
381https://e-aair.org

ABSTRACT

Since the airways are constantly exposed to various pathogens and foreign antigens, various 
kinds of cells in the airways—including structural cells and immune cells—interact to form 
a precise defense system against pathogens and antigens that involve both innate immunity 
and acquired immunity. Accumulating evidence suggests that innate lymphoid cells (ILCs) 
play critical roles in the maintenance of tissue homeostasis, defense against pathogens and 
the pathogenesis of inflammatory diseases, especially at body surface mucosal sites such 
as the airways. ILCs are activated mainly by cytokines, lipid mediators and neuropeptides 
that are produced by surrounding cells, and they produce large amounts of cytokines that 
result in inflammation. In addition, ILCs can change their phenotype in response to stimuli 
from surrounding cells, which enables them to respond promptly to microenvironmental 
changes. ILCs exhibit substantial heterogeneity, with different phenotypes and functions 
depending on the organ and type of inflammation, presumably because of differences in 
microenvironments. Thus, ILCs may be a sensitive detector of microenvironmental changes, 
and analysis of their phenotype and function at local sites may enable us to better understand 
the microenvironment in airway diseases. In this review, we aimed to identify molecules 
that either positively or negatively influence the function and/or plasticity of ILCs and the 
sources of the molecules in the airways in order to examine the pathophysiology of airway 
inflammatory diseases and facilitate the issues to be solved.

Keywords: Respiratory tract diseases; innate immune response; cellular microenvironment; 
lymphocytes; phenotype; cytokines

INTRODUCTION

The airways are organs that are constantly exposed to airborne pathogens and foreign 
antigens throughout life. Therefore, various kinds of cells in the airways, including structural 
cells and immune cells, interact to form a precise defense system against pathogens and 
foreign antigens that involves both innate immunity and acquired immunity. In recent 
years, innate lymphoid cells (ILCs), which are widely conserved in humans and non-human 
vertebrates, such as the mouse and zebra fish, have attracted attention as cells involved in 
inflammatory diseases as well as defense against pathogens and foreign antigens.
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Although ILCs have a lymphoid morphology, unlike T cells and B cells they do not have 
antigen receptors that recognize the microstructures of antigens; thus, they are not directly 
activated by specific antigens. They are activated mainly by antigen non-specific mechanisms, 
suggesting that they are involved in innate immunity. Some ILCs express toll-like receptors 
(TLRs) that recognize microbes, and the cells may be directly activated by the pathogen-
associated molecular patterns of microbes. However, some recent articles have shown that 
ILCs express various kinds of receptors for cytokines, danger signals, neuropeptides and 
lipid mediators that are more dominant than TLRs. These findings suggest that ILCs may be 
activated by signals from other cells around it upon exposure to foreign antigens (including 
microbes), rather than by being directly activated by foreign antigens.

ILCs exhibit substantial heterogeneity, with different phenotypes and functions 
depending on the organ and type of inflammation, presumably because of differences 
in microenvironments. Thus, ILCs may be a sensitive detector of microenvironmental 
changes at our body surfaces, such as mucosal sites and the skin. Conversely, by 
analyzing the phenotype and function of ILCs, we can better understand the details of the 
microenvironment at local sites in airway diseases. In this review, we aimed to identify 
molecules that either positively or negatively influence the function and/or plasticity of ILCs 
and the sources of molecules in the airways in order to examine the pathophysiology of 
airway inflammatory diseases and facilitate the issues to be solved.

ILC SUBSETS AND THEIR PLASTICITY

ILCs have a lymphoid morphology, but they have no cell-surface lineage markers such as 
those that define other immune cell subsets. Instead, all ILCs express a cytokine receptor 
subunit called interleukin (IL)-7 receptorα (CD127). ILCs are currently divided into 3 different 
subtypes, according to their expression of cytokines and transcription factors: group 1 ILCs 
(ILC1s), group 2 ILCs (ILC2s) and group 3 ILCs (ILC3s). ILC1s are defined as ILCs that express 
T-box-expressed-in-T cells (T-bet) and produce interferon (IFN)-γ; they include conventional 
natural killer cells (cNK) and are considered to be involved in anti-viral immunity, like T 
helper (Th)1 cells. In addition to IFN-γ, cNK cells release perforin and granzymes to induce 
apoptosis of target cells. ILC2s are defined as ILCs that express GATA-binding protein 3 and 
produce such cytokines as IL-4, IL-5, IL-9 and IL-13 as well as the epidermal growth factor, 
amphiregulin; like Th2 cells, they are considered to be involved in anti-helminth immunity. 
ILC3s are defined as ILCs that express retinoic acid receptor-related orphan receptor-γt and 
produce cytokines such as IL-17A, IL-22 and granulocyte macrophage colony-stimulating 
factor (GM-CSF); they include both natural cytotoxicity receptor (NCR)− ILC3s and NCR+ 
ILC3s, and are considered to be involved in anti-bacterial immunity, like Th17 cells.

Recently, another ILC subset called regulatory ILCs (ILCregs), which resemble regulatory T 
cells (Tregs) and have regulatory functions, has been reported.1-3 ILCregs produce regulatory 
cytokines such as IL-10 and/or transforming growth factor-β (TGF-β), but they do not express 
Forkhead box protein P3 which is the canonical transcription factor of Tregs. Therefore, it 
remains controversial whether ILCregs represent an independent effector subset, like ILC1s, 
ILC2s and ILC3s, or just a temporary state of ILCs.

ILCs are generally thought to be tissue-resident cells that differentiate into mature effector 
cells in tissues and show minimal movement between organs.4 Instead, they have functional 
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plasticity that enables them to respond promptly to microenvironmental changes, thereby 
precluding any need for differentiation and/or migration of new ILC subsets adapted to a new 
environment. For instance, transdifferentiation has already been shown between ILC1s and 
ILC3s,5,6 between ILC1s and ILC2s,7-9 and between ILC2s and ILC3s (Fig. 1).10,11

DISTRIBUTION, HETEROGENEITY AND TISSUE-SPECIFIC 
SIGNATURES OF ILCS
ILCs are present in various organs throughout the body, and the proportions of the subsets 
differ depending on the organ. In humans, ILC3s are the predominant population in 
mucosal tissues, including the lung and gut,7 whereas the proportion of ILC2s is a little 
higher in the skin compared to mucosal tissues.7 The proportions of the ILC subsets are also 
influenced by age. For instance, although ILC3s (including NCR− ILC3s and NCR+ ILC3s) 
are the predominant population in the fetal human lung, their proportion decreases while 
the proportions of ILC1s and ILC2s increase with age in the adult human lung.7 Another 
important point is that there is substantial heterogeneity in each subset of ILCs. Moreover, 
ILCs show different phenotypes depending on the organ.12 For instance, although ILC2s 
from different organs share canonical markers such as GATA3 and IL-7R, their expressions 
of IL-33R, IL-25R and IL-18R1 differ depending on the organ.12 Such heterogeneity 
is probably due to the high plasticity of ILCs, which enables them to adjust to their 
microenvironment.
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Fig. 1. Plasticity of ILCs in the airways. IL-4 induces conversion of ILC1s and ILC3s to ILC2s. IL-12, in conjunction with 
IL-1β or IL-18, induces conversion of ILC2s to ILC1s. IL-1β and IL-23, in conjunction with TGF-β, induce conversion 
of ILC2s to ILC3s. IL-1β and IL-23 also induce conversion of ILC1s to ILC3s in the intestines, but this has not been 
demonstrated in the airways. Retinoic acid, in conjunction with IL-33, induces conversion of ILC2s to ILCregs. 
ILC, innate lymphoid cell; ILC1, group 1 innate lymphoid cell; ILC2, group 2 innate lymphoid cell; ILC3, group 3 
innate lymphoid cell; IL, interleukin; TGF-β, transforming growth factor-β; ILCreg, regulatory innate lymphoid 
cell; IFN, interferon; T-bet, T-box-expressed-in-T cells; RORγt, express retinoic acid receptor-related orphan 
receptor-γt; GATA3, GATA binding protein 3.



CYTOKINES AND OTHER FACTORS ASSOCIATED WITH 
EACH ILC SUBSET IN THE AIRWAYS ILC1S
IL-12
IL-12 is known as a major activator of ILC1s and promotes their secretion of IFN-γ.6 The 
major physiological producers of IL-12 are antigen-presenting cells (APCs) such as dendritic 
cells (DCs) and macrophages. In the mouse lung, IFN-γ produced by ILC1s in response to 
DC-derived IL-12 during viral infection suppresses early viral growth,13 suggesting that the IL-
12–ILC1 axis may be involved in anti-viral immunity (Fig. 2). Furthermore, IL-12 mediates the 
transdifferentiation of ILC2s7-9 and ILC3s5 into IFN-γ-producing ILC1s (Fig. 1), a mechanism 
that may be involved in immune responses to viral infections and in the pathophysiology of 
chronic obstructive pulmonary disease (COPD).

IL-15
Like IL-12, IL-15 activates ILC1s to produce IFN-γ. IL-15 is known to be produced by APCs, 
a subset of thymic epithelial cells, and by stromal cells. In the airways, human bronchial 
epithelial cells produce IL-15 in response to respiratory syncytial virus infection (Fig. 2).14 In 
human airway diseases, IL-15–positive cells have been reported to be increased inpatients with 
sarcoidosis, tuberculosis or chronic bronchitis compared to asthmatic patients and healthy 
subjects,15 suggesting the involvement of IL-15 in the pathophysiology of these diseases.
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Fig. 2. Regulators of ILCs in the airways and their sources. In the airways, ILCs are regulated by various stimuli 
that are produced by other cells. The red arrows indicate stimuli that activate ILCs, and the blue ones indicate 
stimuli that suppress ILCs. 
ILC, innate lymphoid cell; ILC1, group 1 innate lymphoid cell; ILC2, group 2 innate lymphoid cell; ILC3, group 3 
innate lymphoid cell; IL, interleukin; ILCreg, regulatory innate lymphoid cell; IFN, interferon; DC, dendritic cell; 
Th, T helper; Treg, regulatory T cell; SCC, solitary chemosensory cell; TSLP, thymic stromal lymphopoietin; CysLT, 
cysteinyl leukotriene; PGD2, prostaglandin D2; NMU, neuromedin U; VIP, vasoactive intestinal peptide; CGRP, 
calcitonin gene-related peptide; PNEC, pulmonary neuroendocrine cell.



IL-18
IL-18 was once thought to be just an activator of ILC1s that induces IFN-γ production. 
However, recent studies have shown that IL-18 also activates ILC2s and ILC3s to produce 
their signature cytokines,12,16 suggesting that IL-18 may be a pan-activator of ILCs (Fig. 2). 
Furthermore, IL-18 and IL-12 together promote conversion of ILC2s to ILC1s (Fig. 1).8 IL-18 is 
produced by APCs such as macrophages and DCs. In regard to the airways, IL-18 was shown 
to be released from human bronchial epithelial cells upon human rhinovirus infection17 and 
Alternaria extract stimulation18 in vitro. In addition, cigarette smoke exposure induced IL-18 
production by alveolar macrophages in the mouse lungs (Fig. 2).19 In humans, the levels of IL-
18 in bronchoalveolar lavage fluids (BALFs) were significantly higher in patients with COPD 
than in healthy subjects, and even higher in patients with acute exacerbation of COPD.20 In 
addition, the expression of IL-18 in lung epithelial cells was significantly increased in patients 
with severe COPD compared to healthy individuals who never smoked.17 These findings 
suggest that IL-18 may be involved in the pathophysiology of COPD.

ILC2s
IL-25
IL-25 activates ILC2s and promotes type 2 cytokine production.21 Various kinds of immune 
cells, such as macrophages, eosinophils and T cells, have been shown to produce IL-25. 
Recently, bottle-shaped epithelial-lineage cells expressing taste receptors, named tuft cells—
including intestinal tuft cells, brush cells in the lower airways and solitary chemosensory 
cells (SCCs) in nasopharyngeal tissue—have attracted broad attention as major sources of 
IL-25.21 In mice, intestinal tuft cells produce IL-25 after sensing microbial metabolites through 
succinate receptors or taste receptors during protozoan and helminth infections, which results 
in activation of ILC2s and promotion of an anti-helminth response.21 Similarly, recent findings 
have suggested that SCCs in the human upper respiratory tract22 and brush cells in the murine 
lower respiratory tract23 are major producers of IL-25 in the airways (Fig. 2). In humans, IL-25 
messenger RNA (mRNA) expression in bronchial epithelial cells was significantly increased 
in a subgroup of asthmatic patients with a Th2-high phenotype.24 In addition, the levels of 
IL-25 were significantly increased in nasal mucosal fluid from asthmatic patients during 
RV infection compared to healthy individuals.25 In mice, IL-25–producing brush cells were 
increased in the lungs of mice challenged with leukotriene (LT) E4, Alternaria or house dust 
mites, resulting in asthma-like airway inflammation.23 Moreover, epithelial cell-derived 
IL-25 has been shown to be crucial in an ovalubumin (OVA)-induced asthma model,26 
suggesting that IL-25 may play a critical role in the development of asthma. IL-25-producing 
SCCs22 and ILC2s27-29 were increased in nasal polyps from chronic rhinosinusitis with nasal 
polyps (CRSwNP) compared to nasal tissue from healthy individuals, and the level of IL-25 
correlated with infiltration of inflammatory cells and expression of inflammatory markers.30 
These findings suggest that the IL-25–ILC2 axis may be involved in the pathophysiology of 
CRSwNP. Besides allergic disorders, the concentration of IL-25 and the number of ILC2s were 
increased in BALF from patients with idiopathic pulmonary fibrosis and in the lungs of mice 
with helminth–induced lung fibrosis compared to controls,31 suggesting possible involvement 
of the IL-25–ILC2 axis in lung fibrosis as well.

IL-33
Unlike other cytokines that are newly synthesized upon stimulation and secreted via 
the endoplasmic reticulum/Golgi pathway, IL-33 is constitutively expressed in cells at 
the mucosal barrier and released from the nucleus in active form in response to tissue 
damage.32 Therefore, it is believed to be one of the “alarmins” that gather components of 
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the repair response to the sites of injury. However, several studies suggest that IL-33 may 
be actively secreted from live cells, including bronchial epithelial cells33 and fibroblasts, 
even in the absence of necrosis (Fig. 2). Although the mechanisms of IL-33 secretion are not 
fully understood, adenosine triphosphate-induced purinoceptor-dependent activation of 
epithelial nicotinamide adenine dinucleotide phosphate oxidase, i.e., dual oxidase 1, may be 
involved.33 IL-33 is recognized as one of the major activators of ILC2s that induce production 
of type 2 cytokines. In mice, IL-33 is released from alveolar epithelial cells in response to 
tissue damage32 caused by fungi such as Alternaria and Aspergillus and viruses such as RSV and 
RV.32 Meanwhile, in humans, IL-33 is released from bronchial epithelial cells located more 
centrally,32 similar to IL-25 and thymic stromal lymphopoietin (TSLP) (Fig. 2).

The expression of IL-33 in the lungs peaks during infancy, and declines with age. In line with 
that, the number of ILC2s in the lungs also peaks in infancy.34 These findings suggest that IL-33 
may play a major role in the developing phase of acquired immunity and that epithelial damage 
may induce more severe allergic airway inflammation during infancy than during adulthood 
through the IL-33–ILC2s axis. Furthermore, the expression of IL-33 in the nucleus of airway 
epithelial cells is enhanced by exposure to atmospheric substances such as cigarette smoke32 
and diesel exhaust particles.35 This suggests that damage to epithelial cells after exposure to 
cigarette smoke and diesel exhaust particles evokes release of larger amounts of IL-33, which 
results in aggravation of allergic inflammation. In addition to epithelial cells, stromal cells,36 
endothelial cells, fibroblasts32 and platelets37 may produce IL-33 (Fig. 2). In agreement with 
the finding that the IL-33 gene was strongly associated with asthma susceptibility in several 
genome-wide association studies,38 the level of IL-33 was higher in BALF from asthmatic 
patients than in controls and showed an inverse correlation with forced expiratory volume 
in one second (FEV1), regardless of the history of steroid treatment.39 The levels of IL-33 in 
serum40 as well as in exhaled breath condensate were higher in COPD patients than in healthy 
individuals and correlated with the eosinophil counts in the peripheral blood.41 Although it 
remains unclear whether IL-33 is involved in the pathogenesis of COPD, these findings suggest 
such involvement, especially in patients with eosinophilic COPD.

TSLP
Like other epithelial–derived cytokines such as IL-33 and IL-25, TSLP is recognized as a 
major activator of ILC2s that induces production of type 2 cytokines. However, unlike 
other epithelial-derived cytokines, TSLP was shown to induce corticosteroid resistance in 
murine ILC2s through activation of an intracellular signaling molecule, signal transducer 
and activator of transcription 5.42 TSLP is produced by various kinds of cells including DCs, 
vascular endothelial cells, macrophages and mast cells. In the airways, similar to IL-25 and 
IL-33, TSLP is produced mainly by airway epithelial cells in response to exposure to bacteria, 
fungi and viruses.43 Adventitial stromal cells localize with ILC2s in adventitial niche around 
the lung bronchi and large vessels, and support ILC2s through constitutive expression 
of TSLP and IL-33.36 In humans, the number of type 2 cytokine-producing ILC2s was 
significantly increased in sputum from patients with corticosteroid-resistant severe asthma 
compared those with mild asthma, whereas the number of type 2 cytokine-producing Th2 
cells was comparable in both groups. The levels of TSLP in BALF from patients with asthma 
correlate inversely with steroid-mediated inhibition of IL-5-producing ILC2s in the BALF. 
Furthermore, a clinical trial of an anti-TSLP antibody, tezepelumab, showed that, in moderate 
to severe steroid-resistant asthma, anti-TSLP treatment significantly reduced asthma 
exacerbation as well as important biologic markers such as the blood eosinophil count and 
fractional exhaled nitric oxide (FeNO).44 These findings suggest that the TSLP–ILC2 axis 
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may play critical roles in steroid resistance in asthmatic patients and that TSLP is likely to be 
continuously produced and released in the airways of moderate to severe asthmatic patients.

IL-27
IL-27 is generally produced by DCs and macrophages (Fig. 2). In mice, IL-27 suppresses the 
proliferation and cytokine production of ILC2 cells in vitro,4,45 and it also suppresses Alternaria-
induced eosinophilic airway inflammation by regulating ILC2 activation in vivo.4 However, in 
humans, IL-27 mRNA levels and the percentage of IL-27-expressing cells in BALF were increased 
in patients with asthma, especially those with a severe phenotype.46 Therefore, the involvement 
of IL-27-ILC2s in the pathophysiology of asthma in humans remains to be elucidated.

IFNs
IFNs are divided into types 1 (α/β), 2 (γ) and 3 (λ). Type 1 and 2 IFNs have been shown to 
suppress type 2 cytokine production by ILC2s, both in vitro and in vivo.4,45 The major producers 
of IFN-α and -β are macrophages and DCs. IFN-γ is produced by activated Th1 cells and 
ILC1s, including NK cells, which are activated mainly through TLRs (Fig. 2). In mice, the 
deficiency of type 1 IFN during influenza virus and helminth infections results in severe 
or prolonged eosinophilic airway inflammation mediated by activated ILC2s. In humans, 
dozens of reports have shown impaired production of type 1 and 3 IFNs by cultured primary 
bronchial epithelial cells, BAL cells, peripheral blood mononuclear cells (PBMCs) and 
plasmacytoid DCs in response to infection with viruses such as RSV and RV in patients with 
asthma compared to healthy individuals.47 Therefore, dysregulation of ILC2 activity by type 
1 and 3 IFNs during viral infection in asthmatic patients may result in the development and 
exacerbation of allergic airway inflammation.

Lipid inflammatory mediators
Lipids are primarily involved in the formation of cell membranes of organs. However, some 
reports have shown that certain lipids also play crucial roles in immune responses and the 
maintenance of homeostasis. These lipids are called bioactive lipids or lipid mediators. 
Cysteinyl leukotrienes (CysLTs) as well as prostaglandin (PG) D2 are products of arachidonic 
acid and were known to be major pro-inflammatory lipid mediators of allergic disorders from 
early days. Mast cells activated by immunoglobulin (Ig) E-crosslinking are the major source 
of PGD2 in terms of quantity, but other leukocytes, including eosinophils, Th2 cells, DCs 
and cytokine-activated ILC2s,48 also produce PGD2 (Fig. 2). Since human ILC2s are identified 
as lineage-negative cells expressing chemoattractant receptor-homologous molecules on 
Th2 cells (CRTH2),29 which is the PGD2 receptor, PGD2 influences ILC2s in a variety of ways, 
including their migration49 and production of IL-13.50 CysLTs are generally produced by 
leukocytes such as eosinophils, mast cells, macrophages and basophils. CysLTs act directly 
on ILC2s to enhance their ability to produce type 2 cytokines, both in vivo and in vitro.50 On 
the other hand, there are some lipid molecules that inhibit ILC2 activation. PGI2, PGE2 and 
lipoxin A4—also products of arachidonic acid—suppress ILC2s' cytokine production and 
proliferation, in vitro and in vivo.50 Interestingly, however, LTE4 and PGD2 reportedly induce 
Th2 cytokines, including IL-4, synergistically in purified human peripheral blood ILC2s.51

Neuropeptides
Neuropeptides are peptides that are expressed in the nervous system and exhibit physiological 
activity. They are present not only in the central nervous system, but also in the nervous system 
of peripheral tissues such as the lungs, and they function as signal transmitters between cells. 
Among several neuropeptides known to act on ILC2s, vasoactive intestinal peptide (VIP) was 
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the first one shown to modulate ILC2 activation. VIP belongs to the glucagon/secretin family 
and is highly expressed in intestinal neurons, where it coordinates pancreatic secretion with 
smooth muscle relaxation in response to feeding. Both lung and intestinal ILC2s express 
VIP receptors, including VIP receptor type 1 and type 2, and VIP simulation induces IL-5 
production by the cells. The IL-5 produced in turn activates sensory neurons to produce VIP,52 
which may exacerbate allergic airway inflammation (Fig. 2). Lung ILC2s also express receptors 
for another neuropeptide, called neuromedin U (NMU), whereas ILC1s and ILC3s do not. 
NMU is thought to directly activate lung ILC2s to proliferate and produce type 2 cytokines.53 
Calcitonin gene-related peptide (CGRP) is a calcitonin gene product, like the thyroid 
hormone calcitonin and it is involved in the regulation of blood calcium levels. CGRP is widely 
distributed in the central and peripheral nervous systems; It was also produced by non-
neuronal cells in the airways—called pulmonary neuroendocrine cells (PNECs)─after OVA 
challenge in an OVA-sensitized mouse model (Fig. 2).54 Interestingly, a recent study has shown 
that ILC2s are localized in close proximity to PNECs and that CGRP enhances type 2 cytokine 
production by lung ILC2s in the presence of IL-33 or IL-25,54 suggesting that interaction 
between PNECs and ILC2s may be involved in allergic airway inflammation. Besides the 
neuropeptides that induce activation of ILC2s, there is also a neuropeptide that regulates 
activation of ILC2s. Both lung and intestinal ILC2s express the β2-adrenergic receptor (β2-AR), 
which is a receptor for epinephrine released by sympathetic nerve stimulation. Treatment with 
a β2-AR agonist, salmeterol, suppressed proliferation and type 2 cytokine production by ILC2s 
in an IL-33-induced airway inflammation model (Fig. 2).55 These findings suggest that β2-AR 
agonists used as therapeutic agents for asthma may work not only as a bronchodilator, but also 
as a suppressor of type 2 inflammation induced by ILC2s.

Sex steroids
Sex steroids, such as estrogen and androgen, are steroid hormones that are produced 
mainly by the reproductive organs and modulate reproductive functions. In addition to their 
effects on the reproductive organs, sex steroids have recently been shown to have effects on 
immune cells, including ILC2s in peripheral tissues. Androgen receptors are expressed on 
lung ILC2s56 as well as ILC2 progenitors (ILC2Ps) in bone marrow (BM),57 whereas estrogen 
receptors are expressed on lung ILC2s and uterine ILC2s,58 but not on ILC2Ps in BM.57 These 
findings indicate that androgens may influence both the development of ILC2s in BM and 
the activation of ILC2s in peripheral tissues, whereas estrogens may influence mainly ILC2s 
in peripheral tissues. Androgens and estrogens are thought to exert opposite effects on 
ILC2s. Androgen signaling inhibits differentiation of ILC2Ps into ILC2s57 and also activation 
of ILC2s.56,57 In contrast, estrogen has been suggested to have supportive effects on ILC2s 
(Fig. 2).58 Indeed, the numbers of lung ILC2s57 and BM ILC2Ps are significantly lower in adult 
male mice than in adult female mice in the steady state.57 In addition, the number of ILC2s 
in the peripheral blood of adult male patients with severe asthma,56 as well as their number 
in the lungs of Alternaria-exposed adult male mice,56 was significantly lower than in females. 
In humans, although males are more susceptible to asthma than females before puberty, the 
asthma incidence reverses after puberty.59 These findings suggest that ILC2s are involved in 
the sex difference in asthma prevalence in humans.

ILC3s
IL-23
IL-23 is a major activator of ILC3s that induces production of inflammatory cytokines such 
as IL-17 and IL-22. IL-23 also induces conversion of ILC1s to ILC3s in conjunction with IL-1β 
and retinoic acid,5 and ILC2s to ILC3s in conjunction with IL-1β and TGF-β (Fig. 1).10,11 IL-
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23 is generally produced by DCs and macrophages, but it was also produced by bronchial 
epithelial cells in a house dust mite-induced asthma model (Fig. 2).60 The serum level of IL-23 
was higher in asthmatic children than in healthy children, which shows a strong inverse 
correlation with FEV1.61 In addition, IL-23-positive cells were increased in the airway mucosa 
of stable COPD patients.62 However, the roles of IL-23 in the pathogenesis of asthma and 
COPD remain unclear.

IL-1β
IL-1β is a major activator of ILC3s that induces IL-17A production.63 While IL-1β is a potent 
activator of ILC2s that induce type 2 cytokine production,7 it also induces conversion of ILC2s 
to ILC1Ss together with IL-12,7,9 and to ILC3s together with IL-23 and TGF-β (Fig. 1).11 In the 
airways, IL-1β is produced by DCs in response to exposure to chitin and IL-33,64 and by nasal 
epithelial cells exposed to Staphylococcus aureus or Pseudomonas aeruginosa (Fig. 2).11 The levels of 
IL-1β in BALF and expression of mRNA for IL-1β and NLRP3 in sputum cells65 were significantly 
higher in steroid-resistant severe asthma patients with neutrophilic inflammation than in 
healthy subjects and mild asthmatic patients. In mice, steroid-resistant severe asthma-like 
airway inflammation was attenuated by inhibiting IL-1β or inflammasome activation.65 These 
findings suggest that IL-1β is involved in the pathogenesis of steroid-resistant severe asthma. In 
contrast, the levels of IL-1β in BALF and IL-1β mRNA expression in the bronchial mucosa were 
comparable between severe COPD patients and control subjects.66 In addition, a clinical trial 
of anti-IL-1R1 monoclonal antibody (mAb) showed no improvement in the QOL score or acute 
exacerbation rate in COPD patients.67 Therefore, the question of involvement of IL-1β in the 
pathogenesis of COPD should be further studied.

Vitamins
Retinoic acid (RA)–which is a metabolite of vitamin A (Vit A)–and vitamin D (Vit D) are known 
to be molecules that regulate ILCs.1,3,5,11,68 RA is synthesized from a Vit A metabolite, retinal, 
by cells having enzymes such as retinaldehyde dehydrogenase (ALDH)1A1, ALDH1A2 and 
ALDH1A3. RA is generally synthesized by CD103+ DCs, intestinal epithelial cells and lamina 
propria stromal cells in the gut that express ALDHs. In the airways, bronchial epithelial cells 
express ALDHs in response to IL-13 stimulation,1 suggesting that these cells could be the 
source of RA during allergic airway inflammation. Vit D can be absorbed by oral intake, but it 
is synthesized mainly in the skin upon exposure to ultraviolet light from the sun. RA enhances 
activation of ILC3s by IL-1β and IL-23 to increase production of IL-22 (Fig. 2), and it also induces 
conversion of ILC1s to ILC3s in conjunction with IL-1β and IL-23 (Fig. 1).5 In addition, RA 
inhibits development of ILC2s from ILC2Ps in mouse BM69 and induces conversion of ILC2s to 
IL-10–producing ILCregs in both humans and mice (Fig. 1).1,3 In contrast to the positive effects 
of RA on ILC3s, Vit D suppresses production of cytokines such as IL-22, IL-17F and GM-CSF 
by ILC3s by down-regulating the IL-23/IL-23R pathway,68 and it also prevents IL-1β-, IL-23- and 
TGF-β-induced conversion of ILC2s to ILC3s (Fig. 1).11

Involvement of ILCs in airway inflammatory diseases
Asthma
Asthma is a chronic airway inflammatory disease characterized by wheezing, prolonged 
exhalation and dyspnea due to reversible airflow obstruction. It is considered to be a 
heterogeneous disease comprising a number of subtypes.70 ILC2s might be involved in the 
pathogenesis of asthma in patients who have severe eosinophilic inflammation induced 
by type 2 cytokines. Indeed, the frequencies of ILC2s in BALFs, sputum and PBMCs were 
significantly increased in asthmatic patients, especially in uncontrolled patients, compared 
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to healthy individuals, and correlated negatively with airway function.71 ILC2s may be 
involved in the pathogenesis of asthma via 2 different mechanisms: antigen non-specific 
and antigen specific. The former involves direct activation of ILC2s by mediators such as 
IL-33, TSLP, IL-25 and neuropeptides that are produced by tissue structural cells in response 
to microenvironmental changes such as viral infection, allergen exposure and stress. The 
latter involves migration and activation of ILC2s by lipid mediators such as PGD2 and CysLTs, 
which are synthesized by mast cells activated upon antigen exposure in an IgE-dependent 
manner. The number of ILC2s in BALFs of asthmatic patients is increased after segmental 
allergen challenge, whereas the number of ILC2s in the blood is decreased.49 Moreover, the 
levels of PGD2 in BALFs correlated with decreased ILC2s in the blood.49 Although ILCs are 
recognized as tissue-resident cells that show minimal migration between organs in mice, 
these findings suggest that, at least in humans, some ILC2s dynamically migrate into the 
airways from the peripheral blood in response to PGD2 that is synthesized by mast cells upon 
allergen exposure.

As the importance of ILC2s and its activators in the pathogenesis of asthma becomes 
apparent, new therapeutic strategies—including the use of biologics to suppress their 
activity—are attracting attention. Treatment with an anti-TSLP mAb, tezepelumab, was 
shown to reduce bronchoconstriction and airway inflammation induced by allergen 
challenge in mild asthmatic patients.72 That mAb also significantly reduced the annualized 
rate of asthma exacerbations in steroid-resistant severe asthmatic patients treated with 
long-acting β-agonists and medium-to-high doses of inhaled glucocorticoids in a phase 
2 clinical trial.44 Of note, biomarkers such as the blood eosinophil count and FeNO were 
significantly decreased as early as 4 weeks after treatment with tezepelumab,44 suggesting 
that TSLP is continuously synthesized and released in the airways of asthmatic patients. Since 
TSLP is a key molecule inducing steroid resistance of ILC2s42 as described in the previous 
section, treatment with tezepelumab may be the most logical strategy to treat steroid-
resistant severe asthmatic patients. Another biologic directed at an epithelial cell-derived 
cytokine, anti-IL-33 antibody, is currently undergoing a phase 2a clinical trial in asthmatic 
patients being treated with high-dose inhaled corticosteroid and long-acting β2-agonist. 
Fevipiprant, a CRTH2 antagonist that targets CRTH2 on ILC2s as well as on eosinophils, 
basophils and Th2 cells, significantly reduced eosinophilic inflammation in the sputum 
and bronchial mucosa and improved the lung function and clinical outcome in week 12 in 
moderate to severe eosinophilic asthmatic patients.73 However, 2 studies using different 
CRTH2 antagonists, AZD 198174 and OC000459,75 showed no significant improvement in lung 
function in moderate, persistent asthma patients in week 4. Therefore, further studies are 
needed to determine the patient phenotypes likely to benefit from use of a CRTH2 agonist, 
and the duration of treatment. In contrast to the involvement of ILC2s in eosinophilic 
asthma, ILC3s may be involved in non-allergic asthma, including obesity-related asthma. In 
mice, airway hyperresponsiveness (AHR) was induced in high-fat-diet-fed obese mice even 
in the absence of antigen challenge compared to normal-diet-fed mice.63 AHR was induced 
by IL-17-producing ILC3s activated by IL-1β produced upon obesity-related inflammasome 
activation.63 However, in humans, the details of any involvement of ILC3s in non-eosinophilic 
asthma remain unclear.

Allergic rhinitis (AR)
AR is an allergic disorder of the nasal mucosa that is characterized by paroxysmal recurrent 
sneezing, serous rhinorrhea and nasal congestion. AR is thought to be induced mainly by 
an immediate hypersensitivity reaction that involves IgE-mediated release of histamine 
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and other mediators from mast cells in the nose. However, a delayed allergic reaction 
accompanied by production of type 2 cytokines that is triggered by inhalation of a sensitizing 
antigen may also be involved in the development of the symptoms and pathology of AR. 
It is thus assumed that ILC2s may also be involved via type 2 cytokine production. Indeed, 
the proportion of ILC2s in the peripheral blood of patients with seasonal AR is significantly 
higher in the pollen season than out of season.76 In addition, ILC2s sorted from the 
peripheral blood of AR patients produce larger amounts of type 2 cytokines than those from 
healthy individuals.77 These findings suggest that ILC2s in patients with AR may be activated 
upon allergen exposure. Like in asthma, ILC2s may be involved in the pathogenesis of AR 
via 2 different mechanisms: antigen non-specific and specific. The former involves direct 
activation of ILC2s by mediators such as TSLP and IL-25, which are increased in the nasal 
lavage of patients with AR. The latter involves migration and activation of ILC2s in response 
to lipid mediators such as PGD2 and CysLTs, synthesized by mast cells activated in an IgE-
dependent manner upon antigen exposure. The proportion of ILC2s in the peripheral blood 
of patients who underwent allergen-specific immunotherapy did not increase even during 
the pollen season.76 That may be due to desensitization of mast cells by the immunotherapy, 
resulting in decreased release of PGD2 and CysLTs by the mast cells.

Chronic rhinosinusitis (CRS)
CRS is a heterogeneous disease characterized by chronic inflammation of the sinus and nasal 
mucosa, with nasal congestion and a decreased sense of smell. CRS can be roughly divided 
into 2 major subtypes based on the presence/absence of nasal polyps, and each subset shows 
different pathological conditions.78 In particular, CRSwNP is generally considered to involve 
mainly eosinophilic inflammation caused by typical type 2 cytokines, with high expression 
of IL-5 and IL-13 in polyps. The percentage of ILC2s is significantly higher in nasal polyps 
from patients with CRSwNP than in nasal tissues from controls and those with chronic 
rhinosinusitis without nasal polyps (CRSsNP).27-29 The percentage correlates with the nasal 
symptom score.27 Furthermore, unlike ILC2s in the peripheral blood, ILC2s sorted from 
nasal polyps of CRSwNP spontaneously produce type 2 cytokines such as IL-5 and IL-13, even 
without additional stimulation.28 These findings indicate that ILC2s in CRSwNP patients are 
continuously exposed to activating signals in the nasal cavity.

Although factors that continuously activate ILC2s in nasal polyps remain unclear, recent 
findings highlighted a substantial role of IL-25 in CRSwNP, especially in polyps having high 
eosinophil infiltration.22,30 The expression of IL-2530 and the number of IL-25-producing 
SCCs22 were significantly higher in nasal polyps from CRSwNP patients than in nasal tissue 
from controls and CRSsNP patients. In addition, production of IL-25 by SCCs in nasal 
polyps was increased in response to stimulation with IL-13,22 suggesting that a vicious loop 
of IL-25-ILC2s-IL-13 may be present. Recent studies have shown that the pathophysiology of 
CRSwNP may differ depending on the race, implying the existence of subtypes in CRSwNP.78 
Indeed, it has been shown that CRSwNP patients can be divided into 2 subtypes depending 
on the expression level of IL-25 in nasal tissues. The IL-25-high subtype had a type 2-prone 
phenotype accompanied by high eosinophil infiltration and steroid sensitivity.79 TSLP was 
also constantly up-regulated in nasal tissue from CRSwNP patients compared to healthy 
subjects.80 In contrast, there is still debate regarding the expression level of IL-33 in nasal 
polyps.80,81 In regard to treatment, a recent case report demonstrated that an IL-4R mAb 
(dupilumab) significantly improved CRSwNP disease outcomes, along with asthma control 
and lung function, in patients with CRSwNP and aspirin-exacerbated respiratory disease.82 A 
clinical phase 2 trial of ANB020, an anti-IL-33 antibody, is currently ongoing.
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COPD
COPD is a chronic airway inflammatory disease characterized by dyspnea due to irreversible 
airway obstruction. Cigarette smoking is considered to be the primary cause of COPD, but 
continuous inhalation of air pollutants and occupational dust may also be involved. COPD 
is thought to be a heterogeneous disease that includes patients with chronic bronchitis, 
emphysema and/or asthma components. Although the pathogenesis of COPD may also 
be heterogeneous, type 1 and 3 immunity accompanied by neutrophil and macrophage 
infiltration is thought to be involved.83 Indeed, the frequency of ILC1s in the peripheral 
blood is increased in COPD patients and correlates inversely with lung function.8 In 
addition, the frequencies of ILC1s and NCR− ILC3s were increased in lung tissue of COPD 
patients compared to control subjects, while the frequency of ILC2s was decreased.7 Given 
that the total ILC numbers are comparable between healthy individuals and COPD patients, 
the increase in ILC1 frequency and decrease in ILC2 frequency have been proposed to be 
caused by conversion of ILC2s to ILC1s in the lung rather than influx of ILCs from other 
organs.7 With regard to ILC3s, a subset of ILC3s that express neuropilin 1 was increased in 
the lung tissue of COPD patients, and these cells were suggested to be involved in ectopic 
lymphocyte accumulation and angiogenesis.84 In line with these findings in humans, the 
numbers of ILC1s and ILC3s were reportedly increased in lungs from a cigarette smoke-
induced COPD mouse model.85 These findings suggest that ILC1s and ILC3s, but not ILC2s, 
are involved in the pathophysiology of COPD. However, as mentioned above, COPD is 
thought to be a heterogeneous disease, and accumulating evidence suggests the existence 
of subtypes involving type 2 immunity. For instance, it has been shown that some COPD 
patients have eosinophilic inflammation during acute exacerbation.86 Furthermore, some 
patients have features of both asthma and COPD, called asthma-COPD overlap, with 
increased FeNO and eosinophils in the peripheral blood.87 Although type 2 immunity may 
be involved in the pathophysiology of these patients, any possible involvement of ILC2s in it 
remains unclear.

CONCLUSIONS

Many articles regarding the functions and regulators of ILC2s have been published in recent 
years, resulting in those features being relatively well characterized. On the other hand, 
articles regarding ILC1s and ILC3s have been scanty in number for characterizing their 
functions and regulators. One of the reasons why analysis of ILC2s is advanced compared 
to the other ILC subsets may be that ILC2 activation leads to a clear outcome: eosinophil 
infiltration of tissues. Indeed, many of the studies showing involvement of ILC2s consist 
of patients with severe eosinophil infiltration. For such patients, treatments that target 
such upstream regulators of ILC2s as TSLP, IL-25 and IL-33, and downstream effector 
molecules of ILC2s, such as IL-4, IL-5 and IL-13, can be thought to have promise. However, 
in clinical practice, there are many cases that involve not only pure eosinophil infiltration 
but also neutrophil infiltration, and such “mixed-type” patients often exhibit more severe 
and treatment-resistant phenotypes. Since not only ILC2s but also ILC1s and ILC3s may 
be involved in the pathophysiology of such cases, we need to further elucidate functions 
and molecules that modulate activation of ILC1s and ILC3s in the airways. Recently, IL-17-
producing ILC2s expressing the canonical ILC2 surface marker ST2 were reportedly induced 
in the lungs of papain- or IL-33-treated mice,88 suggesting the existence of cells intermediate 
between 2 different ILC subsets in vivo. Conventional analysis using canonical surface 
markers and cytokines would not be enough to clarify the characteristics and functions of 
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ILCs involved in the pathophysiology of “mixed-type” airway inflammatory disease. Analysis 
of airway ILCs at the single-cell levels using a recently developed technology, single cell RNA-
seq may help determine the ILC phenotype and local microenvironment in individual cases.
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