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The repurposing of FDA-approved Bruton’s tyrosine kinase (BTK) inhibitors as
therapeutic agents for solid tumors may offer renewed hope for chemotherapy-resistant
cancer patients. Here we review the emerging evidence regarding the clinical potential
of BTK inhibitors in solid tumor therapy. The use of BTK inhibitors may through lead
optimization and translational research lead to the development of new and effective
combination regimens for metastatic and/or therapy-refractory solid tumor patients.

Keywords: BTK-Bruton’s tyrosine kinase, solid tumors, breast cancer, prostate cancer, metastasis

BRUTON’S TYROSINE KINASE AS A VALIDATED MOLECULAR
TARGET IN CANCER CELLS

Bruton’s tyrosine kinase (BTK) is linked to multiple signal-transduction pathways and networks,
regulating survival, activation, proliferation, and differentiation of B-lineage lymphoid cells
(Vassilev et al., 1999; Mahajan et al., 2001; Uckun and Sudbeck, 2001; Uckun et al., 2002, 2004,
2007b; Uckun and Malaviya, 2004; Uckun and Qazi, 2010; Burger, 2019). BTK is expressed in
neoplastic cells from patients with B-lineage lymphoid malignancies (Vassilev et al., 1999; Mahajan
et al., 2001; Uckun and Sudbeck, 2001; Uckun et al., 2002, 2004, 2007b; Uckun and Malaviya,
2004; Uckun and Qazi, 2010; Bond et al., 2019; Burger, 2019; Kim, 2019). The anti-apoptotic
BTK-PI3K-AKT signaling pathway is critical for the survival of tumor cells (Figure 1). Multiple
antiapoptotic signaling molecules and pathways linked to NF-κB, PI3-K/AKT, and STAT5 are
regulated by BTK. Consequently, BTK has emerged as a new molecular target for treatment of
B-lineage leukemias and lymphomas as well as —more recently—solid tumors. BTK inhibitors
(BTKi) have replaced several chemotherapy-based regimens in standard of care for some of the
B-lineage lymphoid malignancies, especially in patients with CLL and mantle cell lymphoma
(MCL) (D’Cruz and Uckun, 2013; Thompson and Burger, 2018; Bond et al., 2019; Jurczak et al.,
2019; Kim, 2019). The first-generation BTKi ibrutinib binds covalently to a cysteine residue
(Cys481) in the active site of the ATP-binding domain of BTK. Second-generation BTKi were
designed to have fewer off-target effects than ibrutinib (D’Cruz and Uckun, 2013). The second-
generation BTKi acalabrutinib also binds Cys481 in the BTK active site, and it is FDA approved
for the treatment of adults with CLL or SLL (Feng et al., 2019). Another second-generation BTKi,
zanubrutinib, received an accelerated approval from the FDA for the treatment of adult patients
with MCL (Feng et al., 2019). A novel oncogenic isoform of BTK with a survival-promoting
function is abundantly expressed in breast cancer, ovarian cancer, prostate cancer, and colorectal
cancer (Eifert et al., 2013; Guo et al., 2014; Kokabee et al., 2015; Wang et al., 2016; Conconi et al.,
2017; Molina-Cerrillo et al., 2017; Campbell et al., 2018; Chen et al., 2018; Lavitrano et al., 2019).
Overexpression of BTK in solid tumor cells was associated with elevated expression of genes
with functions related to cell adhesion, cytoskeletal structure, and extracellular matrix as well as

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 April 2021 | Volume 9 | Article 650414

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.650414
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2021.650414
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.650414&domain=pdf&date_stamp=2021-04-14
https://www.frontiersin.org/articles/10.3389/fcell.2021.650414/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-650414 April 8, 2021 Time: 15:45 # 2

Uckun and Venkatachalam BTK Inhibitors Against Solid Tumors

FIGURE 1 | Bruton’s tyrosine kinase (BTK) as a Master Regulator of Apoptosis in tumor microenvironment (TME). The anti-apoptotic BTK-PI3K-AKT signaling
pathway is critical for the survival of tumor cells. Multiple antiapoptotic signaling molecules and pathways linked to NF-κB, PI3-K/AKT, and STAT5 are regulated by
BTK. See text for a detailed discussion.

aggressiveness of the cancer (Guo et al., 2014). Knockdown of
these isoforms by RNA interference using siRNA or treatment
with BTKi like ibrutinib resulted in inhibition of growth as well
as apoptosis and enhanced chemosensitivity of cancer cells (Eifert
et al., 2013; Guo et al., 2014; Kokabee et al., 2015; Wang et al.,
2016; Molina-Cerrillo et al., 2017; Campbell et al., 2018; Chen
et al., 2018; Lavitrano et al., 2019). Grassilli et al. (2016) reported
that this 65-kDa novel isoform of BTK is expressed in colorectal
cancer cells in a mitogen-activated protein kinase (MAPK)-
dependent manner. Furthermore, BTKi ibrutinib inhibited the
proliferation of human colorectal cancer cell lines in vitro
(Grassilli et al., 2016) and enhanced the chemosensitivity of
drug-resistant colorectal cancer cells (Ianzano et al., 2016).
Inhibition of BTK also reduced the clonogenicity of cancer
stem cells and decreased their resistance to chemotherapy
drugs (Metzler et al., 2020). BTKi were shown to synergize
with the standard chemotherapy drug 5-fluorouracil against
chemotherapy-resistant colorectal cancer cells (Lavitrano et al.,
2019). First-generation BTKi LFM-A13 caused apoptosis in
human colorectal cancer cells and exhibited potent anticancer
activity against xenografted human colorectal cancer cells in mice
both as a single agent and in combination with erythropoietin

(Tankiewicz-Kwedlo et al., 2018a,b). p65BTK was also detected
in non-small cell lung cancer (NSCLC) cell lines, including
those with mutant KRAS, and treatment of these cell lines with
BTKi resulted in loss of viability and inhibition of clonogenic
growth (Giordano et al., 2019). Furthermore, BTKi enhanced
the sensitivity of NSCLC cell lines to standard chemotherapy
drugs (Giordano et al., 2019). Wei et al. (2016) reported
that human glioblastoma (GBM) cells express p77BTK, and
downregulation of BTK expression inhibits the antiapoptotic
AKT/mTOR pathway, and BTKi ibrutinib exhibits in vivo
antitumor activity in a mouse xenograft model of GBM. Recently,
Sala et al. (2019) reported that p65BTK is expressed in patient-
derived human glioma cells, and BTKi diminish their viability.

Both BTK and the related TEC kinases ETK and BMX are
abundantly expressed in prostate cancer cells, and knockdown
of BTK expression in prostate cancer cells results in reduced
proliferative activity (Guo et al., 2014; Kokabee et al., 2015;
Chen et al., 2018). Inhibition of BTK and ETK with a small
molecule inhibitor caused inhibition of proliferation, clonogenic
growth, invasiveness of human prostate cancer cell lines both
in in vitro and an in vivo SCID mouse xenograft model
(Guo et al., 2014). BTK inhibition was also associated with
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substantial downregulation of oncogenic genes, such as MYC,
in prostate cancer cell lines and enhances their chemosensitivity
to standard drugs such as docetaxel (Guo et al., 2014). Likewise,
ovarian cancer cells express BTK, and high expression levels are
correlated with aggressiveness of disease, progression to Stage IV
metastatic cancer, and poor survival (Zucha et al., 2015).

Similarly, numerous studies have shown that BTK inhibition
causes substantial cytotoxicity to HER2+ breast cancer cells,
inhibits their proliferation and clonogenicity, and diminishes
their resistance to chemotherapy both in vitro and in vivo (Eifert
et al., 2013; Chen et al., 2016; Wang et al., 2016; Metzler et al.,
2020; Wen et al., 2020). The results obtained with non-specific
BTKi like ibrutinib should be interpreted with due caution
because several other kinases, including ERBB2/HER-2 that
have ibrutinib-binding cysteine residues in their kinase domains
are inhibited by ibrutinib (Berglof et al., 2015). Nonetheless,
LFM-A13, a first-generation BTKi with no HER-2 or EGF-
R inhibitory activity, also exhibited antitumor activity in the
MMTV/neu transgenic mouse model of HER2-positive breast
cancer. It was at least as effective as the standard breast cancer
drugs paclitaxel and gemcitabine, and it improved the efficacy
of paclitaxel (Uckun, 2007; Uckun et al., 2007a). In the DMBA
breast cancer model, the BTKi LFM-A13 significantly delayed
spontaneous tumor appearance as well as tumor progression,
and it substantially improved tumor-free survival (Güven et al.,
2020). The tumors developing despite chemoprevention with
LFM-A13 were small and grew slowly. Hence, BTK inhibition
prevented the development of aggressive and rapidly progressive
mammary gland tumors.

Bruton’s tyrosine kinase inhibition is also associated with
inhibition of tumor growth in pancreas cancer (Massó-Vallés
et al., 2015; Gunderson et al., 2016). In view of the broad-
spectrum anti-cancer activity exerted by BTKi in various
non-clinical cancer models, BTK inhibition with ibrutinib
and acalabrutinib has been evaluated in several proof-of-
concept solid tumor trials (e.g., NCT02403271, NCT03525925,
NCT03379428, NCT02599824, and NCT02562898) aimed at
assessing its potential clinical benefit in patients with solid
tumors, including ovarian cancer, breast cancer, lung cancer,
prostate cancer, and pancreas cancer (Massó-Vallés et al., 2016;
Hong et al., 2019; Overman et al., 2020). The maturation of
data from these trials will provide valuable insights regarding
the clinical impact potential of BTK inhibition as part of
multimodality treatment regimens for difficult-to-treat forms
of cancer. The reported suppression of cancer stemness in
non-clinical models awaits confirmation from clinical proof-of-
concept studies (Pan et al., 2020).

BRUTON’S TYROSINE KINASE AND
TUMOR MICROENVIRONMENT

Several cellular elements of the tumor microenvironment (TME)
of solid tumor patients contribute to the immune evasion,
proliferation, and drug resistance of tumor cells, including
myeloid-derived suppressor cells (MDSCs), tumor-associated

M2-like, “alternatively activated,” macrophages, and regulatory T
cells (Tregs) (Figure 2). Notably, some solid tumors abundantly
express IL-2 inducible T-cell kinase (ITK), a TEC kinase related
to BTK (Figure 2). It has been reported that ITK inhibition by the
existing BTKi can result in improved T-cell responses via reduced
production of IL-10 and TGFβ that have immunosuppressive
effects (Dubovsky et al., 2013; Sagiv-Barfi et al., 2015; Chen
et al., 2016; Stiff et al., 2016). Furthermore, in a breast cancer
mouse model, BTKi ibrutinib improved the efficacy of anti-
PD-L1 treatment (Sagiv-Barfi et al., 2015). On the other hand,
BTK inhibition may potentially reduce the potency of immune
checkpoint inhibitors. That is because BTK expressing tumor
infiltrating cells within the TME include memory B cells that
cooperate with memory T-cells to ensure a robust immune
response to cancer cells. A recent study in which >500 lung
adenocarcinoma cases were analyzed for possible contribution of
BTK to an immune-dominant profile of the TME revealed that
BTK expression in the TME was associated with a less aggressive
disease and an improved survival outcome (Bi et al., 2020).
MDSCs in the TME have been shown to express BTK (Figure 2),
and it has been proposed that BTK inhibition may therefore
lift the MDSC-mediated suppression of the antitumor immunity
within the TME (Stiff et al., 2016). The potential effects of BTK
inhibition on the tumor microenvironment and the potency of
immune-checkpoint inhibitors will be clarified in part by the
ongoing clinical trials that combine BTK inhibition with immune
checkpoint blockade.

COUMARINS AS A NEW CLASS OF
BRUTON’S TYROSINE KINASE
INHIBITORS

Coumarins are derivatives of 2H-1-benzopyran-2-one, which
naturally occurs in plants as free coumarins or their glycoside
derivatives (Kashman et al., 1992; Currens et al., 1996; McKee
et al., 1998; Creagh et al., 2001; Shokoohinia et al., 2018; Bhatia
and Rawal, 2019; Kawai et al., 2019; Li et al., 2019; Lin et al.,
2019; Makowska et al., 2019; Ramdani et al., 2019; Selvaraj
et al., 2019; Wang et al., 2019; Zhang and Xu, 2019). Coumarins
have been known for their proapoptotic anticancer activity
with inhibitory effects on tumor-promoting signal transduction
pathways as well as antiviral activity (Kashman et al., 1992;
Currens et al., 1996; McKee et al., 1998; Creagh et al., 2001;
Shokoohinia et al., 2018; Bhatia and Rawal, 2019; Kawai et al.,
2019; Li et al., 2019; Lin et al., 2019; Makowska et al., 2019;
Ramdani et al., 2019; Selvaraj et al., 2019; Wang et al., 2019; Zhang
and Xu, 2019). The naturally occurring coumarin derivatives,
(+)-calanolide A and (–)-calanolide B, have been identified as
inhibitors of non-nucleoside HIV-1-specific reverse-transcriptase
inhibitory activity (Kashman et al., 1992; Currens et al., 1996;
Creagh et al., 2001). In recent years, the coumarin scaffold
has also been used in developing anticancer drugs. Several
semi-synthetic calanolide derivatives have been developed as
antiviral drug candidates (Creagh et al., 2001; Sagiv-Barfi et al.,
2015; Chen et al., 2016). Researchers have hybridized coumarin
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FIGURE 2 | Immunosuppressive TME in solid tumors. Tumor cells secrete several cytokines including IL-6, TGFβ, and IL-10 that inhibit DCs, CTLs, but stimulate
regulatory T cells (Tregs). Myeloid-derived suppressor cells (MDSCs) are stimulated via IL-6 by M2 macrophages and stimulate M2 macrophages as well as Tregs via
IL-10, but they inhibit via IL10 CTLs and NK cells. Since solid tumor cells express the TEC kinase inducible T-cell kinase (ITK) related to BTK and MDSCs express
BTK, BTK inhibition might offer an effective strategy to overcome an immunosuppressive TME. See text for a detailed discussion.

moieties with other anticancer pharmacophores as a strategy
of developing novel anticancer drugs (Flavin et al., 1996;
Bhatia and Rawal, 2019; Kawai et al., 2019; Lin et al., 2019;
Makowska et al., 2019; Ramdani et al., 2019; Selvaraj et al.,
2019; Wang et al., 2019; Zhang and Xu, 2019). In addition,
some natural coumarins such as Psoralidin (Li et al., 2019)
and Osthol (Shokoohinia et al., 2018) have been reported to
exhibit potent in vitro and in vivo anticancer activity. Coumarin–
fatty acid conjugates as well as coumarin hybrids generated via
coupling with isoxazole, thiazole, monastrol, chalcone, triazole,
sulfonamide, triphenylethylene, benzimidazole, pyran, imidazole,
stilbene, estrogen, or phenylsulfonylfuroxan exhibited promising
pro-apoptotic anticancer activity (Bhatia and Rawal, 2019; Kawai
et al., 2019; Makowska et al., 2019; Selvaraj et al., 2019;
Zhang and Xu, 2019).

We discovered that the crystal structure of the BTK kinase
domain reveals a distinct 7 Å × 7 Å rectangular binding pocket
near the hinge region of the BTK kinase domain with Leu-460,
Tyr-476, Arg-525, and Asp-539 residues occupying the corners of
the rectangle (Uckun and Sudbeck, 2001; Uckun et al., 2002, 2004;
Uckun and Malaviya, 2004). The overall geometry inside the
active site near the hinge region was estimated to be sufficient to
accommodate the rationally designed BTK-inhibitory calanolide
derivatives (Uckun and Sudbeck, 2001; Uckun et al., 2002, 2004;
Uckun and Malaviya, 2004).

CONCLUSION
The repurposing of FDA-approved BTKi as therapeutic agents
for solid tumors may offer renewed hope for chemotherapy-
resistant cancer patients. Advanced prostate cancer has a dismal
outcome, and patients with metastatic disease are in urgent
need for therapeutic innovations (Litwin and Tan, 2017; Siegel
et al., 2019). Androgen deprivation by both chemical and surgical
castration is initially useful in the treatment of metastatic prostate
cancer, but patients ultimately enter the castration-resistant
stage (CRPC) where there is no effective treatment (Litwin
and Tan, 2017; Siegel et al., 2019). Likewise, advanced and
metastatic breast cancer patients, especially those with triple-
negative breast cancer (TNBC) are in urgent need for therapeutic
innovations (Bergin and Loi, 2019; Pandy et al., 2019; Thill
et al., 2019). The discovery of effective treatment strategies using
chemotherapy drugs, precision medicines, biologics, and natural
compounds is a major area of translational research emphasis in
contemporary oncology, especially for breast cancer and prostate
cancer. Re-purposed BTKi currently approved for B-lineage
lymphoid malignancies as well as new BTKi with enhanced
potency against solid tumors may provide the basis for more
effective combination regimens.

MDSCs in the TME have been shown to express BTK, and
it has been proposed that BTK inhibition may therefore lift
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the MDSC-mediated suppression of the antitumor immunity
within the TME (Stiff et al., 2016). However, BTK inhibition may
potentially reduce the potency of immune checkpoint inhibitors
because of disruption of cognate interactions between BTK
expressing memory B-cells and memory T-cells. Whether or not
BTK inhibition will result in a clinically meaningful inhibition
of MDSC and/or help overcome resistance to ICI awaits clinical
proof of concept. A recent randomized study in metastatic
urothelial cancer patients that evaluated a combination of the
ICI pembrolizumab with acalabrutinib failed to show any benefit
from this combination vs. pembrolizumab alone (Zhang et al.,
2020). On the other hand, a promising efficacy signal was
obtained during the interim analysis of a randomized study
(Clinicaltrials.gov identifier: NCT02599324) employing ibrutinib
plus paclitaxel in patients with metastatic urothelial carcinoma
(Castellano et al., 2019). Likewise, a combination of ibrutinib with
the anti-EGF receptor antibody cetuximab showed moderate
activity in patients with metastatic colorectal cancer (Oh et al.,
2020). The identification of the most effective and best-tolerated
combination regimens will likely require rationally designed
clinical studies with multiple treatment cohorts enrolling in
parallel and adaptive trial designs.
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