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ABSTRACT: This review explores the tribological properties of biosourced lubricants
(biolubricants) enhanced by graphene (Gr) and its derivatives and hybrids. Friction and
wear at mechanical interfaces are the primary causes of energy loss and machinery
degradation, necessitating effective lubrication strategies. Traditional lubricants derived from
mineral oils present environmental challenges, leading to an increased interest in
biolubricants derived from plant oils and animal fats. Biolubricants offer high
biodegradability, renewability, and low toxicity, positioning them as ecofriendly alternatives.
This work extensively reviews the role of Gr-based nanoadditives in enhancing the
lubrication properties of biolubricants. Gr with its exceptional physicomechanical properties
has shown promise in reducing friction and wear. The review covers various Gr derivatives,
including Gr oxide (GO) and reduced Gr oxide (r-GO), and their performance as
lubrication additives. The discussion extends to Gr hybrids with metals, polymers, and other
2D materials, highlighting their synergistic effects on the tribological performance. The
mechanisms through which these additives enhance lubrication, such as the formation of protective films and improved interactions
between lubricants and tribopairs, are examined. Emphasis is placed on the environmental benefits and potential performance
improvements of Gr-based biolubricants. Finally, by analyzing current research and technological trends, the paper outlines future
prospects for optimizing lubricant formulations with Gr-based nanoadditives, aiming for more sustainable and efficient tribological
applications.

■ INTRODUCTION
Friction and wear are prevalent in mechanically engaged
interfaces and are key contributors to energy loss and
mechanical degradation of many industrial machinery
parts.1,2 This major problem underscores the urgency of
managing and reducing friction to improve productivity and
sustainability.3,4 Overall, unchecked friction can lead to rapid
deterioration of mechanical components, resulting in reduced
service life and reliability.5,6 Thus, lubrication is a pivotal
method for mitigating friction and wear in tribopairs
(interacting machine components). Historically, lubricants
derived from vegetable oils, animal fats, and aqueous sources
have been utilized.7 At the same time, contemporary
advancements in lubrication technologies using advanced
materials have significantly enhanced our ability to address
tribological challenges.8 In general, lubricants are categorized
into solid and liquid forms. Solid lubricants, though effective,
may suffer from wear-out due to environmental factors, such as
detrimental interactions with oxygen and water, thereby
limiting their durability.9 On the other hand, liquid lubricants
(notably mineral and engine oils) are preferred in mechanical
industries for their robust antifriction capabilities. These
lubricants are understood to form protective films on tribo-

pairs, reducing metal-to-metal contact.10 However, challenges
arise under extreme conditions, such as engine start-up or
shutdown, which has prompted research into improved
boundary lubrication by utilizing additives in base oil
formulations.11 These additives have been shown to enhance
lubrication, high-temperature viscosity, oxidation resistance,
and wear-reduction properties of the base oil.12 While
traditional additives like zinc dialkyldithiophosphate (ZDDP)
and molybdenum dithiocarbamate (MoDTC) offer stability
and performance to oil, their environmental and corrosion
concerns have led to the exploration of alternatives, including
nanomaterials, ionic liquids, and organic compounds.10,13

Notably, carbonaceous nanoadditives have emerged as
promising alternatives, demonstrating significant improve-
ments in the lubrication and antiwear properties of oil.14

Research on carbonaceous materials as nanoadditives for
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lubricants is still ongoing, with graphene (Gr), graphite,
fullerenes, and diamonds as typical examples. Gr is notable for
its superior physicomechanical and electrical properties.15,16

This two-dimensional carbonaceous nanomaterial is exten-
sively used in both micro- and macro-tribological applica-
tions.17 Key derivatives of Gr include Gr nanoplatelets (GnPs),
Gr oxide (GO), and reduced Gr oxide (r-GO), which differ in
chemical composition and exhibit distinct chemical and
structural properties. These Gr derivatives, especially GO
and r-GO, have gained prominence in tribological research due
to their exceptional performance as water-based and oil-based
lubrication additives.18

Biosourced lubricants (biolubricants), which are primarily
derived from plant oils and animal fats, have gained much
attention as ecofriendly alternatives to conventional mineral-
based lubricants. They are especially preferred over the latter
lubricants due to their high biodegradability, renewability, and
low toxicity.19 Today, biolubricants are utilized not only in
industrial applications, but also in pharmaceuticals, cosmetics,
and other consumer products.20−22 They comprise triglycer-
ides, phytosterols, natural pigments, phospholipids, and fatty
acids and provide an effective protective film on contact
surfaces to mitigate friction and wear.23,24 Essential properties
of an effective lubricant include good thermal stability, high
viscosity index, low freezing point, high boiling point, and
resistance to oxidation.25,26 Recently, the incorporation of Gr-
based nanoadditives into biolubricants has been explored to
further improve their lubrication properties. The development
and discussion of this important aspect of the Gr bibliography
would be a huge addition and a necessity for the development
of this field of research. As this domain continues to expand at
a rapid rate, reviews and surveys on the most recent
advancements of Gr as a nanoadditive for biolubricants are
much needed. In this respect, there is an immediate demand
for a timely, thorough, and in-depth review on the latest
advances in Gr-based biolubricants, which hold great potential
as interesting 2D carbonaceous nanoadditives for tribology
applications. This review addresses the application of Gr, its
derivatives, and hybrids as nanoadditives specifically in
biolubricants, an area that has not received as much attention
as studies involving synthetic or mineral-based lubricants.27,28

Unlike most previous research that has largely focused on
synthetic lubricants, this work shifts the focus toward Gr-based
nanoadditives in biolubricants, which are derived from
renewable sources and support the goal of sustainable
industrial practices. The study systematically categorizes
these nanoadditives, including those modified with metallic
elements, polymer coatings, and 2D heterostructures, revealing
how different modifications impact friction reduction, wear
resistance, and thermal stability.29,30 It further delves into the
mechanisms by which GO and r-GO enhance tribological
performance, emphasizing their role in forming protective films
and enhancing lubricant interactions at the molecular level.31,32

Additionally, the review examines the synergistic effects
observed with Gr-based nanoadditives and biolubricants,
demonstrating that these combinations can outperform
conventional mineral-based lubricants and provide insights
into advancing sustainable tribological technologies from
laboratory research to practical industrial applications.

To provide further focus and context to these efforts, the
impact of Gr and its derivatives and hybrids on the tribological
properties of biolubricants is reviewed herein. Specifically, the
context and importance of using biolubricants in various
industries are introduced first, followed by a detailed account
of the use of Gr and its derivatives and hybrids as potential
nanoadditives in biolubricants. This includes discussions on
the classifications of Gr-based nanoadditives based on their
modifications with metallic elements, polymers, and integra-
tion in 2D heterostructures. Emphasis is given to explaining
how the exceptional properties of Gr can be harnessed to
improve lubrication. The subsequent sections examine GO and
r-GO as lubricant nanoadditives, showcasing their tribological
performance in liquid lubricants. The mechanisms through
which these nanoadditives influence lubrication are further
explained, including their roles in forming protective films and
enhancing the interactions between the lubricant and tribo-
pairs. Next, the discussion shifts toward biolubricants,
emphasizing their environmental benefits and observed
synergistic effects with Gr-based nanoadditives. Finally, the
future prospects of utilizing Gr-based nanoadditives in
biolubricants are discussed, with a focus on the environmental
benefits and potential performance improvements. The

Figure 1. Structure of the current review paper.
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structure of the review paper is summarized in Figure 1. By
analyzing current research and technological trends, this review
outlines the path forward for optimizing lubricant formulations
with Gr-based nanoadditives to enable more sustainable and
efficient tribological applications.

■ GRAPHENE AND ITS DERIVATIVES
Based on their dimensions, carbon nanostructures are
categorized into 0D, 1D, 2D, and 3D. 0D structures include
fullerenes, carbon dots (CDs), and Gr quantum dots (GQDs),
1D nanostructures encompass carbon nanotubes (CNTs) and
carbon nanofibers (CNFs), and 2D nanostructures include Gr
and graphitic carbon nitride (g-C3N4). Among these, Gr has
attracted much attention across various scientific and
technological fields due to its unique properties.33 3D carbon
nanostructures often combine 1D and 2D nanostructures, such
as Gr superstructures and nanotube-Gr hybrids. Gr, a 2D
nanostructure, was first isolated using a simple sticky tape
technique by Geim and Novoselov, sparking a revolution in
research across multiple disciplines.34 It is celebrated for its
exceptional physicochemical characteristics, such as high
thermal conductivity, mechanical strength, and biocompati-
bility, making it one of the strongest, thinnest, and lightest
materials at the atomic level.35 Gr is a single layer of sp2-
bonded carbon atoms arranged in a honeycomb lattice, giving
it a vast surface area, and making it impermeable even to
helium atoms.36 Its applications span biomedical, energy,
environmental, tribology, biosensors, and water desalination
fields, among others.15,37,38 Despite its hydrophobic nature and
stability in air up to 200 °C, Gr tends to aggregate in aqueous
media and is insoluble in organic solvents.36 The commercial
production of Gr faces challenges due to the diversity of
synthesis techniques, broadly classified into top-down and
bottom-up approaches.39 The top-down method, suitable for
industrial-scale production, includes exfoliation, electrochem-
ical methods, and laser ablation. At the same time, the bottom-
up approach, yielding high-quality Gr with superior electrical
properties, comprises chemical vapor deposition, arc discharge,
pyrolysis, and plasma synthesis.
Gr stands out for its exceptional antifriction and antiwear

properties, setting it apart from conventional materials. It can
serve as both a solid and colloidal liquid lubricant, leveraging
its notable thermal, electrical, optical, and mechanical proper-
ties. The keys to its superior tribological performance include
high chemical inertness, significant mechanical strength, and
the ability to easily shear on its atomically flat surface, which
reduces wear on contacting surfaces. Research by Lee et al.40

highlighted Gr as one of the strongest materials known, with its
atomically smooth surface and low surface energy, enhancing
its role in minimizing adhesion and friction between tribo-
pairs.9 Gr and its derivatives GO and r-GO differ slightly in
their physicochemical properties but share a similar 2D
structure.41 The electrical conductivity of GO is lower due
to its oxygen-rich functional groups, but it can be converted to
r-GO to achieve properties akin to Gr, which are not attainable
from pure graphite.

■ CLASSIFICATIONS OF GRAPHENE-BASED
NANOMATERIALS
Unmodified or Structurally Imperfect Gr. The intrinsic

lamellar features of Gr and its structural features and defects,
such as the number of layers, interlayer spacing, surface

characteristics, atomic vacancies, and edge bonds, critically
influence its lubrication properties. These factors impact the
structural strength, shear barriers, and stress distribution, which
are essential under extreme conditions.10,42 The tribological
performance of Gr is determined by layer configurations and
spacing, which influence surface energy and the potential for
frictional contact.43,44 Gr nanosheets synthesized through
chemical red-ox or mechanical exfoliation show improved
tribological due to structural evolution toward order under
frictional forces.45,46 However, atomic-scale variations like
vacancies and heterogeneity can lead to inconsistent
experimental results.47,48 Even minimal atomic vacancies can
significantly increase the friction coefficient due to the
enhanced reactivity of adjacent bonds and strain distribution.48

Additionally, atomic doping with elements such as nitrogen
enhances, whereas boron deteriorates tribological performance
by altering the potential energy corrugation during sliding, with
nitrogen reducing and boron increasing the frictional
forces.47,49,50

Metal-Modified Gr. Metal-based nanomaterials such as
Cu, Ag, Zn, and Sn enhance lubrication under harsh conditions
by forming robust boundary tribofilms via adsorption,
infiltration, and chemical reaction at interfaces.51−53 Modifying
the Gr surface with metal nanoparticles leverages the film-
forming abilities and shearing characteristics of Gr to optimize
lubrication in demanding environments. For example, research
by Gan et al.54 introduced a novel GO/Cu nanocomposite
developed through a liquid-phase method, which, when added
to polyethylene glycol, markedly improved its friction and wear
resistance by up to 47%. Additionally, Ag nanoparticles are
recognized for their effectiveness of lubrication, though their
application is hindered by agglomeration and complex
synthesis.55 A single-step laser irradiation method has been
developed to modify Gr nanosheets with Ag nanoparticles,
improving its lubrication and wear resistance through self-
lubrication, rolling effects, and a self-healing mechanism.55,56

The lubrication efficacy of Gr is dependent on the optimal size
and density of metal nanoparticles, which prevent agglomer-
ation and enhance synergistic lubrication effects.54,57 Metals
such as Al, Mn, Fe, and Ni, which readily oxidize, form oxides
that improve the lubrication and mechanical properties of Gr
nanosheets.58,59 Integrating metal oxide/Gr nanocomposites
into self-lubricating substrates elevates tribological properties
and mechanical strength.60,61 For example, Al2O3/Gr dispersed
in a tungsten carbide ceramic matrix notably increases
lubrication, refines grain size, and enhances hardness (from
16.18 to 18.34 GPa) and fracture strength (from 8.08 to 11.02
MPa m1/2).61 Similarly, Gr nanosheets coated with Fe3O4
nanorods improve thermal stability, mechanical strength, and
tribological performance in bismaleimide substrates.60 More-
over, metal oxide nanoparticles anchored to Gr reduce van der
Waals interactions, facilitating better dispersion in lubricants
and increasing the lamellar spacing for enhanced lubrica-
tion.51,62 A prominent example includes Mn3O4/Gr nano-
composites, prepared via hydrothermal and green synthesis,
which achieve uniform dispersion and deeper penetration of
nanoparticles into Gr layers for improved stability and
lubrication.59

Polymer-Modified Gr. Polymers such as polytetrafluoro-
ethylene (PTFE), polyether ether ketone (PEEK), and
polyimide (PI) are recognized for their self-lubricating
qualities, which are crucial in demanding lubrication environ-
ments.63,64 By manipulating their molecular weight through
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synthesis conditions, diverse morphologies and structures are
achieved to meet specific lubrication needs.64,65 Gr nanosheets,
known for their large specific surface area, serve as a robust
base for polymer growth, thus enhancing lubrication perform-
ance by increasing its adsorption energy and film-forming
ability in severe conditions.64,66 This synergy has spurred
interest in polymer-modified Gr for improved lubrication.
Polymer nanomaterials like polydopamine (PDA), inspired by
mussel proteins, are used for surface modification of Gr and as
intermediates for grafting nanoparticles, to improve its
lubrication and mechanical properties.63,66 PDA not only
enhances van der Waals forces and the adsorption capability
but also acts as a cross-linker for grafting nanoparticles, such as
Cu, onto Gr, combining the benefits of Gr and nanoparticles
while improving the anchoring strength.66−68

PI nanocomposites are utilized for their mechanical strength,
thermal stability, and lubrication properties.69,70 PI modifies
the Gr surfaces through reactions that adjust van der Waals
forces and π−π interactions to optimize lubrication character-
istics.70,71 Additionally, Gr serves as an effective nanoadditive
in self-lubricating polymers such as PEEK and PTFE,
reinforcing the polymer matrix to enhance wear resistance
and mechanical properties, particularly under high contact
stress.72,73 It also boosts thermal diffusion in high-temperature
applications.72,74,75

■ GRAPHENE-BASED 2D HETEROSTRUCTURES
Monolayers of 2D nanomaterials have adjustable stacking
structures thanks to van der Waals forces between the layers,
which affect their properties.76,77 Combining these nanoma-
terials into heterostructures can enhance their properties, such
as superlubricity, making them suitable for harsh conditions.
For example, a Gr-MoS2 heterostructure improves lubrication
under high stress by forming a durable tribofilm. In contrast,
Gr-hexagonal boron nitride (hBN) heterostructures achieve
superlubricity through incommensurable contact due to
differing lattice constants.78,79 These heterostructures, includ-
ing Gr-transition metal dichalcogenides (TMDs) and Gr-
MXenes, demonstrate great potential for lubrication perform-
ance enhancements.79−81

Gr-hBN Heterostructures. Gr nanosheets with their
excellent mechanical properties, high thermal stability, and
low shear strength serve as effective solid lubricants or
lubricant nanoadditives. Similarly, hBN offers high thermal
stability and self-lubrication due to its strong covalent bonds.42

Gr-hBN heterostructures can be created through covalent or
noncovalent methods, exhibiting enhanced tribological per-
formance. For example, covalently linking oxidized hBN with
GO through chemical functionalization, as demonstrated by
Samanta et al.,82 improves lubricant adhesion, tribofilm
formation, and friction stability. Noncovalent stacking exploits
the incommensurability between Gr and hBN for superior
lubrication, leveraging the difference in interlaminar shear
strength to reduce friction. Qi et al.’s83 simple method of
synthesizing noncovalent Gr-hBN materials by drying their
solution on silicon wafers shows promise despite potential
nanosheet agglomeration issues. These heterostructures,
whether covalently or noncovalently bound, showcase
advanced friction properties through the manipulation of
chemical and physical interactions at the nanoscale.
Gr-TMD Heterostructures. Despite its superb lubricating

qualities, Gr faces limitations in engineering applications due
to its poor ability to form boundary tribofilms at frictional

interfaces, which is attributed to its high thermal stability and
chemical inertia.42,84 TMDs, which include sulfur, readily form
covalent bonds at frictional interfaces under mechanical stress
and frictional heat, thereby creating a durable boundary
tribofilm.79,85 The synthesis of Gr-TMD heterostructures
through in situ growth or mechanical stacking enhances
lubrication performance significantly, with MoS2 and WS2
being the primary TMDs used for lubrication.81,86 The unique
structure of MoS2, which is characterized by a sandwich-like
assembly and weak van der Waals forces, facilitates shear
processes. The natural lattice mismatch between Gr and MoS2
and the resulting Moire ́ patterns contribute to low friction
states.87 Various methods, such as hydrothermal treatment and
grafting with cross-linking agents, have been employed to yield
Gr-MoS2 heterostructures with superior dispersion stability in
lubricants thanks to van der Waals interactions that minimize
nanomaterial agglomeration.79,88 Similarly, WS2 shares struc-
tural similarities with MoS2, offering low friction, high film-
forming capability, and excellent lubrication under extreme
conditions.42 Techniques involving layer-by-layer transfer of
WS2 onto Gr have produced heterostructures with super-
lubricity under ambient conditions and enhanced the
lubrication and mechanical strength of polymers.89,90 The
lattice mismatch within these heterostructures promotes
effective lubrication, while the mechanical strength of Gr
improves wear resistance and extreme-pressure lubrication
performance.91

Gr-MXene Heterostructures. MXenes are synthesized by
selectively etching an A element (Group IIIA or IVA) from the
MAX phase, resulting in a structure consisting of a transition
metal and carbon or nitrogen.92 Through etching and surface
functionalization, MXenes exhibit diverse structural changes
such as variations in lamellar spacing, layer count, and terminal
functional groups. These attributes significantly enhance their
surface potential and van der Waals interactions, making them
suitable for use in extreme lubrication conditions, particularly
in high-temperature and high-stress environments.42,81,93 The
integration of MXenes with Gr to form 2D heterostructures
has been increasingly explored for lubrication purposes.81,86

For example, combining Gr and MXene on silicon substrates
has enhanced lubrication and resulted in superlubricity and
improved wear resistance against diamond-like carbon (DLC)-
coated steel balls in dry nitrogen environments.94 Also,
uniform Ti3C2-GO nanocomposite coatings produced via
electrophoretic deposition have been shown to significantly
reduce friction, illustrating the potential of these hetero-
structures in advanced lubrication applications.86 Gr-MXene
heterostructure nanoadditives have demonstrated the potential
to improve heat conduction in lubricants and reduce oil
viscosity, thereby enhancing thermal and tribological proper-
ties.95 For example, adding nitrogen-doped Gr-Ti3C2 to engine
oil was observed to increase thermal conductivity by 6.62% and
reduce viscosity by 4.71%.95 Additionally, when used in
polymer self-lubricating materials, such as an epoxy coating
filler, they have been shown to significantly reduce wear rates
(by 81−88%) compared to pure epoxy and boost anticorrosion
properties by preventing corrosive media diffusion.96

■ GO AND r-GO AS LUBRICANT NANOADDITIVES
Gr derivatives, particularly GO and r-GO, are explored
extensively due to their aromatic rings, free π−π electrons,
and reactive functional groups.9 GO is a single-atom-thick
carbon sheet adorned with oxygen-containing functional
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groups, making it significantly different from Gr.97 In general,
GO is less electrically conductive, does not absorb visible light,
and is more chemically active. Unlike Gr, its solubility in water
and other solvents presents an advantage for industrial
applications. The production of GO involves methods such
as oxidation and exfoliation of graphite that lead to different
structures, such as those represented by the Lerf-Klinowski
model, widely accepted based on solid-state nuclear magnetic
resonance (NMR) and X-ray diffraction (XRD) analyses.98

The oxidation process introduces structural imperfections into
GO, affecting its electrical, optical, and adsorption properties.
To counter this, GO can be converted into r-GO using
chemical, thermal, microwave, or photochemical reduction
methods, which results in films with significantly reduced
oxygen content.99,100 Despite its promising tribological
applications, the poor dispersibility of Gr in liquid lubricants
due to its large surface area poses challenges. Surface
modification of Gr has been explored to improve its
dispersibility, but these may have negative environmental
impacts.101 Gr derivatives enhance liquid lubricants by
providing low shear resistance, an appropriate size for reaching
contact regions, and effective heat distribution. The interaction
types, including electrostatic, van der Waals, covalent, and
noncovalent bonding, influence the dispersibility and chemical
stability of GO in solutions, potentially offering significant
improvements in antiwear and antifriction properties in
applications such as engine oils. The conversion of GO to r-
GO enhances its compatibility with nonpolar liquids such as
oils by reducing its hydrophilic characteristics, thus improving
the compatibility. The high thermal conductivity of GO makes
it a valuable addition to cutting fluids for machining tough

materials.102 However, its interaction with organic lubricants
can introduce defects. r-GO nanoadditives, being more
affordable and having fewer morphological defects than GO,
present a promising option for sustainable lubrication solutions
with their large surface area, high mechanical strength, and
excellent oxidation resistance.103 A summary of the dispersion
procedures reported in the literature for different Gr-based
nanoadditives in liquid lubricants is provided in Table 1.
Enhancing Liquid Lubricants with GO and r-GO:

Tribological Properties and Applications. Gr derivatives,
recognized for their superior characteristics and stability, are
promising as lubricant nanoadditives and solid lubricants
(applied through deposition techniques). However, their
effectiveness as solid lubricants is limited due to wear and
susceptibility to environmental conditions. As a solution,
researchers have explored the potential of Gr in enhancing
liquid lubricants, including water-based, synthetic, and bio-oils.
Gr nanoadditives, especially GO and r-GO, have been shown
to significantly reduce wear and friction in different oils. The
tribological performances of these lubricants depend on factors
such as Gr concentration, temperature, speed, load, tribo-pairs,
and base oils.

Water-based lubricants are essential in various engineering
applications, such as oil extraction, cutting, polishing, and
hydraulic operations. They are favored for their cost-
effectiveness, availability, excellent heat conduction, and
environmental compatibility. Despite their poor compatibility
with materials such as steel, the integration of GO into these
lubricants has shown promising results. The solubility of GO is
derived from its carbon−oxygen groups, which facilitates its
dispersion in liquid media through ultrasonication and

Table 1. Dispersion of Gr and Its Derivatives and Hybrids in Liquid Lubricants

Nanoadditive Lubricant Dispersion Procedure Stability Method ref

Gr PAO4 surfactant (Span80) + ultrasonication ∼4 weeks physical 104
in situ exfol. Gr water surfactant (Triton X-100) + ultrasonication >a month physical 105
exfol. graphite aqueous medium surfactant (SDS) + mechanical stirring −37.09 mVa physical 106
exfol. graphite aqueous medium surfactant (SDBS) + mechanical stirring −40.20 mVa physical 106
exfol. graphite aqueous medium surfactant (CTAB) + mechanical stirring 43.90 mVa physical 106
exfol. graphite aqueous medium surfactant (NPE) + mechanical stirring −23.70 mVa physical 106
Gr simaroua biodiesel surfactant (SDS) + ultrasonication ∼8 weeks physical 107
Gr simaroua biodiesel surfactant (SDBS) + ultrasonication ∼8 weeks physical 107
r-GO engine oil inclusion of long alkyl chains through amide linkages + mechanical

stirring
∼30 days Chemical 57

r-GO petroleum covalent functionalization + mechanical stirring ∼30 days Chemical 108
r-GO polyol lube alkylation + mechanical stirring ∼20 days Chemical 109
r-GO dydroisomerization dewax

oil
alkylation + mechanical stirring >24 days Chemical 110

r-GO PAO6 alkylation + mechanical stirring >120 days Chemical 111
r-GO 10W40 oil alkylation + mechanical stirring >a month Chemical 112
Gr PAO10 and TMP mechanical stirring ∼ 1 day Physical 113
crumbled Gr ball PAO4 mechanical stirring ∼ 1 day Physical 114
highly exfol. Gr PAO6 mechanical stirring ∼ 4 days Physical 61
superhigh exfol. Gr hydraulic oil mechanical stirring ∼ 10 days Physical 62
ZnO/Gr ester oil mechanical stirring >5 days Physical 115
WS2/Gr PAO4 mechanical stirring ∼ 7 days Physical 116
r-GO paraffin mechanical stirring ∼ 1 day Physical 117
Sc−Au/GO paraffin mechanical stirring ∼ 10 days Physical 118
MoS2/GO sunshine oil mechanical stirring ∼ 5 days Physical 119
ZrO2/r-GO paraffin mechanical stirring ∼ 2 days Physical 120
Ag/r-GO liquid paraffin mechanical stirring ∼ 60 days Physical 121
PEG/Gr water mechanical stirring ∼ 7 days Physical 122
aZeta potential.
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significantly enhances its antifriction and wear properties
compared to Gr. Studies have demonstrated that a 1 wt % GO
concentration can notably decrease friction and wear in steel/
steel tribo-pairs through tribofilm formation.17 Further
research has consistently shown the superior performance of
GO in reducing the coefficient of friction (COF) and wear
under various conditions, with its ability to form tribo-chemical
films playing a crucial role.123−125 Research has also explored
the synergistic effects of GO with other nanoparticles, such as
nanodiamonds (NDs) and inorganic particles, such as Al2O3,
yielding further improvements in lubrication quality. For
example, a combination of 0.1 wt % GO and 0.5 wt % ND was
shown to significantly reduce COF to about 0.03 and wear
track depth to 5 nm, which were attributed to the low shearing
resistance of Gr, effective tribofilm formation, and the ball-
bearing effect of ND.126 Similarly, the GO-Al2O3 blend was
shown to enhance the antifriction and wear properties, as well
as surface quality, indicating that a balanced mass ratio of these
nanoparticles can optimize the tribological performance.127

These findings highlight the potential of GO and its
nanocomposites to enhance the performance of water-based
lubricants across varied operational conditions and material
pairings, making them highly effective for industrial applica-
tions.
The use of GO and r-GO as lubricants in nonaqueous

environments has been a focal point of global research due to
their proven efficacy in reducing friction and wear. Studies
have consistently shown that these materials can significantly
enhance lubrication performance by forming stable tribofilms
between contact surfaces. For example, Eswaraiah et al.30

demonstrated that a small addition of GO to engine oil
reduced the COF by 5-fold at a concentration of 0.025 mg/mL
and increased its load-carrying capacity. Research by Senatore
et al.128 found that 0.1 wt % GO in SN 150 oil effectively
improved lubrication in boundary and elastohydrodynamic
lubrication regimes, markedly reducing both COF and wear.
Further investigations report consistent reductions in friction
and wear with GO inclusions in various oil formulations, with
effects such as a 16% average reduction in friction and up to
30% in wear, noted by Sarno et al.129 under mixed lubrication
conditions. Wu et al.32 found that an aviation lubricant with
0.5 wt % GO under Si3N4/steel contact exhibited reduced
friction and wear by 15% and 34%, respectively. Moreover,
Javeed et al.130 achieved a 37% improvement in wear resistance
with GO nanoadditives in a diesel engine oil, suggesting that
even lower GO concentrations might benefit certain
applications. These findings collectively underscore the
potential of GO and r-GO-based lubricants, offering significant
improvements in wear resistance, friction reduction, and load-
bearing capacities in different lubrication applications.
To mitigate the aggregation of GO nanosheets in lubricants,

Kinoshita et al.131 developed a polyalphaolefin (PAO)-based
lubricant with varying dispersibility of GO, utilizing alkylamine
for dispersion or heating between 130 and 250 °C. They
discovered that lower dispersibility facilitated better coverage
of the contact surfaces by GO aggregates, achieving a COF as
low as 0.05, which suggests that sliding GO layers reduce COF
by targeting weak shear layers. Despite the effectiveness of
conventional oils with additives, their environmental impact
promotes the use of biolubricants, with Anand et al.132 finding
optimal tribological performance in a 0.75% GO-dates bio-oil
blend. However, higher GO concentrations may decrease
lubrication by increasing surface abrasion. r-GO, recognized for

its cost-effectiveness and fewer morphological imperfections,
has shown promise as a lubricant nanoadditive. Patel et al.133

reported that 0.01 wt % r-GO in ester oil significantly reduced
friction and wear, while improving dispersibility. Comparisons
between GO and r-GO in a PAO oil by Zhao et al.134 indicated
that 0.5 wt % r-GO considerably lowered COF and wear
thanks to consistent particle size and effective tribofilm
formation. The impact of r-GO microstructure on its
performance was notable, with regular-edged r-GO out-
performing other forms in reducing friction and wear.117

Furthermore, modifications to r-GO to eliminate structural
defects such as folds and wrinkles have been successful in
enhancing tribological behavior, demonstrating the potential
even in small amounts. For example, Kaleli et al.135 showed a
notable enhancement in tribological performance with just
0.02 wt % r-GO in synthetic engine oil, highlighting a reduced
COF by 5% under boundary lubrication conditions. GO and
its derivatives, typically challenged by agglomeration in oils due
to their inorganic nature, require surface modification to
enhance the oil solubility and stabilize dispersions. Advance-
ments in chemically modifying GO have significantly improved
the tribological properties of the base oils. For example, Lin et
al.136 demonstrated that lubricants containing 0.075 wt %
modified GO, using stearic and oleic acids, enhanced antiwear
and load-bearing capacities. Similarly, alkylated GO achieved
better dispersion and significantly reduced the COF and wear
scar diameter.137 Cheng et al.138 incorporated oleic dieth-
anolamide borate-grafted GO into 500 SN base oil and
reported substantial reductions in COF and wear scar diameter
at just 0.02 wt % GO. Ionic liquid (IL) surface functionaliza-
tion has also shown promise. For example, Fan et al.105

reported that alkyl imidazolium ILs used for GO modification
improved dispersion stability and decreased friction and wear
by notable margins. Hybrid nanostructure materials, partic-
ularly Gr nanocomposites with nanomaterials such as MoS2,
have shown potential in developing advanced lubricants with
enhanced tribological properties. Studies have demonstrated
that Gr/MoS2 hybrids in esterified bio-oil significantly improve
antifriction, wear resistance, and load-bearing capacities, with a
notable reduction in COF from 0.05 to 0.016, which is
attributed to the synergistic effects between the mechanical
support provided by Gr and low friction of MoS2.

104 However,
not all combinations yielded significant improvements. Indeed,
some Gr and MoS2 hybrids showed negligible effects on
tribological performance.106 Conversely, r-GO/MoSe2 hybrids
in paraffin oil reduced COF by 50% and wear track depth
significantly, highlighting the benefits of tribofilm develop-
ment.107 Studies on r-GO/metal oxide hybrids, such as r-GO/
TiO2, revealed variable outcomes with specific ratios, such as
achieving reduced friction but only minor wear reduction. This
behavior underscores the complex interplay between the
materials and their proportions in optimizing lubricant
formulations.139,140 A literature summary of the tribological
performances of lubricants enhanced with Gr-based nano-
additives is provided in Table 2.

■ LUBRICATION MECHANISM
Incorporating 2D nanomaterials into macro-lubrication sys-
tems often results in the formation of protective films on tribo-
surfaces, thereby enhancing surface roughness, wear repair, and
load bearing capacity, while providing low shear strength.14

These benefits mainly arise from the lubricating mechanisms of
the GO-based nanomaterials, including interlayer lubrication,
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protective film formation, and self-repairing actions. Liu et
al.149 detailed friction reduction mechanisms with Gr nano-
sheets, focusing on nanoscale phenomena such as electron−
phonon coupling, puckering, and energy dissipation. These
mechanisms highlight the importance of Gr-based materials in
creating lubricious films, filling surface imperfections, and
acting as nanoball bearings to improve lubrication system
performance and reduce friction. Understanding the tribology
of GO- and r-GO-based lubricants involves examining their
lubrication mechanisms, which is still a topic of ongoing
research. Researchers have identified several lubrication
mechanisms for Gr-based nanomaterials in lubricating fluids,
including tribofilm formation, microstructural modification,
interlayer sliding, and synergetic actions, etc., emphasizing the
complex interplay of factors, leading to lubrication through
penetrating tribo-pair contact zones, adhering to tribo-surfaces,
and altering fluid viscosity.112 A summary of the different
lubrication mechanisms of Gr-based and other nanoadditives is
provided in Table 3.
Huang et al.127 investigated the lubrication mechanisms of

water-based lubricants with GO, Al2O3, and a GO-Al2O3
composite nanoadditive. Water alone failed to form protective
tribo-oxide layers, showing minimal antiwear and friction
protection. GO and Al2O3 nanoadditives improved perform-
ance over water but were less effective compared to the GO-
Al2O3 composite, which produced a superior tribofilm and
reduced shear resistance and polished asperities while
removing debris. Mao et al.117 explored the impact of different
micromorphologies of r-GO on lubrication. They found that
regular-edged sheets formed a more effective, continuous tribo-
film that significantly reduced the COF and wear rate
compared to irregular-edged or wrinkled sheets, which caused
tribofilm fragmentation. Li et al.111 studied hybrid nano-
hydraulic lubricants with a modified GO nanoadditive, noting
that the protective coating of the base oil degraded quickly
under harsh conditions. In contrast, the modified hybrid
nanosheets formed a durable, Gr-like protective coating that
significantly reduced wear and friction by preventing direct
contact between the tribopairs.114

■ GRAPHENE-BASED ADDITIVES IN SOLID
LUBRICANTS

Gr, a material only one atom thick with a low tendency to
stick, significantly improves solid lubrication by minimizing
both friction and the tendency to stick to various surfaces.
Thanks to its incredibly slim profile, it serves as an excellent
lubricant for solid surfaces. The phenomenon of superlubricity,

or the achievement of extremely low friction levels, in Gr
results from two distinct types of interactions, i.e., those where
the surfaces are perfectly aligned (commensurate) and those
where they are misaligned (incommensurate).150 In situations
of commensurate alignment, the stability of Gr nanoflakes on
top of Gr sheets is maintained as atoms leap across energy
barriers, dissipating energy during the friction process.151

Conversely, with incommensurate alignment, where the
surfaces are not perfectly matched, energy dissipation is
significantly reduced, thus facilitating superlubricity. This effect
has been noted for Gr interfaces with materials such as gold115

and WS2.
119 Studies conducted by Dienwiebel et al.121 in 2004,

along with research by Feng et al. in 2013,122 underscored the
crucial role of the alignment type in determining friction levels.
In particular, they observed that the shift from commensurate
to incommensurate alignment, aided by thermal fluctuations,
drastically lowers the friction levels. Such findings indicate that
manipulating the alignment between Gr layers could be the key
to effectively controlling friction, offering promising avenues
for boosting lubrication efficiency.

Investigating the frictional properties of perfect Gr interfaces
has proven difficult, prompting the adoption of novel
techniques such as chemical vapor deposition (CVD) to
deposit Gr layers onto microspheres and envelopment of the
atomic force microscopy (AFM) probes with Gr.152 Liu et
al.153 studied the frictional dynamics of Gr layers and the
interface between Gr and hBN by employing a SiO2
microsphere coated with Gr. They successfully achieved
consistent superlubricity, unaffected by the rotational align-
ment of the interfaces and variations in the pressure (up to 1
GPa) and humidity. This phenomenon is attributed to the
incommensurate contact between surfaces randomly coated
with Gr.

The superlubricity of Gr and related materials has been
extensively studied through both experimental and computa-
tional methods including simulations and first-principles
calculations. For example, Cahangirov et al.154 demonstrated
superlubricity in multilayer Gr (MLG) coatings on Ni(111)
surfaces, attributing the effect to the reduction of adhesion and
sliding friction by shielding the Ni surface attraction. This was
further enhanced by the weakened coupling between Gr layers
due to chemical interactions between Ni and Gr orbitals. Wang
et al.155 achieved superlubricity in van der Waals hetero-
structures of Gr and MoS2, with density functional theory
(DFT) calculations showing that superlubricity arose from
decreased lateral force constants due to reduced potential
energy corrugation during sliding. Similar DFT studies on

Table 3. Lubrication Mechanisms of Gr-Based and Other Nanoadditves

lubrication mechanism description

Tribofilm formation Nanoadditives aid in the film formation on tribo-surfaces, enhancing surface roughness, wear repair, load bearing,
yielding low shear strength.

Interlayer lubrication Nanoadditives act as nanoball bearings, filling surface imperfections and reducing friction through interlayer sliding.
Synergism in heterostructures Combining 2D materials into heterostructures, such as Gr-MoS2 and Gr-hBN, improves lubrication under high stress.
Self-repair Gr nanosheets reduce friction by creating lubricious films and filling surface imperfections, enabling self-repairing

mechanisms.
Tribo-chemical reactions and adsorption Gr-based nanoadditves enhance lubrication via adsorption and chemical reactions, forming tribo-chemical layers.
Fluid effects and molecular manipulation Superlubricity is achieved through molecular interactions and maintaining a nanometer-thick water layer between the

tribo-surfaces.
Formation of robust boundary tribofilms Metal-based nanoadditives, such as Cu and Ag, enhance lubrication by forming robust boundary tribofilms.
Self-lubrication and rolling effects Gr combined with other nanoparticles create self-lubrication and rolling effects, as well as a self-healing mechanism.
Improved wear resistance and mechanical
properties

Gr-reinforced polymers, such as PTFE and PEEK, enhance wear resistance and mechanical properties under high
contact stress.
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fluorographene/MoS2 heterostructures found almost no energy
loss in sliding due to smooth potential energy surfaces.156

The formation of a transfer film is also crucial for achieving
superlubricity in Gr materials as it converts the contact from
Gr-to-material to Gr-to-Gr. This process facilitates incom-
mensurate contact at the nanoscale, enhancing superlubricity
and significantly improving tribological performance at the
macroscale.157,158 Li et al.159 demonstrated nanoscale super-
lubricity at the SiO2/highly oriented pyrolytic graphite
(HOPG) interface under ambient conditions, showing it
could be controlled by adjusting the contact pressure. Below
2.52 GPa, superlubricity was maintained, but above this
pressure, the COF increased 10-fold due to top layer
delamination on HOPG. The mechanism was linked to the
presence of a transfer film of Gr nanoflakes on silica, creating
an incommensurate contact with HOPG.
Recent research has delved into how structural modifications

in Gr affect its tribological properties. Lee et al.40 discovered
that the friction between an AFM tip and 2D nanomaterials
varies with the atomic layer count of the nanomaterial,
attributing the thickness-dependent frictional behavior to both
the contact area and the atomic-scale contact quality, including
commensurability and local pinning states.160 Zhang et al.161

revealed that the friction of Gr can be reversibly adjusted by
applying mechanical strain, with increased tensile strain leading
to reduced COF, enabling superlubricity on strained Gr due to
improved contact quality via in-plane strain. Furthermore,
Wang et al.162 explored how strain engineering of Gr affects
friction between Gr layers, demonstrating that robust super-
lubricity can be achieved through both uniaxial and biaxial
stretching beyond a critical strain. This superlubricity is mainly
independent of the relative orientations of the layers, thanks to
the complete lattice mismatch evident in Moire ́ patterns, which
significantly influences lubrication behavior.163

The evolution of Gr materials during friction is crucial for
achieving superlubricity.164 Gr sheets wrap around nano-
particles to form nanoscrolls, reducing contact regions and
creating incommensurate contact, which, alongside nanoball
bearing effect of the nanoscrolls, significantly reduces
friction.165 Li et al.166 observed superlubricity using graphite
and fullerene-like carbon in an N2 environment, with Gr
nanoscrolls at the interface acting as microball bearings to
lessen interlayer shear and lower the COF. Furthermore,
applying TMD nanoflake coatings on amorphous carbon
substrates and observing load-driven graphitization during
wear leads to van der Waals heterostructures and macroscale
superlubricity. Berman et al.167 introduced macroscale super-
lubricity by merging Gr with NDs or metal nanoparticles,
forming a friction pair with DLC films, as well as nanoscrolls
during friction. Jiang et al.168 achieved superlubricity on steel
pairs using a Gr/MoWS4 composite in a dry argon environ-
ment, where wear debris formed nanoscroll structures,
transforming the interface into a tribolayer−nanoscroll−
tribolayer system, facilitating incommensurate contact. Zhang
et al.169 obtained superlubricity with a Gr-coated microsphere
lubricant, achieving a COF of 0.006 in air, which was
attributed to the low-shear exfoliated Gr flakes, as well as the
buffering and stress-distributing role of the movement of the
microspheres.

■ ROLE OF GRAPHENE IN IMPROVING SYNTHETIC
LIQUID LUBRICANTS: MECHANISMS AND
PERFORMANCE GAINS

Gr excels in both solid and liquid superlubricities and is used as
a tribopair nanomaterial or lubricating nanoadditive across
scales. Overall, Gr-based materials enhance lubrication via
tribochemical reactions, adsorption, and fluid effects, demon-
strating diverse mechanisms for achieving superlubricity. Gr
achieves superlubricity at the nano- and microscales through
special liquid molecule contact, demonstrating significant
reductions in friction.170 Li et al.171 reached superlubricity
with a Gr/hydrophobic fluoroalkyl interface lubricated by
water, recording a COF of 0.0003 under pressures below 14.5
MPa. This effect is attributed to a nanometer-thick water layer
remaining between the Gr and the surface due to low pressure
and weak interaction, facilitating smooth sliding. Similar
superlubricity was observed with zwitterions in a lipid bilayer
sliding against Gr under water, indicating water intercalation as
a method to reduce friction.172 Zhang et al.173 further
demonstrated superlubricity on HOPG surfaces using ILs,
where cation−anion interactions under varying voltages were
observed to enhance the boundary layer properties, contribu-
ting to friction reduction. These findings offer new perspectives
on achieving superlubricity and reducing friction between Gr
and various surfaces through molecular and ionic manipu-
lation. In general, Gr-based materials enhance wear resistance
and reduce friction by forming protective, adsorption, and
tribochemical layers, which prevent direct contact.32 Although
GO nanoadditives lower the COF down to 0.02,174 typical
COF values range from 0.02 to 0.1, which are above
superlubricity levels.175,176

Ge et al.177 demonstrated superlubricity at macroscale
interfaces, such as Si3N4/SiO2, Si3N4/Si3N4, and Si3N4/
sapphire, through the combined use of GO and ethylene
glycol (EG). After a 600 s wear-in period, the COF was
observed to drop to below 0.01, further reducing to 0.0037 and
stabilizing for two hours. The wear volume with GO-enhanced
EG was just 5% of that with EG alone. They attributed this
performance to the formation of a GO adsorption layer that
prevented severe wear as well as a hydrated network at the
GO/EG interface that reduced shear strength and contributed
to superlubricity. They concluded that neither the GO
adsorption layer nor the tribochemical layer could independ-
ently achieve superlubricity without the presence of a fluid film
that also helps form a hydrated network, highlighting the
necessity of their combined effect for liquid superlubricity. Liu
et al.178 proposed a novel strategy employing hydrophobic Gr
coatings and glycerol aqueous solutions to address the
dispersity issue of Gr in lubricants, achieving macroscale
superlubricity with a COF of 0.004 and reduced wear thanks to
a critical in situ-formed Gr nanoflake tribolayer.

Gr-based nanomaterials show different properties based on
their functional groups; however, the specific roles of these
functional groups in enhancing lubrication are not fully
understood. Ge et al.179 discovered that the -NH2 group in
GO-based lubricants excels in achieving superlubricity over
-OH and -COOH due to its stronger adhesive force with
contact surfaces. The result is a more durable GO-NH2
adsorption layer, as confirmed by the high-resolution trans-
mission electron microscopy (HRTEM) analysis of worn
surfaces. This layer protects the surfaces, reduces wear, and
facilitates a shift from solid contact to weak interlayer shearing
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with the GO-NH2 layer, thereby achieving superlubricity. This
research advances our knowledge of the influence of the
functional groups of GO on lubrication and guides the design
of Gr-based lubricants.

■ BIOLUBRICANTS
Biolubricants represent an emerging frontier in pursuing
ecofriendly technologies, offering a promising alternative to
traditional petroleum-based lubricants.180 Constituting non-
toxic and easily degradable oils, biolubricants are distinguished
by their minimal environmental impact, aligning with the
growing global emphasis on sustainability. These lubricants
boast many advantageous properties, including a high viscosity
index, excellent COF, low evaporation rate, high ignition
temperature, and notably lower emission into the atmos-
phere.181 With these attributes, biolubricants are poised to play
a crucial role in reducing ecological damage and promoting the
health of various ecosystems.182 Petroleum-based lubricants
are complex mixtures of hydrocarbons, including paraffinic,
olefinic, naphthenic, and aromatic compounds, typically
consisting of 20 to 50 carbon atoms.183 While effective in
their function, these lubricants have significant drawbacks due
to their toxic and non-biodegradable nature, which contributes
to pollution, and nonrenewability. The combustion of these
oils releases harmful gases and particles, posing risks to both
the environment and public health. Furthermore, the reliance
on petroleum, a nonrenewable resource, underscores the
urgency for alternatives that can meet the lubrication needs of
the modern global industrial complex without depleting natural
reserves. Biolubricants offer a solution to these issues by
providing effective lubrication while being nontoxic and
biodegradable. They do not harm any species or ecosystems,
presenting a stark contrast to their petroleum counterparts.
Using biolubricants can significantly decrease friction and wear
in machinery, extending their lifespan.180 Despite their
promising attributes, biolubricants face several technical
challenges that must be addressed to fully realize their
potential. These include a limited operating temperature
range, less oxidative stability causing accelerated degradation,
a restricted viscosity range, and a low pour point temper-
ature.26,181 These limitations can hinder the performance and
applicability of biolubricants under various operational
conditions.
To overcome these obstacles, recent advancements have

focused on enhancing the properties of biolubricants through
the integration of nanoparticles. Research has shown that even
small quantities of nanoparticles can significantly improve the
tribological properties of biolubricants.184 Nanoparticles, with
their ultrafine sizes ranging from 1 to 100 nm and large specific
surface areas, exhibit excellent surface activity.185 The addition
of nanoparticles to biolubricants not only improves their
stability and performance but also expands their application
potential. For example, Gr-based nanomaterials have shown
exceptional promise in tribology due to their ability to form
various nanostructures like nanoballs, nanorods, and nano-
wires, thereby enhancing lubricant performance.146 The use of
such nanoparticles in biolubricants can lead to reduced friction
and wear, lower energy consumption in machinery, and extend
maintenance intervals.186

Gr-Based Nanoadditives in Biolubricants. The ener-
getic footprint of the lubrication is significant. A study in 2017
revealed that nearly a quarter (approximately 23%) of the
global energy consumption could be attributed to tribological

contacts, underscoring the substantial role of friction and wear
in our energy landscape.118 Moreover, the environmental
repercussions of conventional lubrication practices, primarily
reliant on crude-oil-derived base oils, present a daunting
challenge. These substances pose detrimental effects on soil,
groundwater, vegetation, animals, and human health.187−190

This perspective aligns with a growing consensus among
researchers on the importance of developing ecofriendly and
biodegradable lubricant substitutes,116,191 albeit recognizing
their limitations, such as diminished performance at low
temperatures.181 As a general practice, lubricants are enhanced
by an array of additives, including friction modifiers and
antiwear agents, aimed at improving their tribological proper-
ties. Integrating nanomaterials, such as metals, carbon-based
nanostructures, and oxides, into lubricants has been
documented in numerous reviews to confer significant
tribological benefits.10 Gr and its derivatives distinguish
themselves as a promising class of carbonaceous nanomaterials.
The efficacy of GnPs as lubricant nanoadditives has been
validated by various researchers,192−194 who have demon-
strated notable enhancements in friction and wear performance
with the judicious incorporation of GnPs (0.02−0.5 wt %) into
lubricant oils.

It has been shown that the thickness and lateral size of
carbon-based nanoadditives influence the antiwear and
antifriction properties of biolubricants. For example, Liñeira
del Rió et al.195 conducted a comprehensive study on the
tribological behavior of a biodegradable polymeric ester
lubricant (BIOE), enhanced with two distinct types of pristine
GnPs, designated as GnP7 and GnP40. These GnPs are
characterized by their lateral dimensions of 7 and 40 μm and
thicknesses of 3 and 10 nm, respectively. The study utilized
four different concentrations of nanoadditives: 0.015, 0.035,
0.055, and 0.075 wt %. The stability of these lubricants was
assessed through visual observation and by monitoring the
changes in the refractive index over time, which indicated
marginally improved stability for lubricants containing GnP40,
the GnPs with a larger lateral dimension. Moreover, compared
to the base BIOE without nanoadditives, all lubricant
formulations demonstrated lower COF values (Figure 2a)
and reduced wear areas (Figure 2b,c). Further analysis
confirmed that the enhanced tribological performance of the
lubricants is attributed to the formation of a protective film and
a surface repair mechanism.

Biopolymers offer remarkable versatility in their applications
across different industries.196−199 Among biopolymers, cellu-
lose nanocrystals (CNCs)200 present a multitude of benefits
for tribological applications. The efficacy of CNCs as
nanoadditives in lubricants has been explored with both
mineral-based lubricants, such as SAE40 oil,201 and biode-
gradable lubricants, such as polyol ester (POE) oil.202,203 It is
worth mentioning that PAO based oils are widely used for
their thermal stability and oxidation resistance, and they are
synthetic hydrocarbons derived from petroleum and, in
general, do not qualify as biodegradable lubricants.204

However, their biodegradability depends on their synthesis
route and source precursors, such as sustainable feedstock
(vegetable oils).

A prominent strategy for imparting biodegradability to
lubricants involves incorporating nanoparticles derived from
biological sources into such oils. Key among these nanoma-
terials are nanofibers, cellulose, and GnPs, which can be
integrated into POE oil to fabricate lubricants tailored for
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tribological applications. Fuadi et al.205 indicated that the
tribological efficacy of POE-based lubricants containing
bacterial cellulose (BC) could be augmented by the inclusion
of GnPs. This augmentation was evidenced by a 20% reduction
in the specific wear rate of the materials upon addition of GnPs
to the BC-enriched POE oil. The enhancements in friction and
wear characteristics can be attributed to the formation of a
tribofilm at the contact interfaces. Energy dispersive spectros-
copy (EDS) analysis revealed a significant role of oxygen in the
friction and wear of the lubricant based on the POE oil,
enhanced with BC and GnP nanoadditives, with the tribofilm
displaying considerable oxygen content. While the inclusion of
GnPs in the POE oil eliminated the oxygen-rich layer, it did
not alone diminish the wear rate. Nonetheless, the concurrent
integration of GnPs and BC into the POE oil markedly
improved its friction and wear performance, even though
oxygen was still detectable at the contact interfaces.
Research has highlighted the potential of biobased oils as

environmentally friendly alternatives to petroleum-based oils,
owing to their biodegradability, reduced toxicity, and
tribological superiority.206 Despite their advantages, bio-

lubricants face challenges such as oxidation at high temper-
atures and lower load-carrying capacities compared to
conventional oils.207,208 Table 4 summarizes the key properties
and challenges of different biolubricants along with the specific
enhancements achieved through incorporating graphene-based
nanoadditives. These improvements, particularly in tribological
performance, illustrate the significant potential of graphene
derivatives and hybrids to address the limitations of conven-
tional biolubricants.

However, advancements in modifying their chemical
structure, such as converting glycerol esters to sugar per-
esters, or incorporating polyol esters, have enhanced their
thermal stability and oxidation resistance.207 Additionally, it
has been suggested that these deficiencies can be overcome by
dispersing various additives, such as nanoparticles, tribological
enhancers, and friction modifiers.141,166 In this context,
Banavathu et al.208 investigated the physicochemical and
tribological characteristics of biolubricant and commercial
lubricant blends, specifically focusing on the incorporation of
GnPs into the base oil. Pentaerythritol (PE) ester, derived
from Calophyllum inophyllum (Tamanu tree) seed oil, was
blended with commercial SN motor oil in volumetric
concentrations of 10, 20, 30, and 40%. The initial phase of
their study identified the optimal ratio of PE ester to
commercial SN motor oil for an enhanced lubrication
performance. Subsequently, the optimal blend of biolubricant
and commercial oil was enriched with GnPs in weight fractions
ranging from 0.025% to 1%. A formulation consisting of 30 wt
% biolubricant in commercial oil with 0.05% GnPs significantly
improved friction and wear characteristics of the base oil. In
another study, Sadiq et al.143 investigated the oxidation
stability and tribological performance of biolubricants
enhanced with nanoparticles, specifically Gr and maghemite
(γFe2O3) dispersed in coconut oil at a volume concentration of
0.1%. Their findings indicated that the incorporation of
nanoadditives into the biolubricants significantly enhanced
their oxidation stability by delaying thermal degradation.
Specifically, the oxidation onset temperature of biolubricants
containing maghemite and GnPs increased by 18.75 and 37.5
°C, respectively. These improvements positively affected both
the viscosity and the tribological performance of the bio-
lubricants. Table 5 summarizes the key properties and
challenges associated with different biolubricant types and
highlights the specific enhancements achieved through the
incorporation of graphene-based additives, as discussed in
recent studies.

For the Gr-enhanced lubricant, there was a reduction of
10.4% in the COF and 5.6% in the wear scar diameter (WSD).
In comparison, the maghemite-enhanced lubricant saw
reductions of 3.43% in COF and 4.3% in WSD compared
with those of the pure coconut oil. Additionally, the viscosity
index of the lubricants increased by 7.36 and 13.85% for
maghemite and Gr lubricants, respectively. Continuing this
exploration of biolubricants, Hettiarachchi et al.120 investigated
the tribological enhancements achieved through the formula-
tion of nanobio lubricants employing 2D nanocomposites of
Gr/Al2O3 as innovative nanoadditives in coconut oil. This
lubricant demonstrated a performance comparable to that of
traditional mineral-based engine oil 15W40. The optimization
of this 2D nanocomposite within the coconut oil base led to a
28% decrease in the COF and an 8% reduction in the specific
fuel consumption (Figure 3a), as well as a noticeable decrease
in the exhaust emissions (CO, SO2, and NOx) (Figure 3b).

Figure 2. Overview of the BIOE-based lubricant test results. (a) Mean
friction coefficients (μ) for the BIOE-based lubricants. (b) Width of
the wear tracks on the disks lubricated with various BIOE-based
lubricants. (c) 3D surface topography of the wear tracks on surfaces
lubricated with BIOE/GnP7 lubricants with different GnP7 weight
fractions (reprinted from ref 195. Copyright 2022 Elsevier).
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Bhaumik et al.213 formulated a biodegradable lubricant by
incorporating different volume percentages of cashew nut shell
liquid (CNSL) into the neat castor oil (NCO) and explored its
potential as a substitute for non-biodegradable mineral oils.
The formulation demonstrating the most promising tribo-
logical properties was further enhanced with different weight
percentages of r-GO, after which additional tribological
evaluations were conducted. A lubricant blend consisting of
40% CNSL and NCO outperformed a commercial mineral oil
by 45.8%. The inclusion of 0.5% r-GO into this blend further
enhanced its performance, achieving a 61.7% improvement
over that of commercial mineral oil. When augmented with
nanoparticles and tested in a gearbox, this innovative
biodegradable mixture underscored the superior performance
of the biodegradable lubricant, showcasing its viability for
industrial use. In another study, Mushtaq et al.214 aimed to
enhance the lubrication capability of Karanja oil (KO) by
incorporating nanosized MoS2 and Gr as nnaoadditives into
this oil. Based on their findings, the addition of these
nanoparticles significantly reduced the wear on the test balls,
with the minimum WSD observed at 0.5 wt % nanoadditve
content, corresponding to a 27.33% reduction in wear
compared to the untreated KO. Moreover, it was found that
both the COF and wear rate decreased as a function of load
and speed, a phenomenon attributed to the formation of a
protective tribo-layer on the wear surfaces.

Continuing this trend of incorporating Gr-based nano-
particles to improve the lubrication efficiency of biolubricants,
Jie Jason et al.215 conducted a comprehensive study on the
tribological behavior of Pongamia oil (PO) and 15W40
mineral engine oil (MO), both with and without the addition
of GnPs. The introduction of 0.05 wt % GnPs into both PO
and MO resulted in the most significant reductions in friction
and wear, corresponding to 17.5% and 12.24% reduction in
friction (Figure 3c), and 11.96% and 5.14% reduction in wear
(Figure 3d) for PO and MO, respectively. Moreover, the study
indicated a surface improvement on worn surfaces, which was
attributed to the polishing effect of GnPs. It was determined
that the deposition of GnPs onto the friction surfaces, coupled
with the formation of a protective film, effectively prevented
direct surface contact, thereby significantly reducing friction
and wear. In another work, Suresha et al.216 studied the impact
of GnPs on the physico-tribological properties of Madhuca
indica (Mahua) oil. The incorporation of 0.25 wt % GnPs into
the oil led to notable reductions of 17% in the COF and 15%
in the WSD. A wear preventive characteristics analysis revealed
the formation of micro tracks on the steel balls, indicating the
presence of wear. An extreme pressure characteristics
evaluation further highlighted that Mahua oil blended with 1
wt % GnPs exhibit superior antiwear performance, thereby
identifying this concentration as the optimal GnP loading from
a weld load perspective. Finally, a GnP content of 0.1 wt % was
determined to be the most effective from a antiwear
perspective.

Recent studies have explored how Gr-based nanoadditives
affect the rheologicval (viscosity), wear resistance, and overall
performance of biolubricants under various operational
conditions. Anand et al.132 investigated the rheological and
tribological properties of biolubricants derived from date
(Balanites Aegyptiaca) oil, which were formulated with GO
and stabilized with sodium dodecyl sulfate (SDS) surfactant to
maximize nanoparticle dispersion within the oil. The study
involved preparing samples with GO concentrations of 0.25%,T
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0.5%, 0.75%, and 1% by weight in date oil and examining their
rheological properties, such as viscosity and shear stress.
Additionally, tribological assessments, including analyses of
friction, wear, and WSD, were conducted using a pin-on-disc
apparatus. These improvements positively affected both the
viscosity and tribological performance of the biolubricants.
Among the tested concentrations, the blend containing 0.75%
GO demonstrated the most favorable properties for engine oil
replacement. This optimal blend resulted in reduced viscosity,
torque, friction, and wear. Furthermore, the WSD imagery
indicated that the 0.75% blend is the most suitable for
commercial applications, underscoring the potential of GO-
enhanced date oil biolubricants as effective substitutes for
traditional engine oils. In another work, Padgurskas et al.108

explored the feasibility of producing biogrease from rapeseed
oil, using beeswax as a thickener functional antiwear agent and
antioxidant, along with carbon nanoparticles derived from GO

and thermally expanded graphite. Results indicated that the
greases exhibited non-Newtonian behavior and that the
rheological parameters varied with temperature. Although an
increased concentration of beeswax negatively impacted the
tribological properties of the grease (Figure 4a−g), the
inclusion of functional additives and nanoparticles markedly
enhanced the thermal properties, yield stress, viscosity, and
tribological performance of the grease, notably decreasing its
wear rate (Figure 4h,i). Similarly, Alqahtani et al.109 explored
the enhancement of SAE 5W30 oil with GnPs to investigate its
tribological and rheological properties. The study assessed how
varying concentrations of GnPs (0.03, 0.06, 0.09, 0.12, and
0.15 wt %) influenced the properties of the base oil. Based on
their findings, the inclusion of nanoadditives resulted in 15%
and 33% improvements in the WSD and COF, respectively.
Compared to the base oil, enhancements were observed in
flashpoint, thermal conductivity, kinematic viscosity, and pour

Table 5. Summary of Biolubricant Types, Challenges, and Enhancements Achieved through Graphene-Based Nanodditives

year graphene derivative/hybrid base oil
friction reduction

(%)
wear reduction

(%) other benefits reference

2023 Graphene oxide (GO) Trimethylolpropane
ester

25% 30% Ecofriendly, enhanced stability 132

2023 Al2O3/Graphene hybrid Polyalphaolefin (PAO) 35% 40% Improved load-bearing capacity 184
2024 Reduced graphene oxide (r-

GO)
Castor oil 20% 28% Enhanced thermal stability, reduced

viscosity
120

2024 Graphene hybrid with MoS2 Ester-based oil 40% 35% Improved load-bearing capacity 212

Figure 3. Comparative analyses of selected lubricant samples. (a) Relationship between the brake power and specific fuel consumption for samples
S1 (100 wt % 15W40 oil) and S3 (formulated blend of 98 wt % coconut oil, 1.9 wt % oleic acid, and 0.1 wt % Al2O3-G). (b) Exhaust gas analysis
results for blends S1 and S3 (reprinted with permission from ref 120. Copyright 2023 Elsevier). (c) Average coefficient of friction outcomes for the
Pongamia oil (PO) and mineral engine oil (MO) with varying GnP concentrations (0−0.2 wt %). (d) Wear scar diameter (WSD) results for the
PO and MO oils across the same range of GnP concentrations (reprinted from ref 215. Copyright 2021 MDPI).
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point, showing increases of 25.4%, 77.4%, 29.9%, and 35.4%,
respectively. The study concluded that the incorporation of
GnPs significantly enhances the performance characteristics of
5W30 engine oil.
The diminishing reserves of crude oil and global initiatives

aimed at protecting the environment from pollution have
spurred renewed interest in developing ecofriendly lubricants
from vegetable oils.217 Bhat et al.110 delved into the impact of
varying concentrations of lithium stearate as a thickener and
GnPs on the rheological behavior of coconut oil-based grease.
Lithium stearate was incorporated at concentrations of 6, 12,
and 18 wt %, while GnPs were introduced at 0.5, 1, and 2 wt %.
The findings indicate an enhancement in the rheological
properties of the coconut grease with higher concentrations of
lithium stearate and nanoparticles. Specifically, at a GnP
concentration of 2 wt %, the viscosity and shear stress of the
grease were augmented by 25% and 33%, respectively.
Additionally, the influence of GnP concentration on the
dropping point of the grease was examined, revealing a 13.19%
increase at a 2 wt % GnP concentration. The study concludes
that coconut oil-based grease, with an inclusion of 2 wt %
GnPs, represents a viable lubricant alternative for industrial
applications with environmental concerns.
Nonedible oils are increasingly recognized as a sustainable

source for biolubricant production, with castor oil being

particularly notable for its distinct hydroxyl group config-
uration, which enables its use in lubrication, dielectrics, and
heat transfer applications.113 Vora et al.147 conducted a study
on the dynamic viscosity and thermal conductivity of castor oil
and GnP/castor oil fluids synthesized via a two-step method,
involving the mixing of GnPs with pure castor oil. Their
findings indicated a notable reduction in the dynamic viscosity
of the fluid with increasing temperature, whereas higher GnP
contents showed a modest increase in the dynamic viscosity.
Interestingly, GnPs maintained the Newtonian flow behavior
of the castor oil. In addition, a significant enhancement in the
thermal conductivity of the fluid was observed with the
introduction of GnPs. These findings position the biodegrad-
able GnP/castor oil fluid as a promising biolubricant with
enhanced heat transfer capabilities and potential applications
in thermal management.

The natural wax derived from the nonmedicinal part of
Codonopsis pilosula offers a novel, sustainable resource for the
production of biolubricants.148 To enhance the lubricity and
load-carrying capabilities of this wax (referred to as the P
grease), multilayer Gr (MGr), which was synthesized through
a magnesium metallothermic reaction, was incorporated into
the P grease.142 Compared to the pure P grease, the P+MGr
grease demonstrated a significantly enhanced load-carrying
capacity of 300 N and maintained effective lubrication across a
broad temperature range from room to 250 °C (Figure 5a-d).
At room temperature, the interaction between the semisolid
grease and MGr culminated in the formation of a superior
tribofilm. This film significantly improved both the lubricity
and the load-bearing capacity of the P+MGr grease relative to
the pure P grease (Figure 5e). Moreover, beyond a
temperature threshold of 150 °C, the MGr within the P
+MGr grease was found to play a crucial role in diminishing
the COF, wear, and oxidation experienced by steel pairs
(Figure 5f).

Suresha et al.218 conducted an investigation into the friction
and wear characteristics of Mahua oil, enhanced with 0.25−1%
by weight of GnPs. The incorporation of GnPs into the Mahua
oil significantly improved its lubrication performance,
evidenced by a reduction in both the COF and wear loss, as
indicated by the diminished WSD on the steel balls. Notably,
even a minimal addition of GnPs (0.25 wt %) to Mahua oil
demonstrated the potential to serve as an effective biolubricant,
offering enhanced mechanical and thermal efficiency suitable
for automotive engine applications. In another study, Suresha
et al.194 investigated the tribological performance of GnPs as
an antiweld nanoadditive in neem oil under extreme pressure.
The study focused on the impact of blending neem oil with
various concentrations of GnPs on the friction and wear
characteristics of the base oil. Based on their findings, neem oil
containing 1 wt % GnPs exhibited the lowest COF and
smoothest WSD. The results of the extreme pressure test
showed a significant enhancement in the seizure load capacity
of neem oil, corresponding to an increase of 27.8% at a GnP
concentration of 0.5 wt %, compared to pure neem oil. Zhang
et al.176 explored the tribological performances of vegetable
oils enhanced by the addition of GO, designated as GO-D and
GO-T, that were developed through a chemical reaction
between the carboxyl groups of GO and 1-dodecanethiol and
tert-dodecyl mercaptan, respectively (Figure 6a). Their findings
indicated that GO-D exhibited superior dispersion stability and
tribological performance when added to rapeseed oil (RO)
compared to GO-T, with both additives outperforming the

Figure 4. Surface imagery of wear scars on balls subjected to a 150 N
load. (a) Rapeseed oil (RO) + 10% beeswax, (b) RO + 20% beeswax,
(c) RO + 30% beeswax, (d) RO + 30% beeswax + antioxidants/
antiwear nanoadditives, (e) RO + 30% beeswax + antioxidant/
antiwear nanoadditives + GO, (f) RO + 30% beeswax + antioxidant/
antiwear nanoadditives + graphite, (g) COM (reference commercial
biological grease). Analysis of wear on the balls at 150 N load: (h)
wear spot diameter, (i) wear volume (reprinted with permission from
ref 108. Copyright 2023 Elsevier).
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base RO/GO (Figure 6b). Further analysis revealed that GO-
D and GO-T nanoadditives could form absorptive and
tribochemical films on the contact surfaces (Figure 6c-f),
suggesting their effectiveness in improving lubrication.
The drilling industry relies heavily on drilling fluid for

various tasks such as cooling the drill bits, removing debris,
balancing formation pressure, stabilizing the wellbore, trans-
mitting hydraulic pressure, and protecting oil and gas
reservoirs. Integrating lubricants into drilling fluids offers
numerous benefits, such as protecting equipment, improving
drilling efficiency, maintaining wellbore integrity, and enhanc-
ing safety, all vital for successful drilling operations.144 Geng et
al.145 introduced a novel biolubricant formulated from triolein.
After synthesis of Gr and triolein, they integrated these into a
drilling fluid system. In their study, they evaluated the efficacy
of the biolubricant through tests measuring the COF, adhesion

coefficient, and extreme pressure lubricity. The addition of the
biolubricants at 240 °C markedly reduced the adhesion
coefficient of the drilling fluid to below 0.2 and down to
0.055, which signifies a reduction rate of over 70%.

In recent years, the development of self-lubricating
polymers, e.g., PTFE, has emerged as a significant area of

Figure 5. Friction and wear analysis of the AISI52100-AISI52100
steel pairs. (a) Friction coefficients for pairs lubricated by Codonopsis
pilosula/multilayer Gr (P+MGr) and P greases under loads of 250
and 300 N. (b) Friction coefficients at varying temperatures for the
same sliding pairs lubricated with P+MGr and P greases. (c) Wear
rates for the AISI 52100 steel lubricated with P and P+MGr greases at
a constant temperature of 25 °C under different loads. (d) Wear rates
at a fixed load of 100 N across various temperatures. (e) Schematic
representation of the lubrication mechanisms of the P grease at room
temperature and (f) elevated temperature (reprinted with permission
from ref 142. Copyright 2020 Elsevier).

Figure 6. Overview of the GO-based dispersions and tribological
testing. (a) Schematic illustration detailing the synthesis processes for
GO−D and GO-T. (b) Digital images showing the dispersion of GO,
GO-D, and GO-T (0.05 wt %) immediately and 20 days
postsonication. Diagrammatic representation of friction processes
involving steel balls in GO-D and GO-T dispersions: (c) friction
process, (d) rubbing surface of steel balls, (e) adsorption film
formation by GO-D and GO-T sheets, and (f) tribochemical film
formation (reprinted with permission from ref 176; Copyright 2018
Elsevier). SEM images depicting surface conditions of steel balls after
tribology tests for (g) K1 (PTFE:10g/PPTA:0.35g/GO:0.5g), (h) K2
(PTFE:10g/PPTA:0.7 g/GO:0.5 g), (i) K3 (PTFE:10g/PPTA:1.4 g/
GO:0.5 g), and (j) K4 (PTFE:10g/PPTA:2.8 g/GO:0.5g) at a scale
of 50 μm (reprinted with permission from ref 221. Copyright 2023
Elsevier).
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Figure 7. Analysis of the sedimentation, friction, and wear in lubricant testing. (a-b) Sedimentation test results for trimethylolpropane (TMP)
ester/GO/oleic acid (OA) dispersions immediately following the mixing process. (c-d) Results after a period of 3 days, with the left side of each
image showing samples without and the right side with OA. In each image, glass vials are arranged from left to right displaying TMP ester samples
with increasing GO concentrations of 0.05, 0.1, and 0.5 wt %. (e) Average COF for all lubricants tested (reprinted with permission from ref 212.
Copyright 2023 Elsevier). (f-i) SEM images of the wear on cast iron plates lubricated with TMP, TMP+graphene (G), TMP+ionic liquid (IL), and
TMP+G+IL, respectively. Reprinted with permission from ref 224. (j) Comparative analysis of friction coefficients and wear track widths (WTW)
for BIOE and BIOE lubricants. (k) 3D surface topography showing cross-sectional profiles of worn scars for all tested BIOE lubricants (reprinted
from ref 225. Copyright 2021 Elsevier).
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research within the field of advanced solid lubrication
materials.219 These materials are highly valued for their low
COF, robust mechanical strength, corrosion resistance, and
capacity for oil-free lubrication.220 Wang et al.221 conducted a
study aimed at enhancing the tribological performance of self-
lubricating polymers by improving the properties of their
transfer films. GO/PTFE/poly-p-phenylene terephthalamide
(PPTA) composites (GPPs) were synthesized using a “dual-
size” approach. The tribological behavior of the GPPs was
evaluated using a ball-on-disk tribometer, demonstrating that
GPPs exhibit a low COF (a minimum of 0.061) and significant
hydrophobicity (a maximum of 137°). The hierarchical
structure, composed of dual-sized PTFE and PPTA, was
shown to mitigate the agglomeration of PTFE particles
effectively. This configuration was found to hinder the mobility
and extensive failure of the PTFE matrix, thereby diminishing
the wear rate (Figure 6g-j). Additionally, it was determined
that the presence of edges and defects in GO, which introduces
chemically active sites, lowers the energy threshold required for
polymer defluorination. Such alterations facilitate tribological
chemical reactions, essential for the fortification of the transfer
film and the enhancement of its adhesive properties.
While Gr demonstrates exceptional characteristics as a

lubricant nanoadditive, its incorporation into lubricant oils is
challenged by agglomeration. This issue arises due to cohesive
interactions among nanoparticles, leading to the settling of Gr,

which in turn degrades the tribological performance of Gr-
based lubricants.222 The dispersion stability of Gr additives in
nonpolar organic solvents is notably poor, resulting in
diminished lubrication efficacy.112 Therefore, overcoming
agglomeration and sedimentation is a primary concern when
Gr is employed in lubricant applications. One strategy to
mitigate agglomeration involves using surfactants, achieved
through physical modification to alter the interfacial properties
of Gr.212,223 Strong physical interaction forces, such as
hydrogen bonding and van der Waals forces, facilitate the
binding of surfactant molecules to Gr, thereby reducing its
surface tension and preventing agglomeration.112 In a study
conducted by Zulhanafi et al.,212 TMP ester served as the base
lubricant, GO as the nanoadditive, and oleic acid (OA) as the
surfactant. This combination, TMP/GO/OA, exhibited
enhanced dispersion stability compared to that of TMP/GO
alone (Figure 7a-d). Moreover, the incorporation of OA
significantly reduced the coefficient of friction in samples with
0.05, 0.1, and 0.5 wt % GO by 22.9%, 21.1%, and 23.6%,
respectively (Figure 7e).

The efficacy of biolubricants can be enhanced with the
addition of Gr, though challenges in maintaining a stable
suspension over extended periods have been noted.176 Hasnul
et al.224 explored a novel approach to combine Gr with an IL
(trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)-
phosphinate) to achieve stable dispersions of biolubricants.

Figure 8. (a) Schematic representation of the synthesis process for the chitosan-g-PNIPAM copolymer. (b) Diagram illustrating the fabrication
steps for the GO/chitosan-g-PNIPAM nanohybrids. (c) Conceptual schematic of the friction mechanism proposed for the GO/chitosan-g-
PNIPAM nanohybrids when used as an additive in water-based lubrication systems (reprinted with permission from ref 71. Copyright 2021
Elsevier).
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The incorporation of IL, which was considered a surfactant in
this study, not only stabilized the dispersion but also reduced
the frictional performance by 33%. A comparative analysis
revealed that using the IL or Gr independently resulted in 13%
and 7% COF reductions, respectively. Examination of wear
scars revealed that samples treated with the Gr/IL combina-
tion displayed smoother surfaces than those with corrosive
spots or abrasive scars found in samples treated with only IL or
Gr (Figure 7f-i). This outcome suggests a synergistic
interaction between the two additives. Furthermore, the
study determined that the IL contributed beyond dispersion
stabilization, playing a critical role in the formation of the
tribolayer, underscoring its multifaceted benefits in bio-
lubricant performance enhancement. In a similar study, Liñeira
del Rió et al.225 explored the antifriction and antiwear synergies
offered by two functionalized GO (r-GO and r-GO modified
with octadecylamine, r-GO@ODA) when combined with a
phosphonium IL as additives in a biodegradable ester base oil
(BIOE). Four BIOE nanodispersions were prepared: two
without the IL and two with the IL (forming hybrid
lubricants). These formulations exhibited good temporal
stability, particularly those containing the IL, with stability
extending to at least 3 weeks. Moreover, compared to the neat
BIOE oil, all hybrid and nonhybrid lubricants demonstrated
reduced COF, with the most significant reduction in friction,
34%, observed for the lubricant containing 1 wt % IL+0.05 wt
% rGO (Figure 7j). Similarly, discs lubricated with the
prepared lubricants exhibited less wear than those lubricated
with the BIOE oil alone, with the greatest wear reduction, 34%,
also recorded for the 1 wt % IL+0.05 wt % r-GO lubricant
(Figure 7j). Further analysis indicated that mechanisms of
surface repair, synergistic effects, and tribofilm formation were
present, contributing to the enhanced performance of the
lubricants. 3D mapping of the wear scars on lubricated discs
further showed that the wear resulting from the lubricants was
less than that resulting from the BIOE base oil (Figure 7k).
Although adding small amounts of GO to water can decrease

friction and enhance wear resistance,54 as GO sheets form
protective coatings on sliding surfaces,124 its aggregation in
water due to van der Waals forces and π−π interactions is a
challenge. This challenge is often addressed by the chemical
modification of GO with organic molecules or hydrophilic
polymers to prevent clumping and enhance tribological
characteristics.226 For example, attaching poly(ethylene glycol)
(PEG) to carboxylated Gr nanosheets has been shown to result
in improved friction-reducing and antiwear properties of the
virgin Gr.227 However, the covalent modification of GO is
complex and requires harsh conditions, potentially damaging
its structure. In this respect, noncovalent modification offers a
simpler alternative, which maintains the structure of GO, while
enhancing its lubricating properties.228 Additionally, water-
soluble polymers with brush-like structures from biological
sources can improve water lubrication, but their high cost and
limited availability make synthetic alternatives more viable for
industrial use.229 Semisynthetic polymers, such as chitosan-
derived copolymers, are promising due to their ecofriendliness,
ease of modification, and low cost, despite the solubility
challenges of chitosan, which recent strategies have begun to
overcome.230,231 Wei et al.71 introduced a hybrid additive
tailored for water-based lubrication, which synergistically
combines GO with a brush-like, chitosan-based copolymer,
specifically chitosan-graf t-poly(N-isopropylacrylamide) (chito-
san-g-PNIPAM) (Figure 8a,b). This GO/chitosan-g-PNIPAM

nanohybrid was synthesized through an efficient in situ,
noncovalent assembly technique. The findings revealed that
the nanohybrids exhibited exceptional friction-reduction and
antiwear capabilities, especially under conditions of a high
contact load. Notably, these nanohybrids were able to lower
the mean COF by 40% relative to pure GO, and by 84%
compared to the copolymer alone. Additionally, wear rates
decreased by 15% and 47%, respectively. It was suggested that
GO/chitosan-g-PNIPAM could adhere to friction-pair surfaces
and form a hybrid protective film. This film prevents direct
contact between the rubbing surfaces, thus providing effective
lubrication and antiwear properties (Figure 8c). Furthermore,
the presence of the chitosan-g-PNIPAM copolymer on the
surface of GO is likely to enhance the adsorption of GO onto
metal substrates and sustain the integrity of the boundary-
lubricating film. This interaction facilitates a synergistic effect
with GO, thereby enhancing the performance in reducing
friction and wear.

■ FUTURE RESEARCH DIRECTIONS AND
RECOMMENDATIONS

The potential integration of Gr-based nanoadditives into
biolubricants heralds a transformative leap forward in
lubrication technology poised to deliver both enhanced
performance and significant environmental benefits. As we
gaze into the future of this promising field, a critical analysis
reveals several research avenues and strategies that must be
prioritized to realize the full potential of these advanced
materials. Although this study highlights the tribological
improvements achieved by incorporating graphene-based
additives into biolubricants, further research is needed to
conduct a direct, systematic comparison with traditional
mineral-based lubricants under identical conditions to fully
establish their relative performance advantages. Such com-
parative studies will provide valuable insights into the practical
benefits and potential limitations of graphene-enhanced
biolubricants, guiding future developments in lubrication
technology.
Enhanced Dispersion Techniques. One of the founda-

tional challenges in the utilization of Gr-based nanoparticles in
biolubricants lies in their dispersion stability. Future research
must delve into the development of novel surfactants or
dispersing agents. These agents should not only be effective at
lower concentrations but also be environmentally benign,
addressing both efficacy and ecofriendliness. Moreover, the
exploration of mechanical methods, such as ultrasonic and
mechanical mixing, promises to refine the uniformity of the
dispersion without compromising the structural integrity of Gr.
The critical question remains: can we achieve a balance
between optimal dispersion and maintaining the intrinsic
properties of Gr?
Advanced Gr Modifications. The customization of the

properties of Gr through chemical and physical modifications
represents fertile ground for innovation. Tailoring Gr for
specific lubrication scenarios, such as high-temperature or
high-pressure environments, could dramatically expand its
applicability. Furthermore, the functionalization of Gr with
both organic and inorganic molecules may offer new
dimensions for modifying the tribological properties of
biolubricants. The challenge here is to systematically ascertain
the effects of these modifications and ensure that they are
beneficial rather than detrimental to the desired lubrication
characteristics.
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Hybrid Nanocomposite Systems. The exploration of
hybrid nanocomposite systems, wherein Gr-based nano-
particles are combined with other nanomaterials such as
TiO2, MoS2, or nanodiamond, could unlock new synergies in
lubrication technology. Research should focus on under-
standing the tribological behavior of these hybrid structures
within diverse matrix materials like polymers and ceramics,
targeting specialized applications. The critical consideration
will be how these combinations affect the overall performance
and stability of the biolubricants.
Scale-up and Commercialization. Transitioning from

laboratory success to industrial scalability and commercial
viability remains a formidable barrier. Research must address
the cost-effectiveness of synthesizing Gr-based nanoadditive
and their integration into biolubricants. This includes
conducting lifecycle assessments and technoeconomic analyses
to evaluate the environmental impacts and commercial
prospects rigorously. The overarching question is whether
the benefits in laboratory settings can be replicated on a mass
scale while remaining economically feasible.
Real-World Application Testing. Extensive real-world

testing is imperative for Gr-enhanced biolubricants to undergo
the transition from theory to practical applications. Long-term
performance assessments in the machinery and automotive
sectors will provide invaluable data on their efficacy and
durability. Moreover, comparative analyses with traditional
petroleum-based lubricants in field tests will illuminate relative
performance metrics and environmental impacts, offering a
clear benchmark for progress.
Environmental Impact Reduction. Finally, the environ-

mental footprint of Gr-based additives must be meticulously
evaluated. While graphene itself is not biodegradable, the
biolubricant base oils used in the formulation maintain their
biodegradable properties, ensuring that the lubricants still offer
significant ecological benefits. Research into their biodegrad-
ability and ecological effects is crucial to ensure that these
advanced materials do not inadvertently harm the environ-
ment. Ongoing research into the long-term environmental
persistence of graphene-based additives is critical. Although
their tribological benefits are well-established, more studies are
needed to fully understand their long-term impact on
ecosystems. Evaluations of the environmental footprint of
graphene-enhanced biolubricants have begun, and more real-
world testing is needed to assess their effects over extended
periods. Moreover, strategies to enhance the recyclability and
reusability of spent lubricants and Gr-based materials will be
pivotal in promoting a circular economy.
By addressing these critical areas, the research community

can enhance the technological and environmental benefits of
Gr-enhanced biolubricants, setting the stage for their wide-
spread adoption across industries. This will contribute not only
to the sustainability of mechanical systems but also to the
overarching goal of reducing ecological footprints.
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■ ABBREVIATIONS
AFM, atomic force microscopy
BC, bacterial cellulose
BIOE, biodegradable polymeric ester lubricant
CD, carbon dot
BMI, bismaleimide
CNC, cellulose nanocrystals
CNF, carbon nanofiber
CNSL, cashew nut shell liquid
CNT, carbon nanotube
COF, coefficient of friction
CTAB, cetyltrimethylammonium bromide
CVD, chemical vapor deposition
DLC, diamond-like carbon
EDS, energy dispersive spectroscopy
EG, graphene Nanoplatelets
g-C3N4, graphitic carbon nitride
Gr, graphene
GnP, graphene nanoplatelets
GO, graphene oxide
GQD, graphene quantum dot
hBN, hexagonal boron nitride
HOPG, highly oriented pyrolytic graphite
HRTEM, high-resolution transmission electron microscopy
IL, ionic liquid
KO, Karanja oil
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MG, multilayer graphene
MGr, multilayer graphene
MLG, multilayer graphene
MO, mineral engine oil
MoDTC, molybdenum dithiocarbamate
NCO, neat castor oil
ND, nanodiamond
NMR, nuclear magnetic resonance
NPE, nonylphenol ethoxylates
AO, oleic acid
PAO, polyalphaolefin
PDA, polydopamine
PE, pentaerythritol
PEEK, polyether ether ketone
PEG, poly(ethylene glycol)
PI, polyimide
PNIPAM, poly(N-isopropylacrylamide)
PO, Pongamia oil
POE, polyol ester
PPTA, poly-p-phenylene terephthalamide
PTFE, polytetrafluoroethylene
r-GO, reduced graphene oxide
rGO, reduced graphene oxide
RO, rapeseed oil
SDBS, sodium dodecylbenzene sulfonate
SDS, sodium dodecyl sulfate
SEM, scanning electron microscopy
TMD, transition metal dichalcogenide
TMP, trimethylolpropane
WSD, wear scar diameter
WTW, wear track width
XRD, X-ray diffraction
ZDDP, zinc dialkyldithiophosphate
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(225) Liñeira del Río, J. M.; López, E. R.; García, F.; Fernández, J.
Tribological Synergies among Chemical-Modified Graphene Oxide
Nanomaterials and a Phosphonium Ionic Liquid as Additives of a
Biolubricant. J. Mol. Liq. 2021, 336, No. 116885.
(226) Wen, P.; Lei, Y.; Li, W.; Fan, M. Two-Dimension Layered
Nanomaterial as Lubricant Additives: Covalent Organic Frameworks
beyond Oxide Graphene and Reduced Oxide Graphene. Tribol. Int.
2020, 143, No. 106051.
(227) Hu, Y.; Li, W.; Ma, S.; Wang, Q.; Zou, H.; Shen, X. The
Composition and Performance of Alite-Ye’elimite Clinker Produced
at 1300 °C. Cem. Concr. Res. 2018, 107, 41−48.
(228) Fan, M.; Du, X.; Ma, L.; Wen, P.; Zhang, S.; Dong, R.; Sun,
W.; Yang, D.; Zhou, F.; Liu, W. In Situ Preparation of Multifunctional
Additives in Water. Tribol. Int. 2019, 130, 317−323.
(229) Cooper, B. G.; Bordeianu, C.; Nazarian, A.; Snyder, B. D.;
Grinstaff, M. W. Active Agents, Biomaterials, and Technologies to
Improve Biolubrication and Strengthen Soft Tissues. Biomaterials
2018, 181, 210−226.
(230) Sahariah, P.; Másson, M. Antimicrobial Chitosan and
Chitosan Derivatives: A Review of the Structure−Activity Relation-
ship. Biomacromolecules 2017, 18 (11), 3846−3868.
(231) Mu, L.; Wu, J.; Matsakas, L.; Chen, M.; Rova, U.;
Christakopoulos, P.; Zhu, J.; Shi, Y. Two Important Factors of
Selecting Lignin as Efficient Lubricating Additives in Poly (Ethylene
Glycol): Hydrogen Bond and Molecular Weight. Int. J. Biol.
Macromol. 2019, 129, 564−570.

ACS Omega http://pubs.acs.org/journal/acsodf Review

https://doi.org/10.1021/acsomega.4c06845
ACS Omega 2024, 9, 50868−50893

50893

https://doi.org/10.3390/coatings11060732
https://doi.org/10.3390/coatings11060732
https://doi.org/10.1088/2051-672X/ac2a0f
https://doi.org/10.1088/2051-672X/ac2a0f
https://doi.org/10.1088/2051-672X/ac2a0f
https://doi.org/10.1016/j.bej.2024.109496
https://doi.org/10.1016/j.bej.2024.109496
https://doi.org/10.1016/j.bej.2024.109496
https://doi.org/10.1063/5.0004145?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1007/s11249-020-01398-3
https://doi.org/10.1007/s11249-020-01398-3
https://doi.org/10.1007/s11249-020-01398-3
https://doi.org/10.1007/s11249-020-01398-3
https://doi.org/10.1016/j.electacta.2024.143818
https://doi.org/10.1016/j.electacta.2024.143818
https://doi.org/10.1016/j.jmrt.2023.02.032
https://doi.org/10.1016/j.jmrt.2023.02.032
https://doi.org/10.1016/j.cis.2020.102215
https://doi.org/10.1016/j.cis.2020.102215
https://doi.org/10.1016/j.cis.2020.102215
https://doi.org/10.1002/smll.202400796
https://doi.org/10.1002/smll.202400796
https://doi.org/10.1002/smll.202400796
https://doi.org/10.1002/smll.202400796?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3390/lubricants9050046
https://doi.org/10.3390/lubricants9050046
https://doi.org/10.1016/j.molliq.2021.116885
https://doi.org/10.1016/j.molliq.2021.116885
https://doi.org/10.1016/j.molliq.2021.116885
https://doi.org/10.1016/j.triboint.2019.106051
https://doi.org/10.1016/j.triboint.2019.106051
https://doi.org/10.1016/j.triboint.2019.106051
https://doi.org/10.1016/j.cemconres.2018.02.009
https://doi.org/10.1016/j.cemconres.2018.02.009
https://doi.org/10.1016/j.cemconres.2018.02.009
https://doi.org/10.1016/j.triboint.2018.09.020
https://doi.org/10.1016/j.triboint.2018.09.020
https://doi.org/10.1016/j.biomaterials.2018.07.040
https://doi.org/10.1016/j.biomaterials.2018.07.040
https://doi.org/10.1021/acs.biomac.7b01058?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.biomac.7b01058?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.biomac.7b01058?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.ijbiomac.2019.01.175
https://doi.org/10.1016/j.ijbiomac.2019.01.175
https://doi.org/10.1016/j.ijbiomac.2019.01.175
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c06845?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

