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Abstract

Background and Aims: Hepatic ischemia-reperfusion injury 
(IRI) is a common pathophysiological phenomenon in clinical 
practice, which usually occurs in liver transplantation, liver 
resection, severe trauma, and hemorrhagic shock. Proantho-
cyanidin (PC), exerted from various plants with antioxidant, 
antitumor, and antiaging activity, were administrated in our 
study to investigate the underlying mechanism of its protec-
tive function on IRI. Methods: Two doses of PC (50 mg/kg, 
100 mg/kg) were given to BALB/c mice by intragastric ad-
ministration for 7 days before partial (70%) warm IR surgery. 
Serum and liver tissues were collected 2, 8, and 24 h after 
reperfusion for relevant experiments. Results: The results of 
transaminase and hematoxylin and eosin staining indicated 
that PC pretreatment significantly alleviated IRI in mice. Se-
rum total superoxide dismutase increased and malondialde-
hyde decreased in PC pretreatment groups. Enzyme-linked 
immunosorbent assays, western blotting, quantitative real-
time polymerase chain reaction, and immunohistochemistry 
showed that inflammation, apoptosis, and autophagy in PC 
preprocessing groups were significantly inhibited and were 
dose-dependent. The protein, mRNA expression, and immu-
nohistochemical staining results of peroxisome proliferator-
activated receptor alpha (PPARα) and peroxisome prolifera-
tor-activated receptor gamma coactivator 1-alpha (PGC1α) 
in the PC pretreatment groups were significantly upregulated 

compared with the IR group in a dose-dependent manner. 
Conclusions: PC pretreatment suppressed inflammation, 
apoptosis, and autophagy via the PPAR-α signaling pathway 
to protect against IRI of the liver in mice.
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Introduction
Ischemia-reperfusion injury (IRI) refers to restoring the 
blood perfusion on the basis of ischemia, further aggravating 
the tissue damage caused by ischemia, and even causing 
irreversible damage.1–3 Severe hepatic IRI is responsible for 
graft rejection, liver dysfunction and graft failure after liver 
transplantation and hepatectomy.4 To attenuate the harm-
ful effects of hepatic IRI, many studies introduce pharmaco-
logical interventions or invasive procedures and results show 
that pharmacological pretreatment (sevoflurane, propofol, 
sufentanil, and others), hepatic Inflow modulation (ischemic 
preconditioning, remote ischemic preconditioning, and pre-
retrieval reperfusion), and machine perfusion (hypothermic 
perfusion, dual hypothermic perfusion, normothermic perfu-
sion, and regional normothermic perfusion) modified injury 
and diminished the impact. However, clinical data are limited 
and there is no effective clinical treatment to prevent IRI.5 
We established animal models to investigate the underlying 
mechanism and possible protective strategies.

Reactive oxygen species (ROS) in liver cells are main-
tained at baseline under normal physiologic conditions. When 
the liver suffers from IRI, liver cells produce excessive ROS, 
which in turn recruits and activates Kupffer cells.3 Activated 
Kupffer cells secrete proinflammatory and proapoptotic cy-
tokines, which results in sterile inflammation and apoptosis.6 
Autophagy is a survival mechanism of cells in a harsh envi-
ronment, but persistent autophagy can lead to the occur-
rence of programmed cell death during IRI.7 Thus far, many 
animal studies have confirmed that pharmacologic pretreat-
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ment can reduce IRI. PC, a novel highly effective antioxidant, 
is a powerful free radical scavenger, and has anti-inflamma-
tory and antitumor activity.8–10 Previous studies have shown 
that PC alleviated intestinal, heart, and kidney IRI.10–12 Fur-
thermore, Xu et al.13 found that PC protected liver against IRI 
by attenuating endoplasmic reticulum stress. However, other 
potential mechanisms of the protective effect of PC on liver 
IRI have not been explored. Yang et al.14 reported that PC re-
versed the inhibition of the peroxisome proliferator-activated 
receptor alpha (PPARα) signaling pathway and improved liver 
injury caused by lead intake. PPARα, a nuclear receptor, is a 
therapeutic target for various metabolic diseases and also 
has anti-inflammatory and anti-apoptotic activity.15,16 There-
fore, we speculated that PPARα might protect the liver from 
IRI through the PPARα signaling pathway. In this study, we 
demonstrated that PC alleviated liver IRI by suppressing au-
tophagy and apoptosis through the PPARα/PGC1α signaling 
pathway, providing a new treatment strategy for liver IRI.

Methods

Reagents
The PC used in this study was purchased from Kingmorn in-
dustry, diluted in normal saline, and stored away from light 
at 4°C. GW6471, an antagonist of PPARα, was purchased 
from MedChemExpress (Monmouth Junction, NJ, USA). Ala-
nine aminotransferase (ALT) and aspartate aminotransferase 
(AST) microplate test kits, total superoxide dismutase (T-
SOD) assay kits (hydroxylamine method), and malondial-
dehyde (MDA) assay kits (thiobarbituric acid method) were 
purchased from the Nanjing Jiancheng Bioengineering Insti-
tute (Jiancheng Biotech, China). Tumor necrosis factor-alpha 
(TNF-α) and interleukin 1 beta (IL-1β) ELISA kits were ac-
quired from eBioscience (San Diego, CA, USA). RNA quan-
titative real-time polymerase chain reaction (qRT-PCR) kits 
were obtained from Takara Biotechnology (Dalian, China). 
The primary antibodies used in this study are shown in Table 
1. Antirabbit or antimouse secondary antibodies were ob-
tained from Dako (Santa Clara, CA, USA).

Animals
Seven-week-old male Balb/c mice weighting 20–25 g were 
purchased from Shanghai SLAC Laboratory Animal Co. Ltd 
(Shanghai, China), housed in plastic cages, and maintained 

in an alternating 12 h:12 h light:dark cycle at a constant 
temperature (22–25°C) with free access to food and water. 
Mice were fed with normal food and water for 2 weeks to 
adapt to the environment. All animal experiments were con-
sistent with National Institutes of Health Guidelines and were 
approved by the Animal Care and Use Committee of Shang-
hai Tongji University.

Experimental design
We used two doses of PC to investigate its effects on liver IRI 
as previously described.12,13 Eighty-four mice were randomly 
divided into six groups: (1) A normal control (NC) group of 
six mice given saline by gavage; (2) A PC group of six mice 
given 100 mg /kg PC by gavage for 7 days; (3) A sham group 
of 18 mice with laparotomy without IR surgery; (4) A group 
of 18 mice with IR surgery; (5) An IR+PC group of 18 mice 
given 50 mg/kg PC by gavage for 7 days before they under-
went IR surgery; (6) An IR+PC (100 mg/kg) group of 18 
mice given 100 mg/kg PC by gavage for 7 days before they 
underwent IR surgery.

Mice in groups one and two were sacrificed by cervical 
dislocation after 7 days of drug administration. Six mice in 
groups three to six were randomly sacrificed by cervical dis-
location 2, 8, and 24 h after reperfusion.17 Orbital blood and 
middle and left liver lobes were gathered for experiments to 
determine whether PPARα was associated with the protective 
effects of PC on liver IRI. Thirty mice were randomly divided 
into four groups, and we used GW6471 following the manu-
facturer’s protocol.18 (1) A sham group of six mice received 
a laparotomy without IR surgery; (2) An IR+PC group of six 
mice were given 100 mg/kg PC by gavage for 7 days before 
IR surgery; (3) An IR+GW6471 group of six mice were given 
20 mg/kg GW6471 by gavage for 7 days before IR surgery; 
(4) An IR+PC group of six mice given 20 mg/kg GW6471 and 
100 mg/kg PC by gavage for 7 days before IR surgery.

Induction of a mouse IR model
We followed the methods of Deng et al.17 The mice were fast-
ed 12 h before surgery and had free access to drinking water. 
Mice were anesthetized by intraperitoneal injection of 1.25% 
sodium pentobarbital (Nembutal; Sigma-Aldrich, St. Louis, 
MO, USA) at a dose of 40 mg/kg. After successful anesthesia, 
the mice were positioned flat on the operating table, their 
limbs were fixed with tape, and the operation area was dis-
infected with 75% ethanol. After making a 1 cm midline inci-

Table 1.  Primary antibodies used for western blotting and immunohistochemical staining

Antibody Species Targeted 
species

Dilution ratio in 
western blotting

Sup-
plier

Catalog  
number

Molecular 
weight in kDa

Bax Rabbit H, M, R 1:1,000 PT 23931-1-AP 21–24

Bcl-2 Rabbit H, M, R 1:500 WLB WL01556 26

Beclin-1 Rabbit H, M, R 1:1,000 PT 11306-1-AP 60

IL-1β Mouse H, M 1:1,000 CST 12242 17

PPAR-α Rabbit H, M, R 1:1,000 PT 15540-1-AP 52–55

TNF-α Rabbit M 1:1,000 CST 11948 s 17

PGC1α Rabbit H, M, R 1:1,000 Abcam Ab54481 92

Caspase-3 Rabbit H, M, R 1:1,000 PT 19677-1-AP 17.32–35

LC3 Rabbit H, M, R 1:1,000 PT 14600-1-AP 16–18

β-actin Mouse H, M, R 1:1,000 CST 3700 43

CST, Cell Signaling Technology (Danvers, MA, USA); H, human; M, mouse; PT, Proteintech (Chicago, IL, USA); R, rat; WLB, Wanleibio (Shenyang, China); IL-1β, inter-
leukin 1 beta; PGC-1α, PPAR-γ coactivator 1 alpha; PPARα, peroxisome proliferator-activated receptor alpha; TNF-α, tumor necrosis factor-alpha.
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sion, the abdominal cavity was opened and the hepatic pedi-
cles of the left and middle lobes of the liver were carefully 
separated (the portal vein and hepatic artery supplying blood 
to the left and middle lobes of the liver). The portal vein and 
hepatic artery of the middle and left lobes were clamped with 
a noninvasive vascular clip to establish 70% liver ischemia 
model that prevented severe mesenteric venous congestion. 
Compared with the nonblocked right lobe, the blocked lobes 
became gray, indicating that blocking was successful. The 
abdomen was covered with gauze soaked in saline and the 
mice were placed on a heating pad at a constant temperature 
of 37°C. After 45 m of continuous ischemia, the vascular clip 
was removed to restore the ischemic liver blood flow. The 
liver in the ischemic area gradually returned to red from gray, 
indicating successful reperfusion. The abdominal muscles 
and skin layers were sutured to close the abdominal cavity.

Biochemical analysis
After incubating at 4°C for 6 h, collected blood samples were 
centrifuged at 4,600 rpm for 10 m to separate serum and 
stored at −80°C. Serum ALT, AST, MDA, T-SOD were assayed 
by test kits following the manufacturer’s protocols. Serum 
TNF-α and IL-1β were measured by ELISA kits following the 
manufacturer’s protocols.

Hematoxylin and eosin (HE) staining
Tissues from the left lobe of the liver were collected and fixed 
in 4% paraformaldehyde for at least 24 h. The fixed tissues 
were dehydrated in different concentrations of alcohol and 
cleared with xylene before being embedded in paraffin, sec-
tioned at 4 µm, and stained with HE. Histopathological dam-
age was observed by light microscopy.

qRT-PCR
qRT-PCR was performed as described by Feng et al.19 TRIzol 
(Thermo Fisher Scientific, Waltham, MA, USA) was used to 
extract total RNA from the left liver lobe. After determining 
the RNA concentration, samples were reversed transcribed 
to cDNA using a reverse transcription kit (Takara Biotech-
nology, Beijing, China). Gene expression at the mRNA level 
was detected by SYBR Green qRT-PCR with a 7900HT fast 
RT-PCR system (Applied Biosystems, Foster City, CA, USA). 
The primers used in this study are shown in Table 2. The 
specificity of primers was verified by Sanger sequencing of 
the amplified PCR products. The relative mRNA expression 
levels were determined by the 2−ΔΔCt method and normalized 
against β-actin.

Western blotting
Western blotting was performed as described by Xu et al.4 
Fresh liver was cut into small pieces, frozen in liquid nitrogen, 
and stored at −80°C. The tissues were ground into powder at 
a low temperature (dipped in liquid nitrogen), and RIPA buff-
er (along with protease inhibitors) was used to extract the 
proteins. The protein concentration was determined by the 
bicinchoninic acid method, the sample was mixed with 5× 
loading buffer, heated at 100°C for 10 m, and then store at 
−20°C. Proteins of different molecular weights were separat-
ed by 10% or 12.5% sodium dodecyl-sulfate polyacrylamide 
gel electrophoresis and transferred to polyvinylidene fluoride 
membranes. After blocking in 5% skim milk diluted in PBS for 
at least 1 h, the membranes were incubated at 4°C overnight 
with anti-TNF-α, -IL-1β, -β-actin, -Bcl-2, -Bax, -Beclin-1, -ca-
pase3, -LC3, -PPARα, and -PGC1α primary antibodies. The 
membrane was eluted three times with PBS including 0.1% 
Tween-20 before applying secondary antibodies for 1 h in 

the dark at room temperature. An Odyssey two-color infra-
red laser imaging system (LI-COR Biosciences, Lincoln, NE, 
USA) was used to detect excited fluorescent signals from the 
membranes.

Immunohistochemical staining
We followed the methods described by Wang et al.20 Tissue 
slices obtained 8 h after reperfusion were baked in an oven 
at 60°C for 2 h. After dewaxing and rehydration, sections 
were dipped in citrate buffer and incubated in a water bath at 
90°C for 20 m to achieve antigen retrieval. The sections were 
washed with 3% hydrogen peroxide to prevent endogenous 
catalase activity and blocked with 5% bovine serum albu-
men for 20 m to block nonspecific staining. The sections were 
incubated at 4°C overnight with anti-TNF-α, -IL-1β, -Bcl-2, 
-Bax, -LC3 (all 1:200); anti-PPARα, -anti-PGC1α (all 1:100), 
and anti-Beclin-1 (1:500) primary antibodies. Secondary an-
tibodies were added with incubation at 37°C for 1 h. After 
counter-staining with diaminobenzidine, the sections were 
observed by light microscopy.

Terminal deoxynucleotidyl transferase dUTP nick 
end labeling (TUNEL)
After dewaxing and rehydration, tissue sections were treated 
with proteinase K to increase the permeability of the cell and 
nuclear membranes, and the TUNEL reaction mixture was 
added. The results were observed by light microscopy.

Statistical analysis
Data were reported as means±SD and all experiments were 

Table 2.  Primers for real-time polymerase chain reaction assays

Target gene Designed primer sequence (5′→3′)

β-actin Forward GGCTGTATTCCCCTCCATCG

Reverse CCAGTTGGTAACAATGCCATGT

IL-1β Forward GAAATGCCACCTTTTGACAGTG

Reverse TGGATGCTCTCATCAGGACAG

TNF-α Forward CAGGCGGTGCCTATGTCTC

Reverse CGATCACCCCGAAGTTCAGTAG

Beclin1 Forward ATGGAGGGGTCTAAGGCGTC

Reverse TGGGCTGTGGTAAGTAATGGA

Bcl-2 Forward GCTACCGTCGTGACTTCGC

Reverse CCCCACCGAACTCAAAGAAGG

Bax Forward AGACAGGGGCCTTTTTGCTAC

Reverse AATTCGCCGGAGACACTCG

Caspase-3 Forward CTCGCTCTGGTACGGATGTG

Reverse TCCCATAAATGACCCCTTCATCA

LC3 Forward TTATAGAGCGATACAAGGGGGAG

Reverse CGCCGTCTGATTATCTTGATGAG

PGC1α Forward TGATGACAGCGAAGATGAAAGTG

Reverse TTTGGGTGGTGACACGGAAT

PPARα Forward AACATCGAGTGTCGAATATGTGG

Reverse CCGAATAGTTCGCCGAAAGAA

IL-1β, interleukin 1 beta; PGC-1α, PPAR-γ coactivator 1 alpha; PPARα, peroxi-
some proliferator-activated receptor alpha; TNF-α, tumor necrosis factor-alpha.
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repeated at least three times. Serum ALT, AST, T-SOD, and 
MDA assay, ELISA, and qRT-PCR results were analyzed with 
Student’s t-tests. P-values<0.05 were considered statistical-
ly significant, and statistical figures were drawn by GraphPad 
Prism 6 (GraphPad Software, Inc., San Diego, CA, USA).

Results

PC administration alone had no effect on liver func-
tion
To determine whether PC was hepatotoxic, we tested serum 
AST and ALT levels in the NC, sham and PC (100 mg/kg) 
groups, and the results were not statistically different (Fig. 
1A). Histological evaluation of HE stained tissue consistently 
found no obvious tissue damage (Fig. 1B). The results in-
dicated that PC administration alone had no effect on liver 
function.

PC pretreatment alleviated hepatic IRI in mice
Pathological changes of liver tissues were observed by light 
microscopy. In contrast to the sham group, large areas of 
necrosis, extensive congestion, and the formation of large 
numbers of vacuoles were observed in the IR group. The 
damage was reduced in IR+PC group (most relieved in high 
dose group) (Fig. 2A, B). We determined serum AST and ALT 
at three times (2, 8, and 24 h after reperfusion). The results 
showed that ALT and AST were significantly higher in the IR 
group than in the sham operation group and the levels of 
the pretreated groups were significantly decreased in a dose-
dependent manner (Fig. 2C). In conclusion, PC pretreatment 
alleviated IRI liver injury.

PC preconditioning suppressed oxidative stress
During IRI, large amounts of ROS accumulated in hepatic 
cells, causing oxidative stress. We detected serum T-SOD (a 
major antioxidant metalloenzyme) and MDA (one of the final 
products of membrane lipid peroxidation). Compared with 
the IR group, the serum T-SOD of PC groups significantly 
increased and the serum MDA were increased (Fig. 3A).

PC pretreatment inhibited the release of inflamma-
tory cytokines including IL1-β and TNF-α
Inflammation is of vital importance in IRI. IL-1β and TNF-α, 
as major inflammatory cytokines, were tested by ELISA, 
qRT-PCR, western blotting, and immunohistochemical stain-
ing (Fig. 3B–E). Serum IL-1β and TNF-α levels, protein and 
mRNA expression extremely increased in the IR group, and 
were ameliorated by PC in the preprocessing groups. IR+PC 
(100 mg/kg) group demonstrated a massive decline in in-
flammatory cytokines compared with IR+PC (50 mg/kg) 
group. In summary, PC inhibited the release of inflammato-
ry cytokines and had a significant dose-dependent property.

PC pretreatment attenuated hepatocyte apoptosis 
and autophagy during hepatic IRI in mice
Autophagy and apoptosis, two kinds of programmed cell 
death, are responsible for liver dysfunction and a suboptimal 
clinical prognosis. Bax, Bcl-2, caspase3, LC3, and Beclin-1 
were examined to assess the specific changes of autophagy 
and apoptosis in each group. Results of western blotting, 
qRT-PCR, and immunohistochemical staining showed that IR 
activated Bax, Beclin-1, caspase3, and LC3 and inhibited Bcl-
2. On the contrary, PC administration downregulated Bax, 

Fig. 1.  PC had no harm on liver structure or function. (A) Serum ALT and AST levels are means±SDs (n=6; p>0.05). (B) Representative hematoxylin and eosin-
stained hepatic sections were examined under light microscopy and imaged at a 200× magnification. ALT, alanine aminotransferase; AST, aspartate aminotransferase; 
IR, ischemia-reperfusion; NC, normal control; PC, proanthocyanidin.
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caspase3, LC3 and Beclin-1 expression and upregulated Bcl-
2 (Fig. 4A–C). In a word, PC pretreatment relieved hepato-
cyte apoptosis and autophagy during hepatic IRI in mice.

PC activated PPARα signaling in hepatic IRI

In summary, PC protected liver from IRI by inhibiting oxi-
dative stress, inflammation, apoptosis, and autophagy, but 
the underling molecular mechanism was not determined. 
PGC1α, a coactivator of PPARγ that suppressed Bax and up-
regulated bcl221 has multiple interactions with PPARα.22–24 
Therefore, we detected the protein and mRNA levels of 

PPARα and PGC1α. The results showed that both PPARα and 
PGC1α expression were significantly higher in PC pretreat-
ment groups than in the IR group (Fig. 5A, B) and were 
consistent with the results of immunohistochemical stain-
ing pictures (Fig. 5C). Therefore, PC activated the PPARα/
PGC1α signaling pathway.

PC protected mice from liver IRI through PPARα

To further determine whether PPARα was involved in the pro-
tection of PC against liver IRI, we investigated the effects 
of GW6471, a selective antagonist of PPARα. As shown in 

Fig. 2.  PC pretreatment ameliorated hepatic IRI in mice. (A) Representative hematoxylin and eosin-stained hepatic sections were examined by light microscopy 
and imaged at 200× magnification. Yellow arrows show necrosis and black arrows show inflammatory cells. (B) Suzuki’s pathological criteria were used to determine the 
degree of liver injury at 8 h post-reperfusion. (C) Serum ALT and AST levels. Data are means±SDs (n=6; *p<0.05 for IR vs. sham; #p<0.05for IR+PCs (50 mg/kg) vs. 
IR; ∧p<0.05 for IR+PCs (100 mg/kg) vs. IR; $p<0.05 for IR+PCs (50 mg/kg) vs. IR+PCs (100 mg/kg). ALT, alanine aminotransferase; AST, aspartate aminotransferase; 
IR, ischemia-reperfusion; NC, normal control; PC, proanthocyanidin.
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Fig. 3.  PC pretreatment alleviated oxidative stress and inhibited the release of inflammatory cytokines including IL1-β and TNF-α. (A) Serum T-SOD and 
MDA levels. (B) Serum TNF-α and IL-1β were detected by ELISA. (C) Relative TNF-α and IL-1β mRNA levels in liver tissues at 8 h after reperfusion were determined by 
qRT-PCR. (D) Western blot assays of TNF-α and IL-1β protein levels. Relative gray values were calculated by ImageJ. (E) Representative TNF-α and IL-1β protein expres-
sions in liver tissues at 8 h after reperfusion are shown by immunohistochemical staining and observed under microscopy and imaged at 200× magnification. ImageJ 
was used to calculate the positive rate. Data are means±SDs (n=6; *p<0.05 for IR vs. sham; #p<0.05for IR+PCs (50 mg/kg) vs. IR; ∧p<0.05 for IR+PCs (100 mg/
kg) vs. IR; $p<0.05 for IR+PCs (50 mg/kg) vs. IR+PCs (100 mg/kg). IL-1β, interleukin-1β; IR, ischemia-reperfusion; MDA, malondialdehyde; PC, proanthocyanidin; 
qRT-PCR, quantitative real-time polymerase chain reaction; TNF-α, tumor necrosis factor-alpha; T-SOD, total superoxide dismutase.
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Fig. 4.  PC pretreatment attenuated hepatocyte apoptosis and autophagy during hepatic IRI in mice. (A) Relative Bax, Bcl-2, caspase 3, beclin-1, and LC3 
mRNA levels in liver tissue at 8 h after reperfusion were determined by qRT-PCR. (B) Western blots of Bax, Bcl-2, caspase3, beclin-1, and LC3 protein levels. Relative 
gray values were calculated by ImageJ. (C) TUNEL staining, Bax, Bcl-2, and beclin-1 protein expression in liver tissue at 8 h post-reperfusion are shown by immu-
nohistochemical staining. ImageJ was used to calculate the positive rate. Data are means±SDs (n=6; *p<0.05 for IR vs. sham; #p<0.05for IR+PCs (50 mg/kg) vs. 
IR; ∧p<0.05 for IR+PCs (100 mg/kg) vs. IR; $p<0.05 for IR+PCs (50 mg/kg) vs. IR+PCs (100 mg/kg). IR, ischemia-reperfusion; PC, proanthocyanidin; qRT-PCR, 
quantitative real-time polymerase chain reaction.
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Figure 6A, the serum T-SOD level was lower in GW6471(20 
mg/kg) + IR group than in other groups. PC (100 mg/kg) + 
GW6471 + IR improved the decline. The levels of ALT and 
ALT in GW6471 (20 mg/kg) + IR group were the highest, 
while those in PC (100 mg/kg) + GW6471 + IR group were 
decreased (Fig. 6B). HE staining of GW6471 (20 mg/kg) + 
IR group tissue demonstrated largest area of necrosis, and 
cotreatment with PC (100 mg/kg) alleviated liver injury (Fig. 

6C). Protein expression of IL-1β, TNF-α, Bax, caspase3, be-
clin-1, LC3 of GW6471 (20 mg/kg) + IR group is obviously 
higher than other four groups, but introduction of PC (100 
mg/kg) reversed the elevation. However, the expression of 
Bcl-2, PPARα and PGC1α were downregulated in GW6471 (20 
mg/kg) + IR group and were reversed by PC (100 mg/kg) 
(Fig. 6D, E). All the results indicated that the inhibition of 
PPARα by GW6471 aggravated liver IRI, and PC reversed the 

Fig. 5.  PC activated PPAR-α signaling in hepatic IRI and probable mechanisms of PCs preconditioning against hepatic IR injury. (A) Relative PPARα and 
PGC1α mRNA levels in liver tissues at 8 h after reperfusion were determined by qRT-PCR. (B) Western blots of PPARα and PGC1α protein levels. Relative gray values were 
calculated by ImageJ. (C) PPARα and PGC1α protein expression in liver tissue at 8 h post-reperfusion are shown by immunohistochemical staining. ImageJ was used 
to calculate the positive rate. Data are means±SDs (n=6; *p<0.05 for IR vs. sham; #p<0.05for IR+PCs (50 mg/kg) vs. IR; ∧p<0.05 for IR+PCs (100 mg/kg) vs. IR; 
$P<0.05 for IR+PCs (50 mg/kg) vs. IR+PCs (100 mg/kg). IR, ischemia-reperfusion; qRT-PCR, quantitative real-time polymerase chain reaction; PC, proanthocyanidin; 
PGC1α, peroxisome proliferator-activated receptor gamma coactivator 1-alpha; PPARα, peroxisome proliferator-activated receptor alpha.
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change. In conclusion, PPARα was associated with the pro-
tective effect of PC on IRI.

Discussion
Liver IRI has an important role in a variety of clinical adverse 
events, including graft rejection, liver dysfunction, and graft 
failure, which are a threat to liver transplantation and hepa-

tectomy patients.2,25 However, no effective clinical treatment 
has been used in liver IRI, and the underlying mechanism is 
still unclear. In-depth studies should be conducted to reveal 
the underlying mechanism and to develop novel treatments. 
Liver IRI can be divided into two stages, ischemia and reper-
fusion. During the ischemic phase, liver cells produce only a 
small amount of ROS. When liver blood perfusion is restored, 
ROS increases drastically owing to the massive transfer of 

Fig. 6.  PC protected mice from liver ischemia-reperfusion injury through PPARα. (A) Serum T-SOD levels. (B) Serum ALT and AST levels. (C) Representa-
tive hematoxylin and eosin-stained hepatic sections 8 h after reperfusion were examined by light microscopy and imaged at 200× magnification. Yellow arrows show 
necrosis and black arrows shows inflammatory cells. (D–E) Western blots of TNF-α, IL-1β, Bax, Bcl-2, caspase3, beclin-1, LC3, PPARα, PGC1α protein levels. Data 
are means±SDs (n=6; *p<0.05 for IR vs. sham; #p<0.05 for IR+PCs (100 mg/kg) vs. IR; ∧p<0.05 for IR+GW6471 (20 mg/kg) vs. IR; $p<0.05 for IR+PC (100 mg/
kg)+GW6471 (20 mg/kg) vs. IR; %p<0.05 for IR+PC (100 mg/kg) vs. IR+GW6471 (20 mg/kg); &p>0.05 for IR+PC (100 mg/kg) vs. IR+PC (100 mg/kg)+GW6471 
(20 mg/kg); @p<0.05 for IR+GW6471 (20 mg/kg) vs. IR+PC (100 mg/kg)+GW6471 (20 mg/kg). ALT, alanine aminotransferase; AST, aspartate aminotransferase; 
GW, GW6471; IL-1β, interleukin-1β; IR, ischemia-reperfusion; PC, proanthocyanidin; PGC1α, peroxisome proliferator-activated receptor gamma coactivator 1-alpha; 
PPARα, peroxisome proliferator-activated receptor alpha; TNF-α, tumor necrosis factor-alpha; T-SOD, total superoxide dismutase.
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electrons from electron carrier molecules in the mitochondria 
to oxygen,26 thereby promoting apoptosis and autophagy. In 
addition, excessive ROS activates Kupffer cells, which then 
release additional proinflammatory and proapoptotic cy-
tokines while producing more ROS, which aggravates liver 
damage.27–29 Accumulating ROS attacking the mitochondrial 
membrane leads to increased mitochondrial permeability, 
which results in cell damage.

PC is a strong, recently discovered antioxidant with potent 
anti-inflammatory and antitumor biological activity. PC exerts 
cardioprotective, neuroprotective, immunomodulatory, anti-
diabetic, anticancer, and antimicrobial activity through mul-
tiple pathway signalling.9 Furthermore, studies have shown 
that PC reduced IRI of the myocardium, kidney, and other 
organs.30–32 Therefore, we speculated that PC can protect 
against liver IRI. By blocking the blood flow of the portal vein 
and part of the hepatic artery and restoring blood perfusion 
to the liver, we established a 70% liver warm IR model to 
explore the protective mechanism of PC against liver IRI. The 
study results demonstrated that PC pretreatment relieved 
hepatic damage in a dose-dependent manner.

PPARα belongs to the nuclear receptor superfamily and is a 
ligand-induced transcription factor with vital roles in glucose 
and lipid metabolism.33,34 PPARα also has anti-inflammatory 
and anti-oxidative stress properties.35,36 PGC1α is a transcrip-
tional coactivator that functionally interacts with transcrip-
tion factors to promote transcription of target genes.37–39 
Through interaction with various transcription factors, PGC1α 
increases oxidative metabolism, mitochondrial biogenesis, 
and angiogenesis and reduces oxidative stress, and inflam-
mation.40 PPARα binds to the LXXL motif of PGC1α located in 
the N-terminal domain to form a PPARα/PGC1α complex.41 
The PPARα/PGC1α complex promotes the expression of anti-

oxidant enzymes such as superoxide dismutase, which inhibit 
ROS and reduce liver damage.23,42–44 Additionally, decreased 
ROS inhibited Kupffer cell activation thereby reducing inflam-
mation. Tang et al.21 have shown that PPARα/PGC1α inhibited 
Bax and upregulated the expression of Bcl-2. According to our 
results, PC pretreatment activated PPARα and PGC1α. With 
the upregulation of PPARα/PGC1α, the expression of Bcl-2 
was upregulated and the expression of Bax, caspase 3, bec-
lin-1 and LC3 were suppressed, indicating that PC suppressed 
apoptosis and autophagy. The combination of antiapoptotic 
protein Bcl-2 and proapoptotic protein Bax reduces mitochon-
drial membrane permeability, thereby inhibiting the release 
of cytochrome C and apoptosis mediated by caspase3.45,46 
On the other hand, Bcl-2 binding to the BH3 domain resulted 
in beclin-1 inactivation and autophagy inhibition. To further 
verify that proanthocyanidin pretreatment protected the liver 
from IRI through PPARα signaling pathway, we administered 
GW6471, a PPARα antagonist to Balb/c mice to inhibit PPARα 
signaling. Proanthocyanidin pretreatment reversed the dam-
age induced by GW6471, indicating that PPARα was involved 
in the protection of proanthocyanidin against liver IRI.

Conclusions
In conclusion, PC pretreatment reduced liver IRI by suppress-
ing autophagy and apoptosis by activating PPARα/PGC1α 
signaling pathway, providing a new potential therapeutic tar-
get for liver IRI. The mechanism is shown in Figure 7.
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