
REVIEW
published: 31 January 2020

doi: 10.3389/fchem.2020.00019

Frontiers in Chemistry | www.frontiersin.org 1 January 2020 | Volume 8 | Article 19

Edited by:

Joe Patterson,

University of California, Irvine,

United States

Reviewed by:

Andrea Sylvia Carlini,

Northwestern University, United States

Jeffrey Foster,

University of Birmingham,

United Kingdom

*Correspondence:

Cong Huynh

huynh.cong.dtu@gmail.com;

huynhcongtruc@duytan.edu.vn

Specialty section:

This article was submitted to

Polymer Chemistry,

a section of the journal

Frontiers in Chemistry

Received: 29 October 2019

Accepted: 08 January 2020

Published: 31 January 2020

Citation:

Hoang Thi TT, Sinh LH, Huynh DP,

Nguyen DH and Huynh C (2020)

Self-Assemblable Polymer

Smart-Blocks for

Temperature-Induced Injectable

Hydrogel in Biomedical Applications.

Front. Chem. 8:19.

doi: 10.3389/fchem.2020.00019

Self-Assemblable Polymer
Smart-Blocks for
Temperature-Induced Injectable
Hydrogel in Biomedical Applications

Thai Thanh Hoang Thi 1, Le Hoang Sinh 2, Dai Phu Huynh 3, Dai Hai Nguyen 4 and

Cong Huynh 2*

1 Biomaterials and Nanotechnology Research Group, Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh

City, Vietnam, 2 Institute of Research and Development, Duy Tan University, Da Nang, Vietnam, 3 Faculty of Materials

Technology and Polymer Research Center, Ho Chi Minh City University of Technology, VNU HCM, Ho Chi Minh City, Vietnam,
4 Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam

Self-assembled temperature-induced injectable hydrogels fabricated via self-assembly

of polymer smart-blocks have been widely investigated as drug delivery systems and

platforms for tissue regeneration. Polymer smart-blocks that can be self-assembly

play an important role in fabrication of hydrogels because they can self-assemble to

induce the gelation of their copolymer in aqueous solution. The self-assembly occurs

in response to an external stimulus change, such as temperature, pH, glucose, ionic

strength, light, magnetic field, electric field, or their combination, which results in

property transformations like hydrophobicity, ionization, and conformational change. The

self-assembly smart-block based copolymers exist as a solution in aqueous media at

certain conditions that are suitable for mixing with bioactive molecules and/or cells.

However, this solution turns into a hydrogel due to the self-assembly of the smart-blocks

under exposure to an external stimulus change in vitro or injection into the living body

for a controllable release of loaded bioactive molecules or serving as a biomaterial

scaffold for tissue regeneration. This work reports current scenery in the development

of these self-assembly smart-blocks for fabrication of temperature-induced injectable

physically cross-linked hydrogels and their potential application as drug delivery systems

and platforms for tissue engineering.

Keywords: biomaterials, block copolymer, drug delivery system, hydrogels, injectable, self-assembly,

temperature-sensitive, tissue engineering

INTRODUCTION

Hydrogels are three-dimensional (3D) hydrophilic cross-linked polymeric networks that contain
a large portion of water or biological fluids (Huynh et al., 2011a; Nguyen et al., 2015; Norouzi
et al., 2016; Liu et al., 2017; Yu et al., 2018; Cirillo et al., 2019). Polymeric hydrogels have been
widely used as biomaterials for drug delivery systems, cell culture platforms, wound dressing, and
tissue regeneration scaffolds due to their capacity to serve as drug depots for controlled delivery
of biological molecules, and their minimal cytotoxicity to the surrounding and encapsulated cells
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(Kim et al., 2006a, 2014; Huynh et al., 2011a; Chiang et al.,
2014; Kye et al., 2014; Nguyen et al., 2015; Patel et al., 2015;
Yuan et al., 2015; Norouzi et al., 2016; Wang S. J. et al., 2016;
Khaliq et al., 2017; Liow et al., 2017; Liu et al., 2017; Santovena
et al., 2017; Le et al., 2018; Lv et al., 2018; Yu et al., 2018;
Cirillo et al., 2019). Moreover, hydrogel biomaterials offer highly
porous structures and high water contain, which increases the
efficiency of nutrient transportation to the encapsulated cells
and facilitates the waste removal (Huynh et al., 2011a; Nguyen
et al., 2015; Norouzi et al., 2016; Liu et al., 2017; Yu et al., 2018;
Cirillo et al., 2019). A wide range of polymer sources, including
natural-derived and synthetic polymers or their combination, has
been used to fabricate hydrogels. For example, collagen, gelatin,
chitosan, and are among the natural-derived polymers alginate
(Sim et al., 2015; Jeon et al., 2016; Liu et al., 2017; Turabee
et al., 2019). Synthetic polymer smart-blocks are synthetic
polymers that can self-assembly and trigger the gelation of
their copolymers under certain condition. Poly(ethylene glycol)
(PEG) (Huynh et al., 2011a), poly(D,L lactic acid) (PLA) (Guo
et al., 2015), poly(ε-caprolactone) (PCL) (Hyun et al., 2007),
P(LA-co-glycolic acid) (PLGA) (Lee et al., 2001a), P(CL-co-
LA) (PCLA) (Kang et al., 2010), P(CL-co-GA) (PCGA) (Jiang
et al., 2007; Chen et al., 2016a,b), poly((R)-3-hydroxybutyrate)
(PHB) (Barouti et al., 2016), poly(LA-co-δ-valerolactone) (PLVA)
(Vidyasagar et al., 2017) poly(trimethylene carbonate) (PTMC)
(Bat et al., 2008), poly(amino urethane) (PAU) (Dayananda et al.,
2008), poly(amino ester urethane) (PAEU) (Huynh et al., 2011b)
are typical examples of synthetic polymer smart-blocks, which
have been widely employed for injectable hydrogel fabrication.
Although natural polymer hydrogels offer many advantages,
such as excellent biocompatible, biodegradable, biomimetic, low
immunological stimulation, easily available, and highly versatile,
many disadvantages are still remained, including low mechanical
property, difficult controlling properties and/or modification
degree, less-controllable degradation rate, variation between
batch to batch, and disease transmission risk (Antoine et al.,
2015; Jeon et al., 2015; Pina et al., 2015). On the other
hand, synthetic polymer hydrogels offer uniform and designable
chemical structure and properties, highly functionalability,
high mechanical strength, and controllable degradation rate
(Antoine et al., 2015; Pina et al., 2015).

Hydrogel networks can be crosslinked using two main
strategies, chemical and physical cross-linking (Huynh et al.,
2011a; Nguyen et al., 2015; Norouzi et al., 2016; Liu et al.,
2017; Yu et al., 2018; Cirillo et al., 2019). Chemically cross-
linked hydrogels that normally possess high mechanical strength
are fabricated by employing many different chemical reactions,
such as free radical, Michael-addition, Schiff base, Click, and
enzymatic reactions (Nguyen et al., 2015, 2017; Jeon et al.,
2016; Liu et al., 2017; Cheng et al., 2018; Huynh et al., 2018;
Yu et al., 2018). However, the requirement for implantation
process after fabrication and/or the need of crosslinking agents,
catalysts, light, enzymes, and/or organic solvents in some cases,
which may create negative effects to the encapsulated bioactive
molecules and/or cells, may reduce the potential application of
these systems. In opposite, physically cross-linked hydrogels can
be fabricated via non-covalently linkages, such as hydrophobic

interaction, hydrogen bonding and ionic interaction between the
smart-blocks in polymers (Huynh et al., 2011a; Nguyen et al.,
2015; Norouzi et al., 2016; Liu et al., 2017; Yu et al., 2018; Cirillo
et al., 2019). Although the physically cross-linked hydrogels
possess lower mechanical strength compared to chemical cross-
linked hydrogels, the physically cross-linked hydrogels offer
milder conditions for hydrogel formation, and the injectability
fulfills a wide range of cavity geometries to form in situ hydrogels
without the need of an operation for implantation.

Hydrogels offer many advantages for biomedical applications
due to their unique properties that could be used as delivery
systems to control the delivery of bioactive molecules for
disease therapeutics or biomaterial scaffolds to provide structural
tissue integrity in tissue regeneration (Huynh et al., 2011a;
Hoffman, 2012). Hydrogels possess a high loading capacity that
can be used as localized drug depots for sustained release or
provide a high concentration of biological or physicochemical
cues for cell activity (Li and Mooney, 2016). The release
kinetics of loaded bioactive molecules can be easily tailored by
controlling the hydrogel property, such as the hydrophilicity,
biocompatibility, degradation and swelling rate, and crosslinking
density (Slaughter et al., 2009; Hoffman, 2012; Li and Mooney,
2016). In addition, the aqueous environment in the hydrogels
could help protect bioactive molecules and/or cells from damage
and/or degradation while maintaining the ability to transport
nutrients andwaste to improve cell activity. Hydrogels can also be
easily injected in deep target sites in the body and act as depots to
protect the loaded bioactivemolecules and cells from the immune
system while maintaining good bioactivity (Slaughter et al., 2009;
Huynh et al., 2011a; Hoffman, 2012; Li and Mooney, 2016).
Hydrogel polymer molecules can be easily functionalized with
cell targeting molecules to improve the biological interactions.
For example, functionalized cell adhesive ligands, such as
Arg-Gly-Asp (RGD) peptide, improved cell adhesion and
spreading in dextran hydrogels (Nguyen et al., 2017). Hydrogel
biomaterial scaffolds are also able to provide structural integrity
to regenerated tissue constructs. Therefore, hydrogel stiffness is
an important factor in regulating cell behavior, the interactions
between cells, extracellular matrix, and surrounding host tissues
(Vedadghavami et al., 2017). It was also reported that cells
exposed to stiffer hydrogels have a higher elastic modulus in their
plasma membrane and cells proliferate faster when compared to
those exposed to less stiff hydrogels. However, in a stiff hydrogel,
the cells migrate slower than their counterparts in softer
substrates (Vedadghavami et al., 2017). Therefore, the employed
hydrogels should possess a similar stiffness compared to the
regenerated tissues to maximize the compatibility and integrity
(Yang et al., 2009; Kim et al., 2014).

Block copolymers are synthetic polymers compose at least
two polymer blocks with distinct property and have been widely
used for hydrogel fabrarication. Self-assembly synthetic polymer
smart-blocks are segments of block copolymers that can self-
assemble via property transformations, such as hydrophobicity,
and ionization and conformational change, in response to the
change of external environmental stimuli, including temperature,
pH, glucose, ionic strength, magnetic or electric field, or
their combination (Lee et al., 2001a; Hyun et al., 2007; Jiang
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et al., 2007; Bat et al., 2008; Dayananda et al., 2008; Kang
et al., 2010; Huynh et al., 2011a,b; Yu et al., 2014a, 2018;
Guo et al., 2015; Nguyen et al., 2015; Barouti et al., 2016;
Chen et al., 2016a,b; Norouzi et al., 2016; Liu et al., 2017;
Vidyasagar et al., 2017; Cirillo et al., 2019). These self-assembly
synthetic smart-blocks play a key role in controlling the property
of their copolymers in aqueous solution for fabrication of
injectable self-assembled hydrogels (Huynh et al., 2011a; Nguyen
et al., 2015; Norouzi et al., 2016; Yu et al., 2018; Cirillo
et al., 2019). Among the stimuli signals, temperature is one
of the most popular and easiest stimulus for experimentally
control that has been used to induce the self-assembly of
a wide range of smart-blocks and subsequently the gelation
of their-derived copolymers. Injectable temperature-induced
self-assembled hydrogels have been widely investigated as
biomaterials for biomedical applications, especially therapeutic
molecule delivery and tissue regeneration (Huynh et al.,
2011a; Nguyen et al., 2015; Norouzi et al., 2016; Liu et al.,
2017; Yu et al., 2018; Cirillo et al., 2019). The bioactive
molecules and/or cells can be formulated with the polymer
solutions prior to initiation the gelation or injection into
the body without the need of an implantation procedure,
to form hydrogels which serve as drug depots for sustained
and localized delivery or biomaterial scaffolds for tissue
regeneration (Figure 1).

FIGURE 1 | Photographs of (A,B) in vitro and (C,D) in vivo gelation of 10 wt.%

PLGA-PEG-PLGA hydrogel. A polymer solution exists at 5◦C (A) for

formulation with bioactive molecules and/or cells before increasing

temperature to physiological condition (B, 37◦C) or being injected into an SD

rat (C,D) for gel formation to serve as drug depots for sustained and localized

delivery or biomaterial scaffolds for tissue regeneration. Reproduced from Loh

and Oren (2012) with permission from The Royal Society of Chemistry.

This review aims to provide a development progress
of self-assembly synthetic smart-blocks for fabrication of
temperature-induced injectable physical cross-linked hydrogels
and their potential in the delivery of therapeutic molecules
and tissue regeneration. The future outlook of temperature-
induced hydrogel based on these synthetic smart-blocks will also
be discussed.

DESIGN OF SELF-ASSEMBLY SYNTHETIC
SMART-BLOCKS FOR
TEMPERATURE-INDUCED HYDROGELS

The physical properties of polymer smart-blocks play a critical
role in fabrication of self-assembled injectable hydrogels because
it regulates the ability to assemble their copolymers in response to
the stimulation of temperature for forming hydrogels in aqueous
solution (Huynh et al., 2011a; Nguyen et al., 2015; Norouzi et al.,
2016; Yu et al., 2018; Cirillo et al., 2019). Temperature is one of
the most popular signals that has been used to regulate the self-
assembly of the smart-blocks to induce gelation. Temperature
is also an easy stimulus to experimentally control to induce the
self-assembled gelation of a wide range of smart-blocks both
in vitro and in vivo. Temperature-responsive smart-blocks are
amphiphilic blocks that can exhibit hydrophilic-hydrophobic
transformation or conformational change in response to a
temperature difference, which creates a change in physical state
of an aqueous copolymer solution, e.g., a solution (sol) to a gel
(Huynh et al., 2011a; Nguyen et al., 2015; Norouzi et al., 2016; Yu
et al., 2018; Cirillo et al., 2019). For example, in aqueous solution,
the polymers exist as a sol state at certain low temperature
ranges that facilitates the incorporation of bioactive molecules
and/or cells before transforming into a 3D hydrogel network (gel
state) at physiological temperature (37◦C) for serving as a drug
depot for control the delivery and/or a biomaterial scaffold for
cell growth.

There are two main mechanisms for self-assembly and
subsequently gelation of temperature-sensitive smart-blocks
based injectable copolymer hydrogels, including micellization
and conformational transitions (Huynh et al., 2011a; Nguyen
et al., 2015; Zhang et al., 2015a; Norouzi et al., 2016; Yu
et al., 2018; Cirillo et al., 2019). In micellization mechanism,
amphiphilic smart-blocks increase their hydrophobicity in
response to temperature change, and the micellization occurs
due to the hydrophobic interaction between smart-blocks. The
degree of micellization can be further triggered with extended
temperature change that leads to the association of individual
micelles (Figure 2A) or inter-molecular micelles (Figure 2B)
in polymers containing single or multiple smart-blocks in the
molecules, respectively, which finally leads to the formation
of 3D hydrogel networks. At low concentration, amphiphilic
polymers can dissolve as individual molecules in an aqueous
solution. However, polymer molecules start to interact with each
other to form polymeric micelles at a specific increased polymer
concentration which is defined as critical micelle concentration
(CMC). The higher hydrophobicity blocks possess lower CMC
values, and therefore tend to form stronger interactionmicelles to
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FIGURE 2 | Schematic showing the sol-gel phase transition mechanisms in aqueous solution: (A) association of individual micelles from copolymers contain single

amphiphilic smart-blocks, (B) association of inter-molecular micelles from copolymers contain multiple amphiphilic smart-blocks, and (C) conformational changes of

peptide-based smart-blocks from random coils to packed β-sheets structure to form hydrogels. (D) A typical sol-gel phase transition of temperature-induced

hydrogels, in which a polymer solution exists at low temperatures and exhibits a sol-to-gel phase transition to form a hydrogel at elevated temperatures.

trigger the gelation at lower concentration. The conformational
transition gelation mechanism normally happens in peptide-
based smart-blocks, which undergo transitions from random
coils to packed β-sheets, and potentially further to nanofibers
to form 3D hydrogel networks in response to the temperature
change (Figure 2C). In either mechanism, the sequence of the
smart-blocks and topology of the copolymer molecules play a
critical role in controlling the gelability and gelation mechanism
of the designed hydrogels which can be used as effective tools to
design a suitable hydrogel system.

A wide range of synthetic polymer smart-blocks exhibit a
response to the temperature in an aqueous solution. However,
only some of them could trigger the gelation of their
(co)polymers in aqueous media at surrounding body conditions
that showed potential in biomedical engineering applications.
Some typical examples of temperature-sensitive gelable smart-
blocks are poly(N-isopropylacrylamide) (PNIPAAm), polyethers,
e.g., PEG or PEO and poly(propylene oxide) (PPG or PPO),
aliphatic polyesters, aliphatic polycarbonates, and polypeptides
(Figure 3). The gelation mechanism of these temperature-
sensitive smart-blocks based injectable hydrogels and their
potential applications in drug delivery, therapeutic treatment and
tissue engineering have been widely investigated. This section
discusses about the synthesis and gelation of these smart-blocks
and their temperature-induced injectable hydrogels.

Polyether Smart-Blocks
PEG (Figure 3) is a hydrophilic and neutral charge synthetic
polymer with a wide range of molecular weight that has been the
most popular smart-block for hydrogel preparation in biomedical
applications (Huynh et al., 2011a; Nguyen et al., 2015; Norouzi
et al., 2016; Yu et al., 2018; Cirillo et al., 2019). Although

PEG is hydrophilic and could not trigger the gelation, it can
function as a bridge to induce the cross-linking density of the
hydrogels. PEG has been widely used to fabricate chemically
cross-linked hydrogels for a wide range of applications, such
as drug delivery and tissue regeneration (Nguyen and West,
2002; Nguyen et al., 2018). In addition, the dehydration of PEG
at high temperatures reported to result in a gel-to-sol phase
transition (Huynh et al., 2010). PEG is the most important
smart-block for conjugation with other smart-blocks to fabricate
the hydrogels that are present in most of the synthetic block
copolymer hydrogels.

PPG (Figure 3) exhibits amphiphilic property at low range
molecular weight or when copolymerized with other hydrophilic
polymers, such as PEG, and can self-assemble to form micelles
in an aqueous solution (Glatter et al., 1994; Allcock et al.,
2006; Loh et al., 2010; Choi et al., 2011a; Khaliq et al., 2017;
Liow et al., 2017). Its copolymer with PEG in the form of
PEG-PPG-PEG copolymers, known as Pluronic (BASF) or the
Synperonic PE/F (Croda) or Poloxamer (ICI), are soluble in
water at low temperature with a low degree of micellization
due to the self-assemble properties of PPG (Huynh et al.,
2011a; Khaliq et al., 2017). By increasing temperature, the
degree of micellization increases which leads to the formation
of associated micellar structure and subsequently results in a
sol-to-gel phase transition (Mortensen and Brown, 1993; Glatter
et al., 1994; Khaliq et al., 2017; Liow et al., 2017) (Figure 2A).
However, when the temperature was further elevated, the
dehydration of PEG blocks lead to the reduction in micellar
interactions and subsequent the collapse of the 3D hydrogel
network, indicated by a gel-to-sol phase transition. Pluronic
hydrogels are normally non-biodegradable, short persistent, high
permeability, and low mechanical strengths that may limit
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FIGURE 3 | Structure of some typical self-assembly smart-blocks for fabrication of temperature-induced self-assembled injectable hydrogels.

their potential application (Huynh et al., 2011a; Nguyen et al.,
2015; Norouzi et al., 2016; Yu et al., 2018; Cirillo et al.,
2019). Scientists have modified Pluronic to adjust its critical
gel concentration and sol-to-gel phase transition temperature,
and improve their biodegradability, thermal and mechanical
properties, and their biocompatibility (Cohn et al., 2006; Choi
et al., 2011a; Loh et al., 2014; Dou et al., 2016; Wu et al.,
2016a). For example, conjugating polyhedral oligosilsesquioxane
(POSS) to both end of PEG-PPG-PEG copolymers via atom
transfer radical polymerization (ATRP) to form POSS-PEG-
PPG-PEG-POSS copolymer hydrogel could increase the sol-
to-gel phase transition temperature from 22 to 33◦C without
changing mechanical property of the formed hydrogels (Dou
et al., 2016). In addition, PPG have also been grafted (Kim
D. H. et al., 2010; Nguyen et al., 2016) into or simply mixed
(Jung et al., 2017) with natural polymers, such as chitosan,
heparin (HEP), hyaluronic acid (HA), and gelatin, to fabricate
self-assemble temperature-induced injectable hydrogels. These
inherit the biocompatibility of their natural parent polymers
and the temperature responsive property of PPG, for improving
hydrogel properties. For example, the addition of high molecular
weight HA into PEG-PPG-PEG hydrogel could enhance the gel

strength due to the co-association of HA into the intermolecular
micellar packing in the hydrogel structure (Jung et al., 2017).

Aliphatic Polyester Biodegradable
Smart-Blocks
Similar to PPG, amphiphilic aliphatic biodegradble polyester
smart-blocks (Figure 3), including PLLA (Jeong et al., 1997,
1999a; Park et al., 2001; Hiemstra et al., 2006, 2007; Nagahama
et al., 2008), PDLA (Hiemstra et al., 2006, 2007), PLA (Jeong
et al., 1999a; Li et al., 2007; Chen et al., 2010; Guo et al., 2015;
Shi et al., 2016), PCL (Lee et al., 2001b; Bae et al., 2006; Kim
et al., 2006a; Hyun et al., 2007; Gong et al., 2009a,b; Kang et al.,
2010; Peng C. L. et al., 2013), PLGA (Zhang et al., 2008; Peng
S. et al., 2013; Chiang et al., 2014; Yu et al., 2014a; Yuan et al.,
2015; Zhang L. et al., 2015; Wang S. J. et al., 2016; Lei et al.,
2017; Santovena et al., 2017; Shen et al., 2017), PCLA (Xun et al.,
2009; Kang et al., 2010; Petit et al., 2013, 2014, 2015; Sandker
et al., 2013; Tellegen et al., 2018), PCGA (Jiang et al., 2007;
Yu et al., 2014a; Chen et al., 2016a,b), PLVA (Peng S. et al.,
2013; Vidyasagar et al., 2017), and PHB (Barouti et al., 2016;
Wu et al., 2016b; Wee et al., 2017), in their copolymers with
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PEG can self-assemble into individual micelles or inter-molecular
micelles, and then the association of individual micelles or inter-
molecular micelles could induce the gelation of their copolymers
(Figures 2A,B). These blocks can be easily synthesized via
ring opening polymerization (ROP) technique using hydroxyl
terminated molecules, such as hydroxyl-terminated PEGs, and
appropriate cyclic ester derived monomers (Jeong et al., 1997).
The prepared blocks can be further conjugated via urethane
coupling (Jeong et al., 1997; Gong et al., 2009a; Gou et al., 2010;
Hwang et al., 2010) and esterification (Li et al., 2007; Zhang et al.,
2017) to achieve designated polymer structures or increase the
length of the smart-blocks. They have been copolymerized with
PEG to fabricate a wide range of self-assembled, biodegradable
polymeric injectable hydrogels, which show potential application
in drug delivery, therapeutic treatment, and tissue regeneration.
This section discusses in more detail the gelation mechanisms
and important factors to control the self-assembled gelation of
some typical amphiphilic aliphatic polyester smart-blocks.

The first study reported the preparation of biodegradable
aliphatic polyester as self-assembled polymeric injectable
hydrogels for drug delivery was published in 1997 (Jeong et al.,
1997). Copolymers of PLLA and PEG in the forms of PEG-
PLLA diblock or PEG-PLLA-PEG triblock copolymers were
synthesized via ROP, followed by urethane coupling to fabricate
triblock. The gelation behavior and potential applications as
drug delivery systems were investigated. In aqueous media, both
PEG-PLLA and PEG-PLLA-PEG existed in the sol state at high
temperatures and exhibited a sol-to-gel phase transition upon
lowering down the temperature. The release of loaded-dextran,
a model drug, was sustained for more than 2 weeks. Although
the transition temperature can be regulated by tailoring the
block length of biodegradable PLLA, hydrophobic/hydrophilic
ratios, polymer end-groups, and/or stereoregularity of the
PLLA (Jeong et al., 1997; Park et al., 2001; Li et al., 2007;
Nagahama et al., 2008), the high temperature sol state of these
hydrogels limited their application due to the potential damage
of formulated bioactive molecules and/or encapsulated cells, and
patients’ inconvenience.

Soon after, other biodegradable aliphatic polyesters, e.g.,
PLGA, PCL, or PCLA, were added as self-assembly smart-blocks
for temperature-induced injectable hydrogels. When the PLLA
smart-block were replaced by PLGA or PCL or PCLA to generate
PEG-PLGA (Zhang et al., 2008; Peng S. et al., 2013; Chiang et al.,
2014; Lei et al., 2017; Shen et al., 2017), PEG-PCLA (Kang et al.,
2010), and PEG-PCL (Kim et al., 2006a; Hyun et al., 2007; KimM.
H. et al., 2010; Lee et al., 2010; Kang et al., 2011) diblock or PEG-
PLGA-PEG (Jeong et al., 1999b, 2000; Li, 2003; Luan et al., 2017)
and PEG-PCL-PEG triblock copolymers (Bae et al., 2005; Gong
et al., 2009a,b; Gou et al., 2010; Hwang et al., 2010; Yin et al.,
2010; Mishra et al., 2011; Zhang et al., 2017), these copolymers
existed as a sol state in aqueous media at low temperatures
and exhibited a sol-gel-sol phase transition upon increasing the
temperature (Figure 2D). These sol-to-gel phase transition are
attributed to the micellization of hydrophobic smart-blocks, and
the closed packing of individual micelles triggered by increasing
temperature (Figure 2A). In addition, increasing the number of
PLA smart-blocks in a single copolymer molecule, such as using

two PLA blocks (e.g., PLA-PEG-PLA) (Guo et al., 2015; Shi et al.,
2016), also offered a sol state window at low temperatures. The
window of sol state at low temperatures offers mild conditions for
formulation of bioactive molecules and/or cells before inducing
the gelation or being injected into the body.

Topology of copolymers is one of the key factors that regulates
the self-assembled gelation of the injectable hydrogels. Hydrogels
consist of single amphiphilic aliphatic polyester smart-block in
the backbone normally require higher polymer concentration
to induce the gelation and the resulting hydrogels possess low
mechanical properties due to their associated individual micelles
triggered gelation mechanism (Kim M. H. et al., 2010; Lee et al.,
2010; Kang et al., 2011; Lei et al., 2017; Luan et al., 2017; Shen
et al., 2017). In contrast, copolymers consist of multiple smart-
blocks in their backbone, such as PLGA-PEG-PLGA, PCGA-
PEG-PCGA, PCL-PEG-PCL, PCLA-PEG-PCLA, poly(CL-co-p-
dioxanone) (PCLDO)-PEG-PCLDO, and (PEG-PPG-PHB)x can
form hydrogels at lower polymer concentrations with higher
gel strengths due to the formation of associated inter-molecular
micelles (Figure 2B; Bae et al., 2005; Loh and Oren, 2012; Li
et al., 2013; Yu et al., 2014a,b; Yuan et al., 2015; Zhang L. et al.,
2015; Cao et al., 2016; Wang S. J. et al., 2016; Zhang et al.,
2016; Santovena et al., 2017; Wee et al., 2017). For example, 25%
aqueous solutions of PEG-PLGA (Luan et al., 2017) and PLGA-
PEG-PLGA (Li et al., 2013; Yu et al., 2014a,b; Yuan et al., 2015)
exhibited a similar reversible sol-to-gel phase transition with
increasing temperature but possessed different maximum storage
moduli of ∼200 and 1,000 Pa, respectively. In aqueous solution,
these multiple smart-blocks contained copolymers form bridged
micelles at low temperatures and transform to the association of
bridged micelles at higher temperatures due to the increase in
hydrophobicity of the smart-blocks (Lee et al., 2001a; Shim et al.,
2002; Huynh et al., 2011a; Nguyen et al., 2015; Norouzi et al.,
2016; Yu et al., 2018; Cirillo et al., 2019). The linkages between
micelles in these hydrogels act as additional bond to enhance the
hydrogel mechanical properties compared to those that contain
single smart-block (Figure 2B).

The natural hydrophobicity and crystallization of aliphatic
polyester smart-blocks have a strong effect on the self-
assemblability and amphiphilicity of their copolymers. For
example, by increasing the hydrophobicity of original monomers
in smart-blocks from PGA to PDO to PLA to PVA, and to PCL,
significantly increase in hydrogel strength (Kang et al., 2010;
Yu et al., 2014a; Chen et al., 2016b) and retention time of the
hydrogels (Kang et al., 2010; Peng S. et al., 2013) or lower critical
gel concentration (Jeong et al., 1999a; Chen et al., 2010, 2016a;
Peng S. et al., 2013; Yu et al., 2014a) were observed due the
decrease of CMC value. In addition, increasing the crystallization
degree of polyester block leads to increasing its hydrophobicity
that regulates the micellization of its copolymers at lower
concentration and gelation at lower temperatures (Kim et al.,
2006b; Gong et al., 2009b; Shi et al., 2016). The hydrophobicity
of a combined smart-blocks can be regulated by changing their
fraction. For example, increasing the PCL/PLA (Kang et al.,
2010; Petit et al., 2013) and PLA/PGA (Yu et al., 2007) ratio
could increase the hydrophobicity of PCLA and PLGA smart-
blocks, respectively. Higher hydrophobicity blocks tend to form
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stronger micelle interactions at lower concentrations that lead
to the formation of stronger hydrogels or hydrogel formation
at lower polymer concentration. Moreover, increasing the length
of smart-blocks also lead to the formation of stronger gels or
hydrogels at lower polymer concentration (Chen et al., 2010;
Shi et al., 2016; Zhang et al., 2017). Controlling the smart-block
hydrophobicity is a flexible and useful tool in the design and
fabrication of desired hydrogel systems for applications with
specific requirements.

Amphiphilic aliphatic polyester smart-blocks normally
contain hydroxyl end-groups that can be easily functionalized
to regulate their self-assembly behavior. The gel window was
significantly changed after acyl (Yu et al., 2006, 2007; Petit
et al., 2013; Sandker et al., 2013) or carboxylic acid (Chang
et al., 2009; Oborna et al., 2016; Rao et al., 2018) groups or
a short peptide (Xun et al., 2009) were conjugated to the
end-groups of polyester smart-block in PLGA-PEG-PLGA
(Yu et al., 2006, 2007; Chang et al., 2009; Oborna et al., 2016)
or PCLA-PEG-PCLA (Xun et al., 2009; Petit et al., 2013;
Sandker et al., 2013) or PCLDO-PEG-PCLDO (Rao et al.,
2018) triblock copolymers hydrogels. For example, increasing
the hydrophobicity of conjugated acyl end-groups (original
hydroxyl to ethanol to propanoyl) in PLGA-PEG-PLGA (Yu
et al., 2006, 2007) or PCLA-PEG-PCLA (Petit et al., 2013;
Sandker et al., 2013), the hydrogel can be achieved at lower
temperature and/or lower polymer concentration. However,
further increasing hydrophobicity of the conjugated acyl end-
groups to butanonyl led to the insoluble copolymers (Yu et al.,
2006). On the other hand, the gelation temperature of PCLA-
PEG-PCLA (Xun et al., 2009) decreased when a short functional
KRGDKK (Lys-Arg-Gly-Asp-Lys-Lys) peptide was conjugated
to both ends. Cholesterol-capped PEG(PLLA)8 exhibited sol-gel
phase transition upon increasing the temperature while the
parent PEG(PLLA)8 could not form hydrogel in aqueous
solution (Nagahama et al., 2008).

Many amphiphilic aliphatic polyester smart-blocks, such as
PHB (Barouti et al., 2016; Wu et al., 2016b; Wee et al.,
2017), PLA (Wu et al., 2016a), and PCL (Zheng et al.,
2017), have been combined with PEG and PPG via urethane
coupling to fabricate multiple smart-blocks contain temperature-
induced biodegradable polymer hydrogels with much lower
critical gel concentration. Tailoring the hydrophobicity or
ratio between smart-blocks could alter the gel region. For
example, replacing PLA (Wu et al., 2016a) in (PEG-PPG-
PLA)x multiblock copolymer hydrogel by more hydrophobic
PBH (Wu et al., 2016b) or PCL (Zheng et al., 2017)
blocks led to a significant reduction of critical gelation
concentration from ∼10 to 4% (w/w). Increasing the content
of hydrophobic block PPG and/or PHB or replacing the
PHB with poly(4-hydroxybutyrate), a more hydrophobic block,
also decreased the critical gelation concentration (Wee et al.,
2017). In addition, several polyester smart-blocks have been
grafted into natural polymers, such as HEP (Sim et al.,
2015) and gelatin (Turabee et al., 2019), and proteins, e.g.,
BSA (Giang Phan et al., 2019), to improve the property of
fabricated hydrogels.

Polypeptide Smart-Blocks
Although amphiphilic aliphatic polyester smart-blocks are
widely used to fabricate injectable self-assembled hydrogels,
the degraded byproducts contain carboxylic acid groups that
reduce the pH of surrounding environment and may cause
damage of encapsulated bioactive molecules and/or induce the
inflammation of host tissue. Polypeptides that are enzymatic
degradable (Cheng et al., 2012) form zwitterionic amino acid
degradation products may overcome this limitation. Many
polypeptides (Figure 3), such as poly(L-alanine) (PLAl) (Choi
et al., 2008; Kim J. Y. et al., 2009; Park et al., 2011, 2015; Yun
et al., 2012; Yeon et al., 2013; Kim et al., 2014; Kye et al.,
2014; Patel et al., 2015; Hong et al., 2017; Moon et al., 2017),
poly(D,L-alanine) (PDLAl) (Choi et al., 2008, 2010, 2011b; Oh
et al., 2008), polyglycine (PG) (Xuan et al., 2016), poly(L-leucine)
(PL) (Breedveld et al., 2004; Yang et al., 2009; Song et al.,
2012; Zhang et al., 2014, 2015a,b), poly(L-alanine-co-L-phenyl
alanine) (PLAF) (Jeong et al., 2009; Kim E. H. et al., 2009;
Kang et al., 2012a,b; Shinde et al., 2012, 2015; Park et al., 2014;
Wei et al., 2017), and poly(γ-alkyl-L-glutamate) (PLG) (Cheng
et al., 2012, 2013a,b; Wu et al., 2017; Lv et al., 2018) have been
reported to exhibit conformational change upon temperature
change that led to the copolymer hydrogel formation in aqueous
solution. This section discusses examples of detailed synthesis,
gelation mechanisms, and important factors to control the self-
assembled gelation of some typical polypeptide temperature-
sensitive smart-blocks.

Amphiphilic PLAl and PDLAl smart-blocks can be
synthesized via ROP of N-carboxyl anhydride L-alanine and D,L-
alanine, respectively, using amino terminated molecules, such as
PEG-amine (Choi et al., 2008; Park et al., 2011; Kim et al., 2014).
Copolymers of PLAl or PDLAl with PEG, in the form of PEG-
PLAl or PEG-PDLAl diblock copolymers, was first introduced
in 2008 as peptide-based temperature-induced hydrogels
that showed a sol-to-gel phase transition upon increasing
temperature (Choi et al., 2008). PLAl underwent transitions
from random coils to β-sheets that subsequently become
packed β-sheets nanofibers as the polymer concentration
increased. The preassembled β-sheet secondary structure of
PLAl facilitates the sol-to-gel phase transition, occurred in
the physiologically range of 20–40◦C, of PEG-PLAl upon
increasing temperature due to the further packaging of the
β-sheet secondary structure (Figure 2C). However, when D-
alanine stereoisomer was introduced, the β-sheet secondary
structure transformation of PDLAl only happened at higher
copolymer concentration, and therefore, the PEG-PDLAl could
only exhibit the gelation at much higher concentration and
temperature (>60◦C). Switching the arrangement of PDLAl and
PLAl blocks in a copolymer molecule also leads to differences
in gelation behavior. PEG-PDLAL-PLAL contain PLAl-end-
block could form hydrogels at lower concentrations and lower
sol-to-gel transition temperature compared to PDLAl-end-
block PEG-PLAL-PDLAL hydrogel due to the formation of
cylindrical bundles as well as spherical micelles of PLAl-end-
block whereas only spherical micelles in PDLAl-end-block
copolymer (Park et al., 2011).
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Hydrophobicity of peptide smart-blocks is an important and
effective tool to regulate the gelation behavior and gel region of
their copolymer. Replacing a small portion of L-alanine in PEG-
PLAl (Choi et al., 2008) by more hydrophobic L-phenyl-alanine
moiety (Park et al., 2014), to form PEG-PLAF copolymers,
could reduce critical gel concentration and sol-to-gel transition
temperature. A similar trend can also be achieved by increasing
the hydrophobicity from methyl to ethyl in γ-alkyl-substituted
PLG in PEG-PLG hydrogels while maintaining the same repeat
unit of L-glutamate (Cheng et al., 2012). In addition, increasing
the length of PLAl (Choi et al., 2008; Yeon et al., 2013; Kim et al.,
2014; Kye et al., 2014; Patel et al., 2015) and PLAF (Kang et al.,
2012a; Shinde et al., 2012) and PLG (Cheng et al., 2013a, 2018)
peptide smart-blocks or number of repeat unit in PLG (Cheng
et al., 2012) or decreasing PEG molecular weight (Jeong et al.,
2009; Kang et al., 2012a; Cheng et al., 2013a; Yeon et al., 2013;
Kye et al., 2014; Hong et al., 2017) could reduce the critical gel
concentration or sol-to-gel phase transition temperature. Peptide
smart-blocks, such as PLAl (Kim J. Y. et al., 2009; Moon et al.,
2017), PDLAl (Oh et al., 2008; Choi et al., 2010, 2011b), PLAF
(Kim E. H. et al., 2009; Kang et al., 2012b) and poly(L-alanine-
co-L-leucine) (PLAlL) (Moon et al., 2011), were also combined
with PPG-contained or natural polymers, e.g., chitosan (Kang
et al., 2012b), to prolong retention time, improve mechanical
properties, biocompatibility, and degradability of the formed
hydrogels for potential biomedical applications. Impressively,
PEG-polytyrosine (PEG-Tyr6) could form hydrogel at low
concentration (∼1.0%) at physiological temperature due to
the synergistic capacity of β-sheet conformation and hydrogen
bonding of phenolic groups (Huang et al., 2013).

PG with different N-substituted groups was reported to have
different responses to temperature change that can be used to
fabricate temperature-controlled hydrogels (Xuan et al., 2016).
ABC triblock copolymers composed of poly(N-R1 glycine)-
poly(N-R2 glycine)-poly(N-R3 glycine), where R is a N-
substituted groups, exhibited the sol-to-gel phase transition with
increasing temperature that can be adjusted by controlling the
polymer solution concentration and the hydrophobic of N-
substituted groups. The combination of PL with PLAl, poly(L-
lysine) (PK) and poly(glutamic acid) (PE) were also reported
to exhibit a sol-gel transition in response to temperature for
tissue regeneration (Zhang et al., 2014, 2015a,b). Esterified-
PE smart-blocks were also reported to respond to temperature
change (Cheng et al., 2012, 2013a,b; Wu et al., 2017; Lv et al.,
2018). Changing the block length or γ-substituted group in PE
could regulate the gelation of the copolymer hydrogels. For
example, increasing the hydrophobicity of γ-substituted groups
from methyl or ethyl to n-propyl or butyl significantly decreased
the critical gelation temperature (Cheng et al., 2012). In addition,
amphiphilic poly(α/β-asparagine) derivatives, synthesized by the
reaction of polysuccinimide with a combination of hydrophilic
and hydrophobic amines, showed a sharp sol-gel-sol phase
transition in an aqueous solution with the ability to alter the gel
region via tailoring the side-chain structure of the poly(amino
acid)s (Chueh et al., 2007; Takeuchi et al., 2011).

Poly(Organo-Phosphazene) Smart-Blocks
Poly(organo-phosphazene) (POPP) contains only phosphorous
and nitrogen in its backbone that is degradable and easily
modified with functional groups, e.g., PEG, L-isoleucine ethyl
ester (IleOEt), and carboxylic acid (Figure 3), to fabricate
temperature-induced hydrogels for biomedical application. In
aqueous solution, these copolymers exhibited a sol-to-gel phase
transition with increasing temperature with the gel region
covers the physiological temperature. In the POPP smart-blocks,
IleOEt group offers the temperature-sensitive property while the
remaining carboxylic acid side group (Seo et al., 2017) offer
the opportunity for further modification, such as conjugating
with anticancer drug (Chun et al., 2009a), cell-adhesive peptide
(Chun et al., 2009b), folic acid (a cell-specific targeting moiety;
Kim and Song, 2014), and cationic molecules (Park et al.,
2010; Kim et al., 2012, 2013; Kim and Song, 2014) to improve
the sustained delivery, biocompatibility, and affinity with
bioactive molecules.

Aliphatic Polycarbonate-Based
Smart-Blocks
Aliphatic polycarbonate-based smart-blocks (Figure 3) have
also attracted the attention from scientists due to its ease
of preparation, biocompatibility, low degradation rate, and
mechanical properties. PEG-PTMC diblock copolymers
exhibited a sol-to-gel-to-sol transition in aqueous solution upon
increasing temperature due to the amphiphilic property of
PTMC mart-blocks (Kim et al., 2007). The sol-to-gel transition
temperature could be controlled by tailoring concentration,
molecular weight, and composition of the polymer. However,
PTMC smart-block has difficulty in regulating the gelation of
its copolymer. The gelation of PTMC-PEG-PTMC triblock
copolymers could only be achieved with high molecular
weight PEG and the sol-state at low temperature was not
observed (Bat et al., 2008; Park et al., 2008). When PCL, a
more hydrophobic block, was added to PTMC, the resulted
triblock copolymer exhibited a sol-gel-sol phase transition
with increase temperature (Park et al., 2008). Multi-block
copolymers fabricated by coupling of PTMC with PPG and
PEG [(PEG-PPG-PTMC)x] via urethane addition reaction
exhibited a temperature-induced sol-to-gel phase transition at
much lower polymer concentration (<2%) (Loh et al., 2012).
Copolymerization of poly(polytetrahydrofuran carbonate)
(PTHC) with Pluronic F127 (Loh et al., 2014) or PPG and PEG
(Chan et al., 2018) [(PEG-PPG-PEG-PTHC)x] or [(PEG-PPG-
PTHC)x] via urethane reaction were reported for regulating
the gel window and hydrogel property with much lower critical
gelation concentration.

Poly(N-Isopropyl Acrylamide)
Smart-Blocks
PNIPAAm (Figure 3) is a wildly used temperature-sensitive
smart-block for hydrogel preparation. However, there is very
limited reports of using PNIPAAm for fabricating injectable
temperature-induced physically cross-linked hydrogels for
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biomedical application due to its low critical transition
temperature (∼32◦C), which is much lower than physiological
temperature. PNIPAAm can be combined with other smart-
block to regulate the gelation of their copolymers upon
heating due to the trigger of hydrogen bond between amide
groups. For example, in aqueous solution, copolymer of
PNIPAAm with poly(2-hydroxyl ethyl methacrylate) (PHEMA)
and poly(methacrylate-PLA) (pMAPLA) in the form of
poly(NIPAAm-co-HEMA-co-MAPLA) existed as a sol at
low temperature (<10◦C) and exhibited a sol-to-gel phase
transition when temperature was increased to body condition
(Ma et al., 2010). However, the gel shrunk after a day. When
PNIPAAm was copolymerized with poly(acrylic acid) (PAAc)
and poly(trimethylene carbonate) to form poly(NIPAAm-
co-AAc-co-PTMC), the formed hydrogel was stable both in
vitro and in vivo due to the additional crosslinking between
PTMC smart-blocks, which enhanced the stability of the
formed hydrogel (Fujimoto et al., 2009). Conjugating of
PNIPAAm via ATRP of NIPAAm into 2-bromoisobutyryl
bromide functionalized un-gellable PCL-PEG-PCL triblock
copolymer could trigger the gelation of formed PNIPAAm-
PCL-PEG-PCL-PNIPAAm pentablock copolymers (Abandansari
et al., 2013). Grafting PNIPAAm into natural polymer is also
a potential strategy to fabricate PNIPAAm-based injectable
hydrogel. PNIPAAm-grafted chondroitin sulfate underwent a
sol-to-gel phase transition with increasing temperature from
room temperature to body condition (Lü et al., 2011).

Other Synthetic Smart-Blocks
Many less popular smart-blocks have been reported to trigger the
gelation of their copolymers in aqueous solution upon changing
temperature for fabricating injectable hydrogels with highly
potential for biomedical applications. These smart-blocks include
poly(ethylene/butylene) (Nguyen et al., 2011), poly(propylene
fumarate) (Chapanian et al., 2009), polyorthoester (Schacht et al.,
2006).

SELF-ASSEMBLY SMART-BLOCKS FOR
BOTH TEMPERATURE- AND PH-INDUCED
HYDROGELS

pH is an important parameter of a living body that may vary
between the body fluid, specific organs and disease tissues.
Although this work aims to discuss synthetic smart-blocks for
temperature-induced gelation, some smart-blocks that are able
to trigger a sol-gel phase transition of their copolymers in
response to both temperature and pH change for fabrication self-
assembled injectable hydrogel are briefly mentioned (Figure 4)
(Dayananda et al., 2008; Nguyen et al., 2009; Huynh et al.,
2010, 2011b). Temperature and pH-sensitive smart-blocks are
polymers with functional groups that can be ionized and de-
ionized in response to pH change, including sulfonamide groups
and amino group, and also show the self-assemblability in
response to temperature. These smart-blocks are soluble at acidic
or basic pH (e.g., pH < 6.0 or pH > 8.5, respectively) due to the
protonation of pH-sensitive moiety and convert to amphiphilic
blocks at physiological pH (pH = 7.4) due to the deprotonation
(Dayananda et al., 2008; Nguyen et al., 2009; Huynh et al.,
2010, 2011b). Their amphiphilic property can further trigger
the gelation of their copolymers upon increasing temperature at
physiological pH to form a hydrogel.

There are two main categories of pH-sensitive smart-blocks
that can trigger the gelation of their copolymer in different
direction. Cationic smart-blocks are amino-contained polymers,
including non-degradable PAU (Dayananda et al., 2008; Huynh
et al., 2010; Manokruang et al., 2014), poly(amino carbonate
urethane) (PACU) (Phan et al., 2016a), poly(amido amine) (PAA)
(Nguyen et al., 2009; Nguyen and Lee, 2010) and biodegradable
PAEU (Huynh et al., 2011b), which are soluble at acidic pH
(e.g., pH < 6.0), have amphiphilic property at physiological
pH (pH = 7.4) for trigger the gelation upon increasing
temperature. For example, cationic PAU smart-blocks, which was
synthesized via urethane polyaddition between hydroxyl groups

FIGURE 4 | Structure of some smart-blocks for both temperature- and pH-induced self-assemble to fabricate injectable hydrogels.
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FIGURE 5 | Schematic showing mechanism of sol-gel phase transition upon

changing of temperature and pH of temperature- and pH-induced hydrogels.

The copolymer contains both temperature-sensitive and pH-sensitive

smart-blocks, e.g., (PCL-PEG-PCL-PAU)x. Copolymer exists as a solution in

aqueous solution at low temperatures and acidic pH (A) retains its sol state

with solely increasing of temperature (B) or pH (C) but changes to a gel when

both temperature and pH are increasing (D). Generated based on the idea

from Dayananda et al. (2008).

in 1,4-bis(hydroxyethyl) piperazine and isocyanate groups in
HDI, is soluble at acidic pH = 6.0 due to the ionization of
amino groups. At physiological pH, deionized PAU regulated
the sol-to-gel transition of its copolymers, PEG(-PAU)4 (Huynh
et al., 2010) or (PEG-PAU)x-grafted-BSA (Manokruang et al.,
2014) or (PCL-PEG-PCL-PAU)x (Dayananda et al., 2008), upon
increasing temperature from low (e.g., 5◦C) to body temperature
(Figure 5). In addition, low molecular weight biodegradable
PAEU, synthesized using similar urethane polyaddition reaction,
could trigger the its sol-to-gel phase transition upon increasing
temperature at physiological pH (Huynh et al., 2011b). In
opposite manner, poly(sulfamethazine ester urethane) (PSMEU)
anionic smart-blocks, which was synthesized via urethane
polyaddition, could trigger the gelation of its (PEG-PSMEU)x
multiblock copolymers upon the increasing temperature at
physiological pH (Le et al., 2018, 2019).

These temperature and pH-sensitive smart-blocks can also be
combined with other mentioned temperature-sensitive smart-
blocks to trigger the gelation of their copolymers. For example,
copolymers of PAU, PCL and PEG, (PCL-PEG-PCL-PAU)x,
exhibited the gelation upon increasing pH and/or temperature
with the existence of a gel at the physiological condition
(Dayananda et al., 2008). In addition, many other pH-sensitive
smart-blocks that could not trigger the sol-to-gel phase transition

upon increasing temperature at physiological pH but can
be combined with other temperature-sensitive smart-bocks to
triggered the gelation of their copolymers upon changing pH or
increasing the temperature. Those include oligosulfamethazine
(OSM) in OSM-PCLA-PEG-PCLA-OSM pentablock copolymers
(Shim et al., 2007), and poly(amino ester) (PAE) in PAE-
PCL-PEG-PCL-PAE pentablock (Huynh et al., 2008) or (PAE-
g-PCL)-PEG-(PAE-g-PCL) triblock copolymers (Zheng et al.,
2010). Interestingly, end-capping Pluronic F127 with polyamine
could trigger a closed-loop sol-gel-sol phase transition as
upon increasing pH and/or temperature (Lee et al., 2009).
Amphotectic poly(SM amino urethane) (PSMAU) contains both
anionic and cationic moiety in its structure that could trigger
the gelation of its copolymer, (PCLA-PEG-PCLA-PSMAU)x
multiblock copolymers, to form a closed-loop sol-gel-sol phase
transition upon increasing pH and/or temperature due to
its solubility at either acidic and basic pH (Huynh et al.,
2012).

BIOMEDICAL APPLICATION OF
TEMPERATURE-INDUCED
SELF-ASSEMBLED HYDROGELS

Temperature-induced self-assembled hydrogels have been widely
used for biomedical application including drug delivery systems,
cancer and diabetic therapeutic, wound healing, and tissue
regeneration (Kim et al., 2006a, 2014; Huynh et al., 2011a; Chiang
et al., 2014; Kye et al., 2014; Nguyen et al., 2015; Patel et al., 2015;
Yuan et al., 2015; Chen et al., 2016a,b; Norouzi et al., 2016; Wang
S. J. et al., 2016; Khaliq et al., 2017; Liow et al., 2017; Liu et al.,
2017; Santovena et al., 2017; Lv et al., 2018; Yu et al., 2018; Cirillo
et al., 2019). This section provides a summary of some typical
biomedical applications of temperature-induced self-assembled
injectable hydrogels (Tables 1, 2).

Temperature-Induced Self-Assembled
Hydrogels as Drug Delivery Model Systems
Anticancer Drugs Model Systems
A wide range of bioactive molecules has been used as a
model drug for testing the release behavior from hydrogel
systems. Among those, anticancer drugs are one of the most
interested molecular types because hydrogels can be easily
injected into the tumor site or deeper sites in the body, which
advances their potential application in cancer therapy. These
temperature-induced hydrogels exhibited the sustained release
of many anticancer drugs, such as doxorubicin (DOX) (Xun
et al., 2009; Huynh et al., 2011b; Loh et al., 2012; Manokruang
et al., 2014; Guo et al., 2015; Wee et al., 2017; Zhang et al.,
2017), paclitacxel (PTX) (Elstad and Fowers, 2009), chlorambucil
(Huynh et al., 2010), honokiol (Gong et al., 2009a,b; Gou
et al., 2010), and leuprorelin acetate (Rao et al., 2018) with
multiple options to adjust the release behavior. The release of
the loaded anticancer drugs can be regulated via controlling
the property of smart-blocks in the hydrogels. For example, in
vitro experiments showed that DOX was released from PCLA-
PEG-PCLA hydrogels in the course of 2 weeks while further
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TABLE 1 | Bioactive molecules and animal models for therapeutics.

Bioactive molecules Smart block Copolymer Animal

model

References

Control cancer

Adenoviruses PSMEU (PEG-PSMEU)x Mouse Le et al., 2019

CPT PLGA PLGA-PEG-PLGA Mouse Yu et al., 2008; Chang et al., 2011

DOX PCL PEG-PCL Mouse Kang et al., 2011

PLGA PLGA(-PEG)4 Mouse Lee et al., 2007

PPG (PEG-PPG)x Mouse Liow et al., 2017

PPG PEG-PPG-PEG Mouse Khaliq et al., 2017

PPG/PTHF (PEG-PPG-PTHF)x Mouse Chan et al., 2018

DOX + CA4 PLAF PEG-PLAF Mouse Wei et al., 2017

DOX +
188Re-Tin colloid PCL PCL-PEG-PCL Mouse Peng C. L. et al., 2013

DOX + IL-2 + IFN-γ PLG PEG-PLG2 Mouse Lv et al., 2018

DOX + PLK1-shRNA PLGA PLGA-PEG-PLGA Mouse Ma et al., 2014

DOX + CDDP + MTX PLGA PLGA-PEG-PLGA Mouse Ma et al., 2015

DTX PLGA PLGA-PEG-PLGA Mouse Gao et al., 2011

GEM PCLA PCLA-PEG-PCLA Mouse Phan et al., 2016b

IL-15 +CDDP PLG PEG-PLG Mouse Wu et al., 2017

IL-2 PLGA PLGA-PEG-PLGA Mouse Samlowski et al., 2006

IRN PLGA PLGA-PEG-PLGA Mouse Ci et al., 2014

PTX OSM OSM-PCLA-PEG-PCLA-OSM Mouse Shim et al., 2007

PCL PCL-PEG Mouse Lee et al., 2010

PLG PEG-PLG2 Mouse Cheng et al., 2013a

PLGA PLGA-PEG-PLGA Rat Bagley et al., 2007

Mouse Zentner et al., 2001

Pig Matthes et al., 2007

Human Vukelja et al., 2007

IleOEt POPP Mouse Chun et al., 2009a

PPG/PCL (PEG-PPG-PCL)x Mouse Zheng et al., 2017

PPG/PHB (PEG-PPG- PHB)x Mouse Wu et al., 2016b

PPG/PLA (PEG-PPG-PLA)x Mouse Wu et al., 2016a

PTX + Pt(IV) prodrug PLGA PLGA-PEG Mouse Shen et al., 2017

rhIL-2 PLA PEG(-PLLA)8 + PEG(-PDLA)8 Mouse Hiemstra et al., 2007

si(Cyclin B1) IleOEt POPP Mouse Kim et al., 2012

siVEGF IleOEt POPP Mouse Kim et al., 2013; Kim and Song, 2014

Control diabetic

EXT PLGA PLGA-PEG-PLGA Mouse Li et al., 2013; Yu et al., 2013

GLP-1 PLGA PLGA-PEG-PLGA Rat Choi et al., 2004

Insulin PAE PAE-PCL-PEG-PCL-PAE Rat Huynh et al., 2008, 2009

PLAF PEG-PLAF Mouse Jeong et al., 2009

PLGA PLGA-PEG-PLGA Rat Kim et al., 2001; Choi and Kim, 2003

Lira PCGA PCGA-PEG-PCGA Mouse Cheng et al., 2013a; Chen et al., 2016a

Control pain and others

Celecoxib PCLA PCLA-PEG-PCLA Dog

Horse

Rat

Tellegen et al., 2018

Petit et al., 2015

Petit et al., 2014

pDNA PCLA PCLA-PEG-PCLA-grafted BSA Mouse Giang Phan et al., 2019

VEGF PVL PVL-PEG-PVL SD rats Wu et al., 2011

attachment of KRGDKK (Lys-Arg-Gly-Asp-Lys-Lys) peptide at
both end of copolymer could increase the sustained release up
to 5 weeks (Xun et al., 2009). However, DOX was released
in from PLA-PEG-PLA hydrogels in only 1 week (Guo et al.,

2015) due to the faster degradation of PLA compared to
PCLA. Introducing stimuli-triggered degradation groups into
the middle of smart-blocks offers the ability of using stimuli
to control the degradation of hydrogels and subsequently the
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TABLE 2 | Bioactive molecules and cell sources for tissue regeneration.

Bioactive molecules Cells Smart block Copolymer Animal model References

Bone regeneration

TMSCs PLAl PEG-PLAl In vitro Kye et al., 2014

BMP-2 PLGA PLGA-PEG-PLGA Rat Santovena et al., 2017

BMP-2, BCP POPP POPP Mouse Seo et al., 2017

DEX rBMSCs PCL PCL-PE 3D culturing in vitro Kim et al., 2006a

RGD IleOEt POPP Chun et al., 2009b

SIM PLGA PLGA-PEG-PLGA Rat Yan et al., 2015

Cartilage regeneration

ADSCs PG PG-based triblock In vitro Xuan et al., 2016

ADSCs PLAl PEG-PLAl Mouse Yeon et al., 2013

BMSCs PLAl PEG-P 3D culturing in vitro Park et al., 2015

BMSCs PLGA PLGA-PEG-PLGA Wang S. J. et al., 2016

CHONs PDLAl PDLAl-PPG-PEG-PPG-PDLAl Choi et al., 2010, 2011b

CHONs PLGA PEG-PLGA Peng S. et al., 2013

CHONs poly(α/β-asparagine) poly(α/β-asparagine) Chueh et al., 2007

CHONs PTMC PTMC-PEG-PTMC Park et al., 2008

TMSCs PLAF PEG-PLAF Park et al., 2014

TMSCs PLAl PEG-PLAl Kye et al., 2014

PRP SFMSCs PLGA PEG-PLGA Pig Chiang et al., 2014

Hepatogenic regeneration

HGF TMSCs PLAl PEG-PLAl 3D culturing in vitro Kim et al., 2014

HGF + TUDCA + FGF-4 TMSCs PLAl PEG-PLAl Hong et al., 2017

LB TMSCs PLAl PLAl-PPG-PEG-PPG Moon et al., 2017

Neural and muscle regeneration

NSCs PL PL-based Mouse Zhang L. et al., 2015

PNIPA PCL PCL-PEG Mouse Kim M. H. et al., 2010

NGF PL PL-based Mouse Song et al., 2012

NGF + BDNF TMSCs PLAl PEG-PLAL In vitro Patel et al., 2015

Wound healing and scar prevention

Fibroblasts PLAl PEG-PLAl Rat Yun et al., 2012

5-Fu PLGA PLGA-PEG-PLGA Rat Yuan et al., 2015

CsA PLGA PLGA-PEG-PLGA Rabbit Sun et al., 2017

pDNA-polyplex PSMEU (PEG-PSMEU)x Mouse Le et al., 2018

release of loaded bioactive molecules (Zhang et al., 2017). For
example, introducing a diselenide linkage at the middle of PCL
block in PEG-PCL-PEG copolymers could offer reducing-agent-
regulated release of loaded DOX with faster DOX release rate
due to hydrogel degradation in the presence of a reducing
agent (Zhang et al., 2017). PEG-PCL-PEG hydrogels were also
reported to control the release of honokiol over the course of 2–
3 weeks (Gong et al., 2009a,b; Gou et al., 2010). Increasing the
hydrophobicity of smart-blocks not only triggered the gelation
at lower polymer concentrations, but also offered more sustained
released of loaded anticancer drugs (Loh et al., 2012; Wee et al.,
2017). The hydrogels contain smart-blocks that response to both
temperature and pH also exhibited sustained release of DOX
(Huynh et al., 2010, 2011b; Manokruang et al., 2014).

Proteins in Model Systems
Therapeutic and model proteins, such as insulin (Qiao et al.,
2007), human growth hormone (hGH) (Park et al., 2010; Huynh
et al., 2012; Shinde et al., 2012, 2015; Phan et al., 2016a)
and bovine serum albumin (BSA) (Jeong et al., 1997; Hyun
et al., 2007; Moon et al., 2011) are among the molecules served
as model drugs for testing the controlled release ability of
hydrogel systems. Peptide-based smart-block hydrogels have
showed potential in control the release of hGH with sustained
release for 1–2 weeks in vitro and 4 days in a rat model
from PEG-PLAF hydrogels (Shinde et al., 2012, 2015). The
improvement in sustained release of hGH was not observed
in cationic smart-block contained hydrogels, such as (PEG-
PACU)x (Phan et al., 2016a), (PCLA-PEG-PCLA-PSMAU)x
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(Huynh et al., 2012), protamine-modified POPP (Park et al.,
2010). Short release courses of hGH from all these hydrogels
was attributed to its naturally hydrophilicity. In addition,
hydrogels with faster degradation rate offered shorter controlled
release course while hydrogels contained peptide block could
offer more sustained protein release due to the addition of
hydrogen bonds between protein and peptide segments in
the hydrogels. For example, BSA was released from PEG-
PLLA hydrogel in 10 day (Jeong et al., 1997) while it was
sustained for 3 and 4 weeks from PEG-PCL (Hyun et al.,
2007) and PLAlL-PPG-PEG-PPG-PLAlL (Moon et al., 2011)
hydrogels, respectively.

Other Molecules in Model Systems
Many other drugs and model molecules have also been used to
confirm the potential application of a hydrogel system as a drug
delivery system. PLGA-PEG-PLGA hydrogels could provide the
sustained delivery of dexamethasone (DEX) and DEX acetate
in ocular environment (Gao et al., 2010; Zhang L. et al., 2015).
The release of anti-infection molecules, such as lysozyme (Sim
et al., 2015), natamycin (Loh et al., 2014), and rifampicin (Jiang
et al., 2007) were also performed from PCLA-PEG-PCLA (Sim
et al., 2015), (PEG-PPG-PEG-PTHF)x (Loh et al., 2014), and
PCGA-PEG-PCGA hydrogels (Jiang et al., 2007), respectively.
PCLA-PEG-PCLA hydrogels also showed potential in vaccine
delivery (Wang X. et al., 2016) while PEG-PLGA-PEG (Jeong
et al., 2000) and Pluronic (Jung et al., 2017) hydrogels showed
the ability in sustained delivery of pDNA and pain control
molecules, respectively.

Controlled Release of Bioactive Molecules
for Therapeutics
Cancer Therapeutics
There are enormous number of studies that reported the
used of smart-block based temperature-induced self-assembled
hydrogels for delivery of anticancer drugs and other bioactive
molecules for controlling the tumor growth or clearance
tumor in animal models (Table 1). Many designed systems
with tunable release behavior and high bioactive efficacy have
been developed. PPG-based hydrogels exhibited the sustained
release of DOX (Khaliq et al., 2017; Liow et al., 2017; Chan
et al., 2018) and PTX (Wu et al., 2016a,b; Zheng et al.,
2017) for suppression tumor growth from 1 to 4 weeks. The
release of anticancer drugs and resultant tumor suppressing
ability could be controlled via changing the designed structure
of polymer hydrogels. For example, PTX-loaded (PEG-PPG-
PHB)x hydrogels (Wu et al., 2016b) could suppress the
tumor growth for 4 weeks while PTX-loaded (PEG-PPG-PLA)x
hydrogels (Wu et al., 2016a) were reported to show the control
tumor growth in 1 week due to the faster degradation of
PLA smart-blocks.

Many aliphatic polyester smart-blocks hydrogels have been
used for delivery of anticancer drugs and other bioactive
molecules to control tumor growth in animal models (Zentner
et al., 2001; Samlowski et al., 2006; Bagley et al., 2007; Matthes
et al., 2007; Yu et al., 2008; Chang et al., 2011; Gao et al., 2011;
Ci et al., 2014; Ma et al., 2014, 2015; Phan et al., 2016b) and

even in human patients (Vukelja et al., 2007). Among these,
PLGA-based hydrogels are the most popular for cancer therapy.
PCLA-PEG-PCLA hydrogels were reported to deliver anticancer
drugs, such as gemcitabine (GEM) (Phan et al., 2016b), irinotecan
(IRN) (Ci et al., 2014), camptothecin (CPT) (Yu et al., 2008;
Chang et al., 2011), docetaxel (DTX) (Gao et al., 2011), cisplatin
(CDDP) and methotraxate (MTX) (Ma et al., 2015), DOX (Ma
et al., 2014, 2015), and PTX (Zentner et al., 2001; Bagley et al.,
2007; Matthes et al., 2007; Vukelja et al., 2007), immunotherapy
agent, e.g., interleukin-2 (IL-2) (Samlowski et al., 2006), and RNA
molecule, e.g., polo-like kinase 1 shRNA (PLK1-shRNA) (Ma
et al., 2014) for controlling tumor growth (Table 1). For example,
GEMwas sustained release frommontmorillonite-functionalized
PCLA-PEG-PCLA hydrogels for more than 1 week in vitro and
could suppressed tumor growth in pancreatic tumor-bearing
mice for more than 6 weeks (Phan et al., 2016b). Co-delivery
of DOX, CDDP, and MTX from PCLA-PEG-PCLA hydrogels
could increase efficacy in suppressing tumor growth in tumor-
bearing nudemice compared to groups treated with single or dual
drugs (Figure 6) (Ma et al., 2015). Co-delivery of PLK1-shRNA
and DOX was also reported to provide the synergistic effect in
treatment of cancer in nude mice due to the antitumor effect
of DOX and ability of PLK1-shRNA to silence PLK1 expression
for higher apoptosis effect (Ma et al., 2014). Other PLGA-based
hydrogel, e.g., PLGA(-PEG)4 (Lee et al., 2007), PEG-PLGA (Shen
et al., 2017), and aliphatic ester smart-block based hydrogels, e.g.,
PEG-PCL (Lee et al., 2010; Kang et al., 2011) and PCL-PEG-
PCL (Peng C. L. et al., 2013) also showed promise in control
the release of anticancer drugs for suppressing tumor growth.
Importantly, encapsulation of therapeutic radionuclide (188Re-
Tin colloid) into PCL-PEG-PCL (Peng C. L. et al., 2013) could
inhibit the tumor growth for 32 days. The antitumor effect
was significantly enhanced when DOX and 188Re-Tin colloid
were co-delivered, which showed the tumor disappear in 75%
animal after 31 days treatment (Peng C. L. et al., 2013). Figure 7
is reproduced from ref (Peng C. L. et al., 2013) showing a
schematic represent a copolymer solution loaded with Lipo-
DOX and 188Re-Tin colloid at 4◦C in a syringe that forms a
gel at 37◦C or after being injected to the tumor site for control
tumor growth.

Peptide smart-block hydrogels exhibited excellent ability
in controlling the release of bioactive molecules, including
anticancer drugs (Cheng et al., 2013a; Wei et al., 2017; Wu et al.,
2017; Lv et al., 2018), and immunotherapy agent (Wu et al., 2017;
Lv et al., 2018) for subduing tumor growth in animal models.
PTX loaded PLG-PEG-PLG hydrogels could sustained the release
of PTX and efficiently suppressed the tumor growth in BALB/c
nude mice for up to 21 days (Cheng et al., 2013a). Co-delivery
of anticancer drugs and immunotherapy agents from peptide-
based hydrogels was reported to provide synergistic effect in
subduing tumor growth that has significantly higher efficacy
compared to the delivery of single molecule (Wei et al., 2017;
Wu et al., 2017; Lv et al., 2018). For example, co-delivery of DOX
and combretastatin A4 (CA4) from PEG-PLAF hydrogels could
inhibit the tumor growth in BALB/c mouse for up to 28 days
with much smaller tumor volume compared to single molecule
treatment (Wei et al., 2017).
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FIGURE 6 | Schematic illustration the localized, sustained co-delivery of multiple anticancer drugs (DOX, CDDP, and MTX) from injectable hydrogels for obtaining the

synergistic tumor suppression. Reproduced from Ma et al. (2015) with permission from American Chemical Society.

FIGURE 7 | Schematic represents a PCL-PEG-PCL solution loaded with

Lipo-DOX and 188Re-Tin colloid at 4◦C before injecting and a formed hydrogel

at 37◦C or after being injected to the tumor site for control tumor growth.

Reproduced from (Peng C. L. et al., 2013) with permission from American

Chemical Society.

POPP possess abundant pendent functional groups that can
be easily modified to improve the retention of loaded bioactive
molecules. POPP modified with protamine (Kim et al., 2013)
or PEI (Kim et al., 2012; Kim and Song, 2014) could provide
the sustained delivery of siRNA against vascular endothelial
growth factor (siVEGF) (Kim et al., 2013; Kim and Song,
2014) or siRNA against cyclin B1(siCyclin B1) (Kim et al.,
2012) for suppressing the tumor growth in mice. For example,
siVEGF loaded in protamine-conjugated POPP was sustained
released and limited the growth of tumor for 4 weeks (Kim
et al., 2013). PEI-conjugated POPP can form cationic interaction
with RNA to provide the sustained presentation of siRNA
at tumor site (Figure 8) to enhance the long-term RNAi-
mediated tumor inhibition via target gene silencing (Kim et al.,
2012). When protamine was replaced by PEI and folic acid,

a cancer cell targeted molecule, the siVEGF loaded hydrogels
could completely inhibited the tumor growth Balb/c nude
mice for 30 days (Kim and Song, 2014). In addition, POPP
was also able to sustain the delivery of chemically conjugated
PTX that suppressed tumor growth for more than 30 days
(Chun et al., 2009a).

Diabetic Treatment
Smart-block hydrogels have been widely used for delivery
bioactive molecules, such as insulin (Kim et al., 2001; Choi
and Kim, 2003; Qiao et al., 2007; Huynh et al., 2008, 2009),
liraglutide (Lira) (Chen et al., 2016a,b), exenatide (EXT)
(Li et al., 2013; Yu et al., 2013), and incretin hormone
glucagon-like peptide-1 (GLP-1) (Choi et al., 2004), to control
glucose level in diabetic animal models. PLGA-PEG-PLGA
hydrogels were reported to provide the sustained delivery
of insulin over the course of 2 weeks in vitro and 10–
15 days in rat models (Kim et al., 2001; Choi and Kim,
2003; Qiao et al., 2007). Peptide-based smart-block hydrogels
(PEG-PLAF) offered longer insulin sustained release with 18
days in vitro, and an injection of insulin-loaded hydrogel
could reduce glucose level in diabetic mice for 18 days
(Jeong et al., 2009). However, glucose level in treatment
group was higher than that in normal mice from day
4. Adding cationic moiety to the hydrogel could prolong
the sustained release of insulin both in vitro and in vivo.
Insulin was released from PAE-PCL-PEG-PCL-PAE hydrogels
in 30 days in vitro and ∼20 days in vivo that maintained
low blood glucose in diabetic rats for more than 12 days
(Huynh et al., 2008, 2009).

PLGA-PEG-PLGA hydrogels also sustained the in vitro
release of EXT for 1 week and the subcutaneous injected
EXT-loaded hydrogels could maintain blood glucose level
of type-II diabetic db/db and ICR mice in the normal
range for up to 7 days (Li et al., 2013; Yu et al., 2013).
Lira, an antidiabetic polypeptide, was sustained released
from PLGA-PEG-PLGA hydrogels for more than 10 days
(Chen et al., 2016a,b). A single injection of Lira-loaded
hydrogels in diabetic db/db mice showed hypoglycemic
efficacy for up to 1 week. In addition, the sustained
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FIGURE 8 | (A) Schematic showing the concept of PEI-conjugated POPP injectable hydrogel for localized and long-term delivery of siRNA. By simply mixing (1), the

polyplexes (2) form by ionic interactions between conjugated PEI and siRNAs, and their aqueous solution transforms to a gel (3) after being injected into tumor site for

sustained siRNA delivery (4) and long-term RNAi therapy via target gene silencing. (B) In vivo sustained siRNA retention of fluorescent cy5.5-tagged si(Cyclin B1) at

tumor site after injection of siRNA-loaded hydrogel. Reproduced from Kim et al. (2012) with permission from American Chemical Society.

release of GLP-1 from PLGA-PEG-PLGA hydrogels more
than 10 days after single subcutaneous injection in to
diabetic rats that led to stimulation of insulin secretion
to improve glucose tolerance for more than 1 week
(Choi et al., 2004).

Chronic Pain Relief
PLGA-PEG-PLGA hydrogels also showed great potential in
locally sustained drug delivery for chronic pain control (Petit
et al., 2014, 2015; Tellegen et al., 2018). Celecoxib was sustained
released from the hydrogels for more than 3 months in vitro
and more than 8 weeks in knee joints of healthy Wistar
rats without cytotoxicity after a single injection of celecoxib-
loaded hydrogels (Petit et al., 2014). Locally sustained release of
celecoxib for 4 weeks was also observed with a single injection
of celecoxib-loaded hydrogels into the right middle carpal joint

healthy horses (Petit et al., 2015). The formulation was also
reported as a safe and effective approach to control back pain
in dog with significantly pain reduction for up to 6 months
(Tellegen et al., 2018).

Other Therapeutics
VEGF-conjugated PVL-PEG-PVL hydrogels showed potential
for myocardial and functional recovery stabilizing myocardial
infarct and inducing angiogenesis in myocardial infarction SD
rats (Wu et al., 2011). PCLA-PEG-PCLA grafted BSA hydrogels
provide the sustained release of polyplex-pDNA for more than
10 days in mice. The release polyplex-pDNA activated a robust
antigen-specific immune response, which might be potential
for the formulation of vaccine against Alzheimer’s disease
(Giang Phan et al., 2019).
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Temperature-Induced Self-Assembled
Hydrogels for Tissue Regeneration
Bone Regeneration
Although injectable self-assembled hydrogels possess low
mechanical property that may limits their potential application
in bone regeneration, some hydrogel systems have been reported
to deliver bioactive molecules and/or cells to enhance the
regeneration of bone (Table 2). For example, PEG-PCL and
RGD-conjugated POPP hydrogels were reported as injectable
scaffolds for delivery of rat bone marrow stromal cells (rBMSCs)
and DEX (Kim et al., 2006a), and rabbit MSCs (Chun et al.,
2009b) to enhance the ectopic bone formation. Delivery of
simvastatin (SIM) from PCLA-PEG-PCLA hydrogels to femur
bone defects of Wistar rats were reported to significant enhance
bone formation (Yan et al., 2015). PCLA-PEG-PCLA hydrogels
could also sustain the delivery of bone morphogenetic protein 2
(BMP-2) in SD rats for 9 days (Santovena et al., 2017). Loading
bare polystyrene microspheres (MSs) or MSs functionalized with
phosphate or carboxylate group into PEG-PLAL hydrogels could
guide the osteogenesis of co-encapsulated tonsil-tissue-derived
mesenchymal stem cells (TMSCs) (Kye et al., 2014). Importantly,
POPP modified with -COOH side-groups were reported to
provide the sustained release of BMP-2 for 1–3 months. Injection
BMP-2-loaded POPP hydrogels with/with-out biphasic calcium
phosphate ceramic (BCP) submicron particles into 5mm
critical-sized bone defects in C57BL/6 mice could significantly
enhance the healing rate (Seo et al., 2017).

Cartilage Regeneration
Temperature-induced self-assembled hydrogels have showed
their potential in cartilage regeneration by supporting the
3D culture of chondrocytes (CHONs) or enhancing the
chrondrogenesis of encapsulated MSCs (Table 2). BMSCs
encapsulated in PLGA-PEG-PLGA hydrogels underwent
the chondrogenic differentiation in vitro, demonstrated by
upregulating expression of chondrogenic markers and increasing
glycosaminoglycan (GAG) content (Wang S. J. et al., 2016). PEG-
PLGA hydrogels were also reported as platforms for CHON
3D culture with high cell viability and strong chondrogenic
activity (Peng S. et al., 2013) or supporting chondrogenesis of
encapsulated synovial fluid mesenchymal stem cells (SFMSCs)
(Chiang et al., 2014). PEG-PLGA hydrogels encapsulated
with SFMSCs and platelet-rich plasma (PRP) could induce
the chondrogenesis of SFMSCs and increase cell growth and
maturation of CHONs to significantly enhance the cartilage focal
defects in pig model (Chiang et al., 2014).

Peptide smart-block based hydrogels were reported as good
candidates for cartilage regeneration. TMSCs were reported to
preferentially undergo chondrogenesis with high expressions
of type II collagen and sulfated glycosaminoglycan when
being encapsulated in PEG-PLAF hydrogels and cultured in
induction media supplemented with adipogenic, osteogenic, or
chondrogenic factors (Park et al., 2014). PEG-PLAl hydrogels
exhibited the capability to regulate the chondrogenesis of
encapsulated adipose-tissue-derived stem cells (ADSCs) (Yeon
et al., 2013), BMSCs (Park et al., 2015), and TMSCs (Kye

et al., 2014). Subcutaneous injection PEG-PLAl aqueous solution
loaded with BMSCs (Park et al., 2015) or ADSCs (Yeon et al.,
2013) in mice led to the chondrogenesis of encapsulated cells
with excellent expressions of early chondrogenic biomarkers.
PDLAl-PPG-PEG-PPG-PDLAl (Choi et al., 2010, 2011b) and
poly(α/β-asparagine)-based (Chueh et al., 2007) hydrogels can
also be used as platforms for CHON 3D culture in vitrowith high
cell viability and strong chondrogenic activity. PG-based ABC
triblock copolymer hydrogels could induce chondrogenesis of
encapsulated human ADSCs demonstrated by upregulating the
expressing of chondrogenic marker (Xuan et al., 2016).

Neuron Regeneration
Peptide smart-block based hydrogels possess same stiffness with
brain tissue that have been injected into mouse forebrain with
minimal detectable toxicity in the central nervous system (CNS)
and good integration with brain tissue (Yang et al., 2009). The
PL-based hydrogels served as depots for localized and sustained
release of bioactive nerve growth factor (NGF) in the CNS that
maintained hypertrophy of local forebrain cholinergic neurons
for at least 4 weeks (Song et al., 2012). The hydrogels were
also reported to deliver hydrophobic molecules that alter gene
expression of CNS cells in a locally restricted area in the forebrain
(Zhang et al., 2014), or to deliver neural stem cells (NSCs) into an
injured CNS (Zhang et al., 2015b). Delivered NSC distributed in
non-neural lesion cores and integrated with surrounding healthy
neural cells to supported regenerate the host nerve fibers (Zhang
et al., 2015b). PEG-PLAL hydrogels encapsulated with NGF and
brain derived neurotropic growth factor (BDNF) loaded alginate
MSs could sustained the release growth factors from 12 to 18
days (Patel et al., 2015). Cultured TMSCs in growth factors
loaded hydrogels exhibited shape change from spherical shape to
multipolar elongation with significantly higher expressions of the
neuronal biomarkers. A summary is presented in Table 2.

Liver Regeneration
Peptide smart-block based hydrogels showed their potential
in liver regeneration due to their similar stiffness compared
to liver tissue (Table 2). Encapsulation of hepatogenic growth
factors (HGF) alone (Kim et al., 2014) or in combination
with tauroursodeoxycholic acid (TUDCA) and fibroblast growth
factor 4 (FGF-4) (Hong et al., 2017) could provide the
sustain delivery of growth factors for guiding the hepatogenic
differentiation of co-encapsulated TMSCs, demonstrated by
expression of hepatogenic biomarker and hepatocyte-specific
biofunctions. Conjugation of lactobionic acid (LB) to PLAl-
PPG-PEG-PPG hydrogels could also improve the hepatogenic
differentiation of the encapsulated TMSCs (Moon et al., 2017).

Wound Healing and Scar Prevention
Hydrogels are good platforms to deliver bioactive molecules
and/or cells to improve the wound healing rate (Table 2).
PEG-PLAl hydrogels have been reported for encapsulation of
fibroblasts to improve the wound healing on incisions of rat
skin with significantly better wound closure and skin tissue
regeneration compared to groups treated with cell-free gels or
PBS (Yun et al., 2012). Release of polyplex-DNA loaded in
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FIGURE 9 | Schematic showing the operated-installation of glaucoma drainage device (GDD) followed by subconjunctival injection of drug-loaded hydrogels. The

post-operative scarring was significantly inhibited due to the sustained release of drug from the hydrogel. The function of the filtering bleb was effectively maintained,

enabling open drainage of aqueous humor through the GDD tube. Reproduced from Sun et al. (2017) with permission from The Royal Society of Chemistry.

the (PEG-PSMEU)x hydrogels accelerated the wound healing
process in mice, demonstrated by effectively sealing the ruptured
skin, absorbing wound exudates, and promoting the tissue
regeneration in the wounded area (Le et al., 2018). Bare PCLA-
PEG-PCLA-grafted gelatin hydrogels could not only adhere
on skin tissues and effectively sealed the wounds, accelerated
cutaneous wound healing, and promoted tissue regeneration in
the wound area (Turabee et al., 2019).

Preventing scar and post-operative abdominal adhesions is
very important in medical operation. Cyclosporine A (CsA),
an anti-fibrotic drug to inhibit post-operative scarring, was
sustained release from PLGA-PEG-PLGA hydrogels for over 2
months in vitro. The sustained delivery of CsA from hydrogels
inhibited post-surgical scar formation and promoted bleb
survival in rabbits after glaucoma filtration surgery (Figure 9)
(Sun et al., 2017). PLGA-PEG-PLGA hydrogels also sustained
the release of 5-fluorouracil (5-Fu) to prevent post-operative
abdominal adhesions in sutured Achilles tendon model of rats
(Yuan et al., 2015). Bare hydrogels based on PLGA, PCLA
and PLA were also reported to reduce the post-operative
abdominal adhesions in animal models (Zhang et al., 2011;
Yu et al., 2014a; Shi et al., 2016; Lei et al., 2017; Li et al.,
2017).

CONCLUSION AND FUTURE OUTLOOK OF
SELF-ASSEMBLY SMART-BLOCK BASED
TEMPERATURE-INDUCED INJECTABLE
HYDROGELS

A summary in development of self-assembly smart-block for
fabrication of temperature-induced injectable physically cross-
linked hydrogels and their potential biomedical applications
have been conducted. The development and achievement in
biomedical applications of these smart-block based hydrogels
have showed remarkable progress in over the last 20 years.
These injectable hydrogels offer many advantages such as
cytocompatibility, non-invasive administration, tunable
mechanical properties, highly permeability, controllable

degradability, injectability, and capacity to deliver bioactive
molecules and/or cells for a wide range of biomedical
applications. These hydrogel systems have confirmed their
potential application as drug delivery systems, cancer and disease
therapeutics, and delivery of bioactive molecules and cells for
tissue regeneration.

Although these self-assembled injectable hydrogels
have offered many advantages and potential, several
important challenges still remain and need to be carefully
considered in designing the future approaches. The
challenges include:

• First, the majority of biodegradable hydrogels are ester
based polymers with carboxylic acid bearing degraded
byproducts, which might cause a decreasing of local pH
and/or inflammation to the surrounding tissues, and damage
of loaded bioactive molecules.

• Second, the hydrogel degradation rate is an important factor
to control the release of therapeutic molecules; therefore,
the balance between hydrogel bulk degradation and surface
degradation should be considered for sustaining the delivery
of these molecules.

• Third, controlling the initial burst release of loaded bioactive
molecules, especially for proteins, growth factors and RNA
molecules, from these delivery systems is crucial as it may
reduce the serving period of these carrier systems. Loading
bioactive molecules into nanoparticles (NPs) or MSs followed
by encapsulation of these NPs/MSs in the hydrogels (Giang
Phan et al., 2019) or directly tethering them to the network
(Nguyen et al., 2019) for prolong the sustained delivery should
be put in mind.

• Fourth, several reports have proved that the combination of
multiple drugs and/or molecules can enhance effects in disease
or cancer therapeutics (Peng C. L. et al., 2013; Ma et al.,
2014; Wei et al., 2017; Lv et al., 2018); therefore, this direction
should be further investigated to maximize their synergistic
therapeutic effect with minimal side effects.

• Fifth, the difference between animal models and human
patients is the most difficult challenge that cause a huge delay
in potential clinicalization and commercializing of developed
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approach that may have significantly impact in improving
human health.

In summary, clearly understanding the polymer structure-
property relationship should allow designing of self-assembly
smart-blocks and their hydrogel systems with desired
performance. Important properties of smart-blocks include
assembability, degradability, property of their degraded
byproducts, mechanical property of their formed hydrogels,
gelation time, interaction between smart-blocks with bioactive
molecules (proteins, DNAs, RNAs), and ability to covalently
conjugate bioactive molecules to the network. In addition, the
nature property and availability of bioactive molecules, and
the availability of cell sources and developed technologies are
among important factors to achieve an ideal hydrogel system.

Furthermore, pre-clinical pilot animal studies need to be moving
forward for developing clinical trial approaches to further
enhance human health.
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