayesian statistical framework was used to test the null hy-
pothesis for differences in read counts between F1 alleles for
each feature of each data set (RNA-seq, ATAC-seq, H3K4me3,
H3K27ac) (see page 21 of the Supplemental Methods).

Allele-specific changes across lines and developmental time

A linearmixed-effectsmodel, in which random effect components
were incorporated, was used to estimate variability between pools
of individuals, time points and lines:

yd,s,r,tf = mf + dtf + vs
f + (dv)tf vs

f � N(0, s2
f )

μf is the intercept term, dtf is a randomeffect termdenoting time,vs
f

is a random effect based on strain, and (dv)tf is a interaction term
for time by strain.

To infer the significance of time- or strain-dependent allele
bias, we restricted the values that the parameters can take.
Library size differences were corrected for at the allele-combined
count level using the TMM method in “edgeR” (Robinson et al.
2010) before analysis. Not all features contained enough informa-
tion for statistical testing; analyses were limited to features with at
least six samples in each of the three time points in at least four ge-
netic strains.

Allele-specific changes across regulatory layers

Intersection-union tests were used to examine the pairwise co-oc-
currence of AI in overlapping genes/features, limited to autosomes,

based on rejecting the null hypothesis if a significant outcome
with respect to the feature compared at the same time point exists
for both data types (Berger and Jason 1996).

To infer pairwise relationships between regulatory data types
while reducing indirect relations, partial correlation analysis was
performed using “GeneNet” (Opgen-Rhein and Strimmer 2007)
for both allelic ratios and total count data. Directional dependence
modeling was performed in a regression framework using copulas
(Lee and Kim 2019) to infer the flow of information for significant
pairwise relationships in partial correlation analyses (see page 26 of
the Supplemental Methods).

Conditional probabilities for the probability of AI given im-
balance in a different regulatory data type were calculated by the
following definition:

P(A|B) = P(A>B)
P(B)

,

where A and B are the probabilities of AI in each data type.

Cis/trans analysis

For one F1 line (vgn×399) and its parental lines, maximum likeli-
hood estimation (MLE) was used to compare parental and off-
spring ratios simultaneously to determine whether gene
expression, chromatin accessibility, or H3K4me3 andH3K27ac en-
richments are influenced by cis-acting, trans-acting, conserved, or
cistrans-acting effects bymodeling read counts. For parents, the to-
tal count data were modeled using negative binomial distributions
whereas allelic differences in F1s weremodeled using beta-binomi-
al distributions (Supplemental Methods). We constrained parame-
ter estimation for each model based on four different regulatory
scenarios and derived maximum likelihood values for each feature
(shown in Fig. 6A; Supplemental Fig. S9C). In subsequent analyses,
we limited analyses to features that showed a BIC difference equal
or greater than two.

Measuring additive versus nonadditive heritability

Additive inheritance implies that the F1 signal is equal to the mid-
point (average) of the two parents. Nonadditive inheritance in this
analysis was thus determined by testing for departure of the F1
from the parental midpoint using DESeq2 (Love et al. 2014).

Data access

All raw data generated in this study have been submitted to
the EMBL-EBI ArrayExpress database (https://www.ebi.ac.uk/
arrayexpress/) under accession numbers E-MTAB-8877 (gDNA),
E-MTAB-8878 (RNA-seq), E-MTAB-8879 (ATAC-seq), and
E-MTAB-8880 (ChIP-seq H3K4me3, H3K27ac). Processed data, in-
cluding total counts, allelic ratios, cis/trans estimates, estimated
per-feature heritability, mappability filters, and parental genotype
files, can all be downloaded from http://furlonglab.embl.de/data.
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