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Abstract 

Background:  Malaria, being a mosquito-borne infectious disease, is still one of the most devastating global health 
issues. The malaria vector Anopheles vagus is widely distributed in Asia and a dominant vector in Bandarban, Bang‑
ladesh. However, despite its wide distribution, no agent based model (ABM) of An. vagus has yet been developed. 
Additionally, its response to combined vector control interventions has not been examined.

Methods:  A spatial ABM, denoted as ABMvagus, was designed and implemented based on the biological attributes of 
An. vagus by modifying an established, existing ABM of Anopheles gambiae. Environmental factors such as tempera‑
ture and rainfall were incorporated into ABMvagus using daily weather profiles. Real-life field data of Bandarban were 
used to generate landscapes which were used in the simulations. ABMvagus was verified and validated using several 
standard techniques and against real-life field data. Using artificial landscapes, the individual and combined efficacies 
of existing vector control interventions are modeled, applied, and examined.

Results:  Simulated female abundance curves generated by ABMvagus closely follow the patterns observed in the field. 
Due to the use of daily temperature and rainfall data, ABMvagus was able to generate seasonal patterns for a particular 
area. When two interventions were applied with parameters set to mid-ranges, ITNs/LLINs with IRS produced better 
results compared to the other cases. Moreover, any intervention combined with ITNs/LLINs yielded better results. Not 
surprisingly, three interventions applied in combination generate best results compared to any two interventions 
applied in combination.

Conclusions:  Output of ABMvagus showed high sensitivity to real-life field data of the environmental factors and the 
landscape of a particular area. Hence, it is recommended to use the model for a given area in connection to its local 
field data. For applying combined interventions, three interventions altogether are highly recommended whenever 
possible. It is also suggested that ITNs/LLINs with IRS can be applied when three interventions are not available.

Keywords:  Malaria, Agent-based model (ABM), Anopheles vagus, Vector control intervention, Integrated vector 
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Background
Malaria is a serious tropical disease spread by mosqui-
toes. Globally, an estimated 212 million malaria infec-
tions occurred during 2015 [1]. It is one of the major 
health concerns in South-East Asia, including Bang-
ladesh, India, Myanmar, Nepal and Bhutan [2, 3]. The 
southern part of Bangladesh known as the Chittagong 
Hill Tracts (CHTs) has been reported as a malaria hot-
spot and contains some of the highly endemic districts in 
Bangladesh [4–6]. Some recent studies have reported that 
72% of the population are at risk in the east and north-
east border belt area of Bangladesh, and the human 
malaria-transmitting species Anopheles vagus is a dom-
inant species in this area, especially in the CHTs [7, 8]. 
Anopheles vagus is also widely distributed in other coun-
tries in Asia, particularly in Cambodia, China (including 
Hong Kong), India, Indonesia, Laos, Malaysia, Mariana 
Islands, Myanmar, Nepal, Philippines, Sri Lanka, Thai-
land, and Vietnam [8–10]. However, there is no specific 
study of An. vagus with a focus on controlling malaria 
transmission in these geographic areas.

Anopheles vagus is able to transmit both Plasmodium 
falciparum and Plasmodium vivax among humans [7, 
11]. Recent studies have reported the vectorial role of 
An. vagus in malaria transmission in many parts of the 
world [2, 8, 10, 12–18]. Although the species is consid-
ered a primary vector in some places, however, due to 
some recent changes in a variety of global factors (e.g., 
increasing human populations, global warming, loss of 
forests and subsequent increases in larval habitats for 
An. vagus etc.), the role of An. vagus as a vector of human 
pathogens has increased significantly. Hence, the need 
for a detailed model of An. vagus including examination 
of the relative role of the dominant factors on its abun-
dance and its response to vector control interventions are 
warranted. 

Agent-based models (ABMs), known as the individ-
ual-based models, are a type of computational models 
which have been used to model the basic behaviour of 
individual mosquitoes and their interactions to the local 
environment. Several malaria ABMs have successfully 
addressed different research questions involving malaria 
[19–30]. However, despite the wide distribution of An. 
vagus, no specific model based on An. vagus has yet been 
developed or reported in the literature.

Environmental factors
Environmental factors such as temperature, rainfall, and 
humidity can have major impacts on the vector popu-
lation dynamics, as indicated by several studies [9, 16, 
31–36]. For example, temperature can accelerate the 
gonotrophic cycle of Anopheles mosquitoes, decrease the 
interval between egg-laying episodes, and increase vector 

abundance [37–41]. Very high temperature may jeop-
ardize the survival rate of adult mosquitoes and dry up 
breeding sites more rapidly, resulting lower abundance 
[42]. For most Anopheles species (including An. vagus), 
there is also a significant positive relationship between 
abundance and rainfall, and the availability of oviposition 
habitats will increase only if there is enough rain [16]. 
On the other hand, high rainfall may decrease mosquito 
abundance by washing out the immature stages [43]. 
Likewise, other environmental factors such as humid-
ity, cloudiness, and wind speed can also affect malaria 
transmission [34, 44–46]. Several malaria models have 
incorporated many of these factors in different ways. For 
example, Paaijmans et  al. [47] have presented a model 
with the effect of temperature on the larval development. 
In a very recent study, Arifin et al. [29] have considered 
temperature as a model input parameter.

The effects of environmental factors on malaria trans-
mission variables are also observed in Bangladesh. For 
example, Rahman et al. [48] have indicated that incidence 
is seasonal in Bangladesh where the peak season is identi-
fied in the warm and wet months of May–October and 
the off-peak season is identified in the dry and cooler 
months November–April. Khan et  al. [17] have con-
ducted a study in rural Bandarban (one of the districts of 
CHTs) and have shown that 85% of the malaria cases are 
found during the rainy season.

It is important to consider daily temperature and rain-
fall data of a particular area within a model to quantify 
its seasonal patterns of malaria abundance. Some studies 
(e.g., Arifin et al. [29]) have considered temperature and 
rainfall as constant input parameters for vector simula-
tions. However, considering the relative importance of 
temperature and rainfall, ABMs can produce seasonal 
patterns of vector abundance, yielding, in turn, more 
interesting and realistic results for a particular period in 
a specific area.

Vector control interventions
One of the usages of ABM is to check the performance 
of some vector control interventions, namely, larval 
source management (LSM), insecticide-treated nets 
(ITNs), indoor residual spraying (IRS) etc. These inter-
ventions have been extensively used to reduce and 
control malaria in sub-Saharan Africa [29], Myanmar 
[49–51], Nepal, Bhutan, Assam state of India [52, 53] 
etc. Notably, LLINs (long-lasting insecticidal nets), IRS, 
and LSM are suggested by WHO for South-East Asia 
[2]. Recent studies have reported that current interven-
tions used/employed in Bangladesh are ITNs/LLINs 
only [2, 8, 54–56]. Hence, it is important to check the 
impact of these and other interventions in the context 
of Bangladesh.
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ITNs/LLINs are considered to be one of the key vec-
tor control interventions for indoor biting mosquitoes 
[57–60]. In some literature, ITNs are claimed to be more 
effective for the indoor mosquito biting when used in 
conjunction with IRS [19–21, 29, 57, 61–64]. ITNs also 
provide indirect protection to non bed net users due to 
insecticides used in the nets [19, 59]. While analysing the 
impact of ITNs, some earlier models have assumed uni-
form contact structure between mosquitoes and hosts 
across the landscape primarily due to mathematical con-
venience [65, 66]. The proximity between mosquitoes 
and host can play an important role in the mosquito bit-
ing behaviour due to the flight ranges and sensory per-
ceptions of mosquitoes [67–71]. IRS is not used in CHTs, 
Bangladesh. Protopopoff et  al. [72] and Thomsen et  al. 
[73] have identified ITNs and IRS as the two major inter-
ventions. Some models have analysed the impact of ITNs 
and IRS, albeit with some constraints. For example, IRS 
has been studied without considering its repellency fac-
tor in a discrete-space continuous-time mathematical 
model in Lutambi et al. [74, 75] and in a malaria trans-
mission-directed model in Eckhoff’s research in 2011 
[21]. For applying IRS in spatial ABM requires to con-
sider coverage, repellency and mortality factors. Hence, 
the ITN/LLIN as well as IRS need to be studied and ana-
lysed in a spatial based model.

Another useful intervention is LSM. Fillinger and 
Lindsay [76] have reported LSM as a successful method 
in Africa by highlighting historical and recent suc-
cesses. The effectiveness of LSM of an area depends on 
the understanding of hydrology and geomorphological 
process which governs the availability and productiv-
ity of Anopheles breeding habitats at a local scale [45]. 
Although LSM sometimes are not used due to high cost, 
it is cost effective compared to ITNs and IRS in areas 
where aquatic source are accessible and well defined 
[77]. LSM is not still used in Bandarban. Hence, its per-
formance needs to be measured on the landscape of 
Bandarban.

Another important dimension is the combination of 
interventions. Some researchers [76, 78–80] have dis-
cussed the potentiality and success of integrated vector 
management (IVM) approach. For instance, the reduc-
tion of prevalence of malaria in Botswana was deduced 
to be approximately 98% within five years (2008–2012) 
while LLINs and IRS are used in combination [81]. 
Although ITNs reduced malaria mortality and morbid-
ity in Africa consistently, their benefits are less consist-
ent in Asia [82]. This can be attributed to the fact that 
vector mainly bites in the evening, often before people 
are protected by ITNs as observed in western Myan-
mar [82]. Additionally, increasing concerns of resistance 

of mosquitoes to insecticides are reported in the lit-
erature[72, 73, 83–88]. All these suggest to think about 
alternative interventions (e.g., LSM) along with chemical 
interventions (e.g., ITNs, IRS).

LLINs are believed to be less effective in areas with 
pyrethroid resistant vectors [87]. Some insecticides 
which are used in ITNs/LLINs and IRS have less toxic-
ity and hence are less effective against mosquitoes. Thus, 
LSM can play crucial role in combination.

This paper makes the following key contributions.

• • The design and implementation of an ABM for An. 
vagus (referred to as ABMvagus henceforth) are 
described based on the life cycle of An. vagus. This 
ABM is designed incorporating the biological phe-
nomena of An. vagus reported in the literature, 
real-life field data on them and mathematical equa-
tions found for the generic Anopheles species in the 
literature. The logics are designed and implemented 
for incorporating some environmental factors more 
accurately than the other works in the literature.

• • The verification and validation (V and V) of ABM are 
performed using docking techniques and with real 
life field data.

• • The impact of the environmental factors over the out-
put of ABM is examined and the seasonal pattern of 
vector abundance is presented for a particular area.

• • The logic of applying IRS into ABM as well as the 
existing implementation logics of some other inter-
ventions (e.g., ITNs and LSM) are incorporated and 
implemented in ABMvagus. The impact of vector con-
trol interventions (e.g., ITNs, IRS, LSM) over vector 
population dynamics by ABM is examined to quan-
tify the performance of the interventions while they 
are used in isolation mode as well as in combination.

The ABM presented in this paper (denoted as ABMvagus ) 
has been developed using Java [89, 90] by modifying an 
established existing ABM for An. gambiae (referred to 
as ABMgambiae henceforth) [26–29]: a brief compari-
son between the two based on the differential features 
only is shown in Table 1. The code and relevant data for 
ABMvagus is provided in Additional files 2, 3, 4.

Methods
Several life-cycles, namely, the malaria transmission 
cycle, life-cycle of the mosquito, and life-cycle of the 
malaria parasite, are normally considered for modelling 
malaria. Following the work of Zhou et al. [26] and Ari-
fin et al. [29], this study only models the life-cycle of the 
mosquito. In the following subsections, we describe the 
development of ABMvagus in detail.
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Model development
ABMvagus has been developed by modifying ABMgambiae. 
The goal of ABMvagus is to simulate the core model of the 
vector An. vagus. ABMvagus holds the state transitional 
logic according to the life-cycle of An. vagus based on the 
attributes and environmental information.

Like all other Anopheles mosquitoes, An. vagus also 
goes through four main stages in their life cycles, 
namely, egg, larva, pupa, and adult. The first three 
immature aquatic stages are broadly the same in all 
mosquitoes. Hence, the following distinct aquatic 
stages are considered into the core model: Egg (E), 
Larva (L) and Pupa (P). During adult stage, the pro-
cess of blood feeding, egg development inside female 
mosquito and oviposition are repeated several times 
throughout the life-cycle until the female dies. Follow-
ing the recent work of Zhou et  al. [26] we therefore 
have further included the following stages in ABMvagus

: Immature Adult (IA), Mate Seeking (MS), Blood 
meal seeking (BMS), Blood meal digesting (BMD), and 
Gravid (G).

The egg stage
Mohammad Shafiul Alam and Hasan Mohammad Al-
Amin has stated that 60% eggs of An. vagus are devel-
oped within 2 days, and the remaining 40% within 3 days 
in normal temperature (e.g., 26–30  °C) (personal com-
munication, January 15, 2014). A probability model was 
developed based on the above and adopted into the core 
model for the egg stage.

The larval stage
Since temperature is a critical variable in the growth and 
development kinetics of Anopheles mosquitoes, a tem-
perature driven framework [26, 29] is directly incorpo-
rated into the core model. For the sake of brevity we omit 
the details of this framework [26, 29] here. The readers 
are kindly referred to Additional file 1 for more details.

The pupal stage
Based on the unpublished laboratory data provided by 
two co-authors, HMA and MSA, 40% of pupae are devel-
oped within 24 h and the rest 60% of pupae are developed 
within 30 h. This probability based model is adopted into 
the core model for the pupal stage.

The immature adult stage
As the temperature determines the duration of this stage, 
a temperature-dependent model [30] has been adopted 
for this stage into the core model. Details of the tempera-
ture-dependent model [30] are given below in Additional 
file 1.

The mate seeking stage
For this stage, the model of Arifin et al. [29] (Please refer 
to Additional file 1 for details) has been incorporated into 
the core model.

The blood meal seeking stage
The different spatial factors, e.g., location, resource den-
sity, the movement of the mosquito, landscapes etc., 

Table 1  Major differential feature comparison between ABMgambiae and ABMvagus

Model features ABMgambiae ABMvagus

Mosquito Species Anopheles gambiae Anopheles vagus

Model of the egg stage Basically equation based Based on field data (probability based)

Model of the pupal stage Basically equation based Based on field data (Probability based)

Daily Temperature incorporation Temperature is variable but constant through full 
simulation run

Daily temperature is used from a weather profile

Daily rainfall data incorporation Rainfall coefficient is constant (i.e., 1.0) Daily rainfall is used from a weather profile

Modification of daily mortality rate (DMR) of egg 
for Rainfall

No Yes

Modification of DMR of larvae for rainfall No Yes

Modification of DMR of pupae for rainfall No Yes

Seasonal pattern of vector abundance No Yes

Landscapes Generated by VectorLand Generated by VectorLand and landscapes of 
Bandarban

Individual interventions modeled ITNs, LSM ITNs, IRS, and LSM

Versions – A number of versions of the model consider‑
ing different parameter combinations as well 
as based on biological life cycle (e.g., 8 vs. 12 
stages) have been implemented
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along with the incorporation logics mentioned in Arifin 
et  al. [29] are incorporated into the core model as the 
logics are very generic for Anopheles mosquitoes. Fur-
thermore, the most active time period of An. vagus has 
been identified and considered during the complete 24-h 
period in a day as follows. Nagpal and Sharma reported 
in 1995 that the biting time of female An. vagus is before 
midnight with a peak time between 18.00 and 20.00  h 
[91]. However, in 1963 Quraishi [92] rigorously examined 
each time period to check the activities of An. vagus in 
Bangladesh and identified the peak time to be 5.00 and 
6.00 h (i.e., in the morning) (Table 2). The contradiction 
between the findings of the two works mentioned above 
had left us no choice but to select only one of the two in 
the core model. The report of Quraishi in 1963 [92] con-
tains the relevant data regarding An. vagus in detail and it 
is conducted in Bangladesh and we have the real-life data 
of female abundance of Bandarban, Bangladesh. Addi-
tionally An. vagus are observed in the morning resting 
indoor with relatively fresh blood which indicates their 
biting during very early morning during field data col-
lection period (Al-Amin, HM and Alam, MS, personal 
communication, 2013). Thus, the data of [92] have been 
adopted into the core model.

The blood meal digesting stage
As this stage is usually highly temperature dependent, 
the temperature-dependent linear function developed in 
other model [30] was adopted into the core model. More 
details on this model are given below in Additional file 1.

The gravid stage
The (generic) ovipoisitioning rules and models for gravid 
stage presented in Zhou et al. [26], Arifin et al. [29] and 

Arifin et  al. [30] is adopted into the core model. More 
details on this model are given below in Additional file 1.

Mortality in the adult stages
For this stage, the mortality model used in Zhou et  al. 
[26] and Arifin et al. [30] has been adopted. This model 
can be seen as a modified version of the logistic mortality 
model in which the age-dependent component of mor-
tality increases exponentially with age. For details please 
refer to Additional file 1.

Mortality in the immature stages
Since immature mosquitoes (i.e., Egg, Larva, Pupa) live in 
the aquatic habitats with variable environmental factors 
affecting the stages, their mortality rates are considered 
separately for each stage. According to the field data on 
An. vagus egg (Al-Amin, HM and Alam, MS, personal 
communication, 2013), 10% eggs die during hatching in 
aquatic environment (DMRb(E)) and 5% of the An. vagus 
pupae die during the pupal period (DMRb(P)). Along 
with the above, an age specific mortality rate for the lar-
val stage (DMRa(L)) has been developed recently in [26, 
29, 30]. All these are incorporated in the core model with 
some modifications to incorporate the effect of tempera-
ture and rainfall as discussed in the following sections.

Incorporating daily temperature
Water temperature mostly affects the aquatic stages and 
air temperature mostly affects the adult stage. A weather 
profile has been used in various stages in the mosquito 
life cycle in the core model. The weather profile keeps 
daily record of air temperature. The weather profile has 
the maximum and minimum temperature for each day 
of the year during July 2009–Jun 2010. The daily average 
temperature, stored in the weather profile, is naturally 
calculated by taking the average of the above-mentioned 
two temperatures for each day. Note that in the imple-
mentation and simulation the maximum temperatures 
recorded for each day in February and March, and the 
minimum temperatures recorded for each day in April 
and May and the average temperatures for each day in 
other months have been used.

At this point, a brief discussion on the rationale behind 
using such a composite temperature profile is in order. In 
March in Bangladesh, most part of a day usually exhibit a 
temperature which is nearer to the maximum tempera-
ture of the day; but sometimes the minimum tempera-
ture may go quite low albeit it stays there for insignificant 
amount of time. Now, averaging the temperature gives 
a completely wrong measure of the actual temperature 
of the day! This and similar argument for some other 
months led us to adopt the above-mentioned composite 
temperature profile. Notably, the model is configurable 

Table 2  Nocturnal activities of  An. vagus in  different time 
period from 8.00 p.m. to 8.00 a.m. based on [92]

Time period Activity in percentage

8.00 p.m. to 9.00 p.m. 0

9.00 p.m. to 10.00 p.m. 13.67

10.00 p.m. to 11.00 p.m. 15.83

11.00 p.m. to 12.00 a.m. 11.30

12.00 a.m. to 1.00 a.m. 7.2

1.00 a.m. to 2.00 a.m. 0.72

2.00 a.m. to 3.00 a.m. 0

3.00 a.m. to 4.00 a.m. 0.72

4.00 a.m. to 5.00 a.m. 1.44

5.00 a.m. to 6.00 a.m. 35.25

6.00 a.m. to 7.00 a.m. 14.39

7.00 a.m. to 8.00 a.m. 0
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to pick either maximum or minimum or average for each 
month.

Incorporating daily rainfall
Rainfall has major effect on the mortality of larvae, 
pupae, and eggs. In following sections the modified daily 
mortality is described in detail.

Rainfall consideration for larval mortality
Several studies [16, 93–96] have mentioned the relation-
ship of rainfall and larval decrease. Hence, this is con-
sidered into the model of the larval mortality rate. Some 
studies [26–29] have considered a rainfall co-efficient in 
the larval age specific mortality rate. But the model [26–
29] has assumed rainfall co-efficient as constant (i.e., 1.0). 
Generally, daily rainfall data is collected in mm form. If 
daily rainfall data is directly applied into the equation of 
DMR for larva then the result produced by the equation 
contradicts some results derived from real life data [43]. 
To avoid this apparent conflict and contradiction, the 
equation is modified. The modified equation is described 
below.

Parham et al. [44] have developed a mathematical model 
for assessing the effects of rainfall, cloudiness, wind speed, 
desiccation, temperature, relative humidity and density-
dependence on vector abundance [44], where daily sur-
vival probability of immature stage exponentially decrease 
with rainfall increase. By considering rainfall-induced 
mortality, survivorship is modelled as follows:

Here, ρs(Rt) represents the daily survival probability of 
immatures in stage s for the given rainfall Rt (in mm.) of 
the tth day. And σs quantifies the decrease in survival of 
stage s. By taking σ as a input variable of an environment 
the mortality rate of larvae has been modelled by combin-
ing it with the daily mortality rate of larvae. Using Eq. 1 
the daily mortality rate of larvae due to rainfall is defined 
as follows:

The mortality equation of larva based on the age-cohort 
model defined by Arifin et  al. [29], termed as DMRa(L) , 
and the Eq.  2 based on the effect of rainfall, termed as 
DMRr(L), are not mutually exclusive. Considering prob-
ability theory for not mutually exclusive events, the mor-
tality rate for larvae in total is calculated as follows:

Applying probability theory, the following equation is 
generated:

(1)ρs(Rt) = e(−σs(Rt ))

(2)DMRr(L) = 1− ρL(Rt)

(3)DMRt(L) = P(DMRa(L) or DMRr(L))

(4)
DMRt(L) = P(DMRa(L))+ P(DMRr(L))

− P(DMRa(L) and DMRr(L))

Following equation is generated considering independent 
events:

The above equation can be written in simple form as:

Equation 6 is used into the core model.

Rainfall consideration for egg mortality
The daily mortality rate for eggs increases due to rainfall 
[44]. By considering rainfall-induced mortality for eggs, 
using Eq. 1 for the egg stage and the approach mentioned 
for the larval stage above, the daily mortality rate of eggs 
due to rainfall is defined as follows:

Equation 7 is used into the core model.

Rainfall consideration for pupal mortality
The daily mortality rate for pupa also increases due to 
rainfall [44]. By considering rainfall-induced mortality for 
pupae, using Eq. 1 for the pupal stage and the approach 
mentioned for the larval stage above, the daily mortality 
rate of pupae due to rainfall is defined as follows:

Equation 8 is used into the core model.

Output indices
Following some recent reports [29, 30], adult female 
abundance is the primary output of the core model. The 
abundance of egg, larva and pupa will also available as 
the secondary output.

Model assumptions
ABMvagus is based on mixed combination of theoreti-
cal models/equations and field-based data. In the core 
model a few assumptions have been made. In some cases, 
these assumptions have been made following the recent 
works in the literature and hence the same limitations 
suffered by those works have been inherited; in a few 
cases however, this research work has recovered from 
the limitations of previous works. These assumptions are 
highlighted below.

• • Only the life cycle of mosquitoes is considered rather 
than full malaria transmission cycle that also includes 
the life cycle of parasites. The model does not sepa-

(5)
DMRt(L) = P(DMRa(L))+ P(DMRr(L))

− P(DMRa(L))× P(DMRr(L))

(6)
DMRt(L) = DMRa(L)+ DMRr(L)

− DMRa(L)× DMRr(L)

(7)
DMRt(E) = DMRb(E)+ DMRr(E)

− DMRb(E)× DMRr(E)

(8)
DMRt(P) = DMRb(P)+ DMRr(P)

− DMRb(P)× DMRr(P)
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rately consider the malaria incidence or malaria 
infected mosquitoes or malaria infected human.

• • The probability of death of a mosquito which 
increases with age, is used like other models [26, 30].

• • The human population is assumed to be static like 
other models in the literature [26, 30]. All humans 
are treated to be identical. Other alternative hosts for 
blood (e.g., cattle, animal) are not considered.

• • Only temperature and rainfall are considered as the 
environmental factors in the core model like oth-
ers [26, 30]. However, unlike Zhou et al. [26], Arifin 
et al. [30] who have used temperature as a constant 
input for the simulation period, in the core model 
daily temperature is supplied from a weather pro-
file. Hence, the model is able to produce the seasonal 
pattern of vector abundance which is not possible in 
prior models.

• • Daily rainfall data is applied into the mortality rate of 
each immature stage. Hence the limitation of Zhou 
et al. [26] and Arifin et al. [30] is that the rainfall coef-
ficient is set as 1.0 in the daily mortality rate for lar-
vae, has been overcome. The modified equations of 
these mortality rates use the decreasing quantifier 
in the survival of the egg, larval and pupal stages as 
0.0242, 0.0127, and 0.00618, respectively. These val-
ues are collected from Parham et  al. [44]. However, 
the effect of heavy rainfall on the increment of habi-
tats is not considered.

• • In several cases theoretical approaches of other 
Anopheles species are directly applied due to unavail-
ability of actual data of An. vagus.

• • In the MS stage, a female is assumed to always find 
a male mosquito to mate. Also, a single blood meal 
is assumed sufficient for the maturation of egg. The 
mortality rate of female adults is treated as independ-
ent of their malaria infectivity states. The fecundity of 
female adult is assumed normally distributed with a 
mean of 170 and standard deviation of 30.

• • Time step in the simulation is modeled on an hourly 
basis (instead of daily) which provides better granu-
larity than the other works in the literature.

• • Two types of grid-based landscapes have been con-
sidered in the simulation. The generic one is created 
by VectorLand tool [29]. The other one is generated 
using some custom conversion based on some field 
data of Bandarban (Al-Amin, HM and Alam, MS, 
personal communication, 2013). The former has 
used fixed carrying capacity (CC) of 1000 each and 
the latter has used varying capacity based on field 
data. Each landscape is of size 40× 40 where each 
cell area is 50 m× 50 m. How many numbers of 
breeding sources may be required to fulfill a cell of 
50 m× 50 m are also assumed.

Simulations
The landscape information, daily weather profile with 
the temperature and rainfall data are given as input in 
the simulation runs. Initially, 20000 female adult gravid 
mosquitoes are assumed which are able to lay eggs with 
50:50 male–female ratio. Each simulation is repeated at 
least five times to eliminate any bias introduced by differ-
ent sources of randomness (stochasticity), the behaviour 
uncertainties of the agents (i.e., vectors) actions, states, 
etc. Although daily weather profile data for 4 years for 
Bandarban are available, the simulation has been run for 
1 year for which the real-life data of Female Abundance 
are available. On the other hand, the runtime of a sample 
simulation is about 5 h when the landscape generated by 
VectorLand tool is used. A machine with Intel (R) Core 
(TM) i3 CPU and 8 GB RAM has been used for the simu-
lations; each simulation has been run as a single-threaded 
program, in a single-process.

Field data
Three types of field data have been collected as follows. 
The first one is An. vagus abundance [8], the second one 
is related to stage duration and mortality rate of An. 
vagus (Mohammad Shafiul Alam, personal communica-
tion, January 15, 2014 and Hasan Mohammad Al-Amin, 
personal communication, January 15, 2014) and the third 
one is landscape related data for Bandarban. Field data 
on An. vagus abundance are collected from Alam et  al. 
[8] where the abundance data of several local species 
are reported as follows: Anopheles jeyporiensis: 18.9%, 
An. vagus: 16.8%, and Anopheles kochi: 14.4% of the total 
2576 collected Anopheles mosquitoes. Monthly An. vagus 
female abundance is reported to reach the highest level 
during March, followed by an immediate sharp decrease 
during April. In Fig.  3, monthly An. vagus abundance 
for a year for the study area is shown. According to [8], 
CDC miniature light traps were used for trapping mos-
quitoes during their field study. Traps were placed for 
12 h (6 p.m. to 6 a.m.). During the wet and dry seasons, 
100 and 50 houses respectively were selected randomly 
for the study. Thus, it is fair to assume that more traps in 
many more houses would resulted in a much higher fig-
ures in abundance data.

Weather data reported in Alam et al. [8] from the Soil 
Resource Development Institute for Bandarban [97] have 
been used for the study period. The maximum (max) and 
minimum (min) temperature values are available in the 
weather profile. Weather data is collected for four con-
secutive years (i.e., 2009–2012).

The information on households and the aquatic habi-
tats with their densities and patterns are required for a 
particular area to create the corresponding landscape 
for ABMs. Rice fields, animal hoof prints, large artificial 
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containers, bamboo holes, and Puddles are major ovipo-
sition habitats (known as breeding sources) for An. vagus 
in the rural area of Bandarban [98]. Table 3 presents the 
ratio between households and breeding sources that have 
been used to generate the landscapes.

The other data related to the landscape are generated 
based on the study of Khan et al. [17]. The authors of this 
study surveyed two unions, namely, Rajbila and Kuha-
long, that cover 179 square kilometres at CHTs having a 
total of 5050 houses (2320 in Rajbila and 2730 in Kuha-
long). Thus, houses per square kilometre are calculated to 
be 28.21. Hence, a landscape of 40× 40 cells with each 
cell occupying 50 m× 50 m area can be prepared by plac-
ing a total of 112.85 houses in a 4 square kilometres area. 
Each breeding source is assigned with a CC number per 
unit. The number of breeding sources required to fulfill 
a cell of 50 m× 50 m is assumed. Using these two infor-
mation along with above mentioned ratio the total CC is 
calculated for a cell for a particular breeding source type. 
For example, household ratio with puddle is 1:10, one 
puddle has carrying capacity 15, 125 puddles are required 
to fulfill a 50 m× 50 m area. Hence, the total CC per cell 
is calculated as 125× 15 = 1875. For a 40× 40 landscape 
the total number of puddles is 112.85× 10 = 1128.50. 
These puddles can cover 1128.50/125 = 9.028 cells. So, 
there will be 9 cells of puddle each having a CC of 1875. 
To account for the fractional (0.028) part, an additional 
cell with a CC of 0.028× 1875 = 52.5 is created.

Vector control interventions
Based on the practical usages of various interventions 
along with recommendations in the literature, ITNs, IRS, 
LSM are considered for examining their effect on the vec-
tor population dynamics. The interventions are applied 
alone or in combination. The logic for ITNs and LSM 
as developed in Arifin et al. [29] is directly incorporated 
into our model. Additionally, we have developed a logic 
for IRS intervention which is discussed subsequently.

IRS modelling
Generally, IRS works when mosquitoes rest on the 
sprayed area after getting blood meals. Identifying the 
resting places of mosquitoes accurately within a house is 

difficult. Similarly, accurately measuring how much area 
has been sprayed is also difficult. Hence, for simplicity, it 
is assumed that if a house is completely covered by IRS 
then all resting places (like walls, ceiling, roof etc.) are 
well sprayed. When a mosquito gets a blood meal it has 
a specific probability to rest within a IRS covered house 
or get deterred (due to IRS repellency) and move to some 
adjacent house to rest. If the female mosquito stays in the 
IRS protected resting place it may live or die based on the 
mortality rate of the IRS chemical. A simple flowchart in 
Fig. 1 captures this logic.

There are three IRS parameters, namely, coverage (C), 
repellency (R) and mortality (M) that are defined by 
probability distribution functions. For example, an IRS 
coverage of 0.4, repellency factor of 0.25 and mortality 
factor of 0.20 indicate that 40% of the total houses are 
covered by IRS, 25% mosquitoes are repelled and 20% 
mosquitoes are killed when they try to take rest on the 
surfaces of a IRS covered house, respectively.

A complete flowchart of applying interventions 
in combination
Figure  2 presents a complete flowchart for applying all 
interventions in combination.

Applying ITNs in isolation
To study the response of host-seeking mosquitoes to 
ITNs, a strategy to apply ITNs is modelled based on 
three parameters, namely, coverage C, repellence R, and 
mortality M. In the simulation, ITNs intervention is 
applied when a female mosquito is in the Blood meal 
seeking stage. Note that in [29], three different schemes 
were designed and docked with previous results. These 
schemes were household-level partial coverage with 
single chance, household-level partial coverage with 
multiple chances and household-level complete cover-
age. It is important to check the impact of these three 
schemes when applied into the landscapes of Bandar-
ban. All three schemes are input variables for the 
model. Based on the configuration only one scheme at 
a time is used during the simulation. For this experi-
ment, 40 × 40 sized landscape of Bandarban has been 
used with the parameter values for ITNs shown in 
Table 4.

Applying IRS in isolation
IRS application is also modelled on the above-mentioned 
three parameters used for ITNs. In the simulation, IRS 
intervention is applied when a female mosquito is in 
the Blood meal digesting stage. Here as well, 40  ×  40 
sized landscape of Bandarban has been used for this 
experiment using the parameter values for IRS shown in 
Table 4.

Table 3  Household ratio with breeding sources in general

Ratio items Ratio in general

Rice field:household 0.5:1

Animal hoof print:household 2:1

Large artificial container:household 1:1

Bamboo hole:household 2:1

Puddle:household 1:1



Page 9 of 20Alam et al. Malar J  (2017) 16:432 

Applying LSM in isolation
The impact of LSM in isolation has been investigated fol-
lowing the strategy of [29] as follows. Some of the aquatic 
habitats in the 40  ×  40 sized landscape generated for 
Bandarban are marked as invalid (based on the LSM cov-
erage percentage). The input parameters with the land-
scape also contain the time of LSM application. During 
those pre-specified times, all invalid marked aquatic hab-
itats are removed from the landscape and as a result no 
mosquito can lay eggs on those. The parameter values for 
LSM shown in Table 4 are used in this experiment.

Applying two interventions in combination
Several combinations of vector control interventions 
have been studied and investigated, namely, ITNs with 
IRS, ITNs with LSM, and IRS with LSM. When ITN is 

combined with IRS, ITN repellency is assumed to be 
fixed at 0.5 and other two factors (C and M) are varied. 
The parameter values for two interventions in combina-
tion shown in Table  4 are used in this experiment. The 
40 × 40 sized landscape of Bandarban has been used for 
this experiment.

Applying ITNs, IRS, and LSM in combination
ITNs, IRS, and LSM in combination have been applied 
using parameter values shown in Table  4. The 40 ×  40 
sized landscape of Bandarban has been used in this 
experiment.

Assumptions for interventions
Following the relevant literature, some assumptions 
have been made. For ITNs, following [29], transient 

Fig. 1  Logical flowchart of IRS intervention. When a mosquito gets a blood meal it has a specific probability to rest within an IRS covered house or 
get deterred (due to IRS repellency) and move to some adjacent house to rest. If it stays in the IRS protected resting place it may live or die based on 
the mortality rate of the IRS chemical
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effects, such as, the decay of insecticide effectiveness of 
the bed nets, are ignored. Furthermore, the complete 
usage (adherence) has been assumed. In other words, 
humans provided with a bed net are always assumed to 
sleep under it during night. This study also assumes all 
ITNs/IRS parameters (C, R, and M) to be constant over 

time, and ignore any possible development of insecticide 
resistance in the mosquitoes. For IRS, it is further con-
sidered that all places are sprayed completely and uni-
formly. For LSM, like other study [29], all aquatic habitats 
are assumed to have no inherent differences in their 
attractiveness and productivity. Notably, when no inter-
vention is applied into the model, the mosquito popula-
tion is governed by the combined carrying capacities of 
all aquatic habitats, and the density-dependent oviposi-
tion mechanism; the latter limits the potential number of 
eggs that a female mosquito may preferentially lay in an 
aquatic habitat, considering both the associated CC and 
the biomass already present in the habitat.

Simulations
Application of interventions to the model is parameter-
ized and taken from input. Intervention(s) are applied 
after 100 days, and continued up to the end of the simula-
tion. This is to ensure that a long enough warm-up period 
has passed to reach a steady state (which, without any 
intervention, occurs at around day 50), and that the results 
are reported after the simulation reaches equilibrium. 

Repelled
Search for houseOutdoor

Search for house

Not-ITN-Protected
House

Get blood meal

ITN-Protected 
House

Try to get blood meal

BMS
Seek for blood meal

BMD
Search for rest

Outdoor
Rest & develop eggs Repelled

Search for house

IRS-Protected
House

Try tp rest & develop eggs

Not-IRS-Protected
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Search for AH

Not-LSM-Protected 
AH

Lay eggs

LSM-Protected 
AH

Search for AH
Outdoor

Search for AH

House
Search for AH

Dead
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Fig. 2  A complete flowchart of applying three interventions in combination. It represents vector’s actions in various states while all interventions 
are applied in combination. Here, AH means Aquatic Habitat, INT-Protected House means a Household which is protected by ITN, Not-INT-Protect 
House means a Household which is not protected by ITN, and so on. Every block represents vector’s one of the state with its action in that state

Table 4  Parameters for applying interventions in isolation 
and in combination

No. Combination Coverage Repellence Mortality

1 ITNs in isolation 0.5 0.2 0.5

2 ITNs in isolation 1.0 0.8 0.8

3 IRS in isolation 0.5 0.1 0.5

4 IRS in isolation 1.0 0.1 0.8

5 LSM in isolation 0.4

6 LSM in isolation 0.6

7 ITNs and LSM 0.5, 0.6 0.5 0.5

8 IRS and LSM 0.5, 0.6 0.1 0.5

9 ITNs and IRS 0.5, 0.5 0.5, 0.1 0.5, 0.5
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Percent reduction (PR) values in mosquito abundance are 
calculated by averaging 30-day abundances (after the pop-
ulation reaches a steady-state) from two intervals where 
applicable: before and after applying the intervention(s) 
to the base mosquito population. Each simulation is run 
five times and then the average is reported. The model’s 
output (FA) is compared against the real-life data. As 
real data is in the scale of 0–500, the actual output of the 
model is scaled down by 100 (e.g., if female abundance is 
6400 for a day, by scaling it would be 6400/100=64) and 
then compared to the real-life data. Since the model’s out-
put is generated on a daily basis, a separate calculation is 
made for calculating the FA for a month. For each month, 
output is taken to be the average of all days in a month. 
All simulations are run as a single-threaded program, in 
a single-process on an Intel machine with Intel (R) Core 
(TM) i3 CPU having 8GB RAM.

Results
Impact of average and composite temperatures
Using the daily average temperature with a generic 
40× 40 landscape having a non-absorbing boundary 

(generated by VectorLand [29]) did not yield a good fit 
with the corresponding real-life data (Fig.  3a). Several 
experiments have been conducted with a number of 
combinations. In one experiment the maximum tem-
peratures recorded for each day in February and March, 
and the minimum temperatures recorded for each day in 
April and May (with the same landscape) have been used. 
As shown in Fig.  3b, this produced a better fit with the 
real-life data: the FA magnitudes during February and 
March match closely, decrease immediately after March, 
and continue to decrease until June.

Impact of daily temperature using a generic landscape
The impact of applying daily temperature in the simu-
lation as opposed to a constant temperature through-
out was examined using a 40× 40 sized non-absorbing 
landscape generated by VectorLand [29]. As is evident 
from the results presented in Fig. 4a, the abundance of 
adult female mosquitoes with daily temperature usage 
is much higher than that with the constant temperature 
usage. Also the former has a high peak during March 
but there is no such indication in the latter despite that 
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Fig. 3  Impact of composite temperatures. a Shows the female abundance graph when the daily average temperatures are considered. It shows 
that the pattern of the curve is not similar with the curve of the real-life data. b Shows the female abundance graph when the max temperature for 
each day in February and March and the min temperature for each day in April and May are considered
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for some other months, both the output patterns are 
quite similar.

Impact of daily rainfall using a generic landscape
Figure  4b illustrates the impact (on the results) of the 
daily rainfall data usage from a weather profile (referred 
to as the DR model) for each day of the simulation against 
no rainfall/constant rainfall data (i.e., 1.0) usage (referred 
to as the NR model) for the full simulation. From April 
to December the female abundance of the NR model is 
much more higher than that of the DR model. Since 
heavy rainfall results in the loss of larvae, the DR model 
produces less females.

Baseline abundance for Bandarban
Following some verification and validation (V and V) 
experiments, the resulting baseline FA curve as shown in 
Fig. 5 is considered to be acceptable from a realistic point 
of view. From the graph it is easily observed that there is 
a high peak during March. During January and December 
FA is lower compared to other months. This FA curve is 

used for comparison when various vector control inter-
ventions are applied.

Interventions
All interventions (ITNs, IRS, and LSM) are applied 
into ABMvagus in isolation and in combined mode. The 
FA produced by any experiment is compared with the 
baseline FA (without any vector control interventions 
applied). Results of applying interventions are discussed 
below.

ITNs in isolation
To examine the effect of ITNs in isolation, a number of 
experiments based on different parameters stated in 
Table  4 were conducted. Figure  5 illustrates the results. 
Significant decrease of the FA after applying the interven-
tion is clear from the figure. In fact, Fig. 5 shows that the 
FA decreases drastically as a result of ITNs application 
with the parameter setting #2 in Table 4 with household-
level complete coverage. As can be seen, after a certain 
period, the FA magnitude goes to zero (i.e., 0) for this 
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parameter setting. This result can be attributed to the 
fact that under this setting, mosquitoes are not able to 
get any blood meal from any house at all. Recall that, only 
humans are considered as blood source in our model.

When ITNs are applied with the same parameter set-
ting (i.e., setting #2 in Table  4) but with household-level 
partial coverage with multiple chances, the FA reduction 
is found to be lower (in comparison to the household-
level complete coverage). Note that ITNs with household-
level partial coverage with multiple chances assumes that 
2 persons of a house are protected among all members. 
Therefore, in this case, mosquitoes have quite a good 
chance to get blood meal to increase their abundance.

Based on the above experiments it is observed that 
ITNs with household-level complete scheme produces 
better results compared to the ITNs with household-
level partial scheme. However, the former is somewhat 
unrealistic in nature; on the contrary, in the latter, a frac-
tion of persons are not protected resulting in a lower 
performance.

IRS in isolation
When IRS in isolation were applied with the parameter 
setting #3 in Table  4, FA is decreased, albeit insignifi-
cantly (Fig. 6). However, for the parameter setting #4 in 
Table 4, the FA is decreased significantly; in fact, the FA 
goes near zero in some cases.

Recall that, IRS is applied in the BMD stage. In the 
BMD stage, if R is set as low, then the mosquitoes are 
more likely to stay at the households and get killed (due 
to IRS). Based on the above experiments it is observed 
that the FA reduction depends on the configuration of 
IRS parameters: high coverage (i.e., 100%), high mortality 
rate (i.e., 80%) and low repellency rate (i.e., 10%) seem to 
produce better results.

LSM in isolation
Figure 7 presents the results when LSM in applied in iso-
lation for both parameter settings #5 and #6 in Table 4. 
As can be seen, for this intervention, the FA reduction is 
not very significant. However, in both cases, the reduc-
tion is consistent throughout the year.

ITNs with LSM
Figure  8 illustrates the results of applying ITNs house-
hold-level complete scheme with LSM in combination 
with parameter setting #7 in Table  4. The significant 
reduction in the FA has been noticed and that too quite 
consistently throughout the year. In fact, for most of the 
post-intervention period, the FA reduction is around 38% 
or more compared to the baseline FA.

IRS with LSM
Figure 8 illustrates the results of applying IRS with LSM 
in combination with parameter setting #8 in Table 4. Sig-
nificant reduction in FA can be noticed after applying 
IRS and LSM in combination with this setting. In fact, 

Fig. 5  Comparing baseline abundance with ITNs being applied in 
isolation with different parameter values from Table 4. The X-axis pre‑
sents the day of a year and the Y-axis presents the FA for a particular 
day. For the parameter setting #1 in Table 4, with household-level 
complete scheme, the graph clearly exhibits significant reduction of 
the FA. For the parameter setting #2 in Table 4 with household-level 
complete scheme, the FA decreases drastically after applying ITNs; 
however, with household-leve partial scheme, the FA decreases in a 
lower rate

Fig. 6  Comparing baseline abundance with IRS being applied in 
isolation with different parameter values. The X-axis presents the 
day of a year and the Y-axis presents the FA for a particular day. For 
parameter setting #3 in Table 4, after applying IRS, FA is decreased 
albeit insignificantly. For parameter setting #4 in Table 4, the FA is 
decreased significantly
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after the interventions are applied, the average FA reduc-
tion is approximately 21% compared to the baseline 
FA, and is consistent throughout the post-intervention 
period.

ITNs with IRS
ITNs with IRS in combination have been applied with 
parameter setting #9 in Table  4. As can be seen from 
Fig. 8, very significant reduction in the FA can be noticed 
for this setting. For most of the post-intervention period, 
the FA is decreased by more than 42% compared to the 

baseline FA and the reduction is consistent throughout 
the year.

From the combined results (as illustrated in Fig.  8) it 
is evident that ITNs–IRS combination produces better 
results compared to other combined interventions exper-
imented above. It is also seen that any intervention com-
bined with ITNs produces better results.

ITNs, IRS and LSM in combination
Application of ITNs, IRS and LSM interventions in com-
bination using the parameters mentioned in Table 5 pro-
vides some interesting results. Figure 9 shows the percent 
reductions in mosquito abundance as a function of LSM 
coverage, ITN coverage and IRS coverage when LSM, 
ITNs and IRS are applied in combination. It has been 
observed that while IRS coverage increases with LSM and 
ITNs, FA reduction percentage is increased significantly.

Three versus two interventions in combination
ITNs, IRS and LSM have been applied with average pro-
tection coverage in different combinations. The result of 
these combinations are discussed in earlier sections. Fig-
ure 9 provides an opportunity to compare FA reduction 
percentage when three interventions are applied with 
the case when two different types of interventions are 
applied in combination. From the figure several things 
are evident:

• • FA reduction percentage is higher in ITNs, IRS and 
LSM combined mode than other combinations.

• • FA reduction percentage of ITNs with LSM is more 
consistent as compared to others.

• • FA reduction percentage of IRS and LSM combi-
nation is much more fluctuating and is the lowest 
among others.

Discussions
ABMvagus is developed for An. vagus based on the field 
data and the equations drawn in other studies applica-
ble for this model, the environmental factors are incor-
porated and finally some vector control interventions 
including IRS, LLINs, and LSM are applied on this model 
to analyse the impact of these approaches. Some key 
characteristics, observations and limitations of this study 
are discussed below.

Fig. 7  Comparing baseline abundance with LSM being applied in 
isolation with different values of coverage. The reduction in FA is not 
significant. However, the FA reduction is consistent throughout the 
year and for higher coverage the reduction is higher

Fig. 8  Comparing baseline abundance with two interventions being 
applied in combination

Table 5  Parameters for  applying three interventions 
in combination

Combination Coverage(s) Repellence Mortality

LSM 0.0, 0.3, 0.6, 0.9 0.5 0.5

ITNs 0.0, 0.25, 0.5, 0.75, 1.0 0.5 0.5

IRS 0.0, 0.25, 0.5, 0.75, 1.0 0.1 0.5
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The core model
To date, many studies have concentrated on model-
ling An. gambiae because it is one of the most impor-
tant vector in Africa [99], however, species which are 
potential for malaria transmission and are under con-
sideration of malaria transmission in the other malaria 
endemic areas like Bangladesh [8] were not studied 
well. Therefore, a core model for An. vagus is produced. 
The combinational approaches, i.e., the equation based 
modelling of some stages and the probability based 
modelling of some stages make the core model more 
realistic seen in the result for An. vagus. Although this 
core model has been developed based on the biological 
attributes of An. vagus, it can be seen as a framework 
for researchers to use or modify it for other similar spe-
cies as well. In particular, the model is able to show the 
effects of some environmental or other factors associ-
ated with the life cycle of a species which could be a 
useful feature for researchers working in a relevant 
area. Some miscellaneous issues, mentioned in Arifin 
et  al. [30] are also applicable for the core model. This 
is because some equations as well as some approaches 
of various stages of mosquitoes are taken directly from 
that study. Some of the benefits of the core model are 
briefly highlighted below.

Generalization of the ABM
The ABM developed through this research work is a 
form of a generalized technique. This methodology 
may be applied to similar species by replacing some 
special attributes of An. vagus. For example, in pupal 
stage it was possible to change the percentages of 
pupae for a certain period. Another example, we were 
able to use the zone specific weather data as input for 
the model. Subsequently, for that zone specific real-
life data can be compared with the output of the newly 
developed model.

Seasonal patterns
Incorporation of the daily weather data into this model 
produces more realistic output for An. vagus which is 
observed in Fig.  3. Unlike other studies [26, 29, 30] in 
which a fixed temperature is used for the full simulation 
period, ABMvagus uses the temperature daily in various 
stages of the life-cycle. As a result, this model generates 
the seasonal pattern of vector abundance which is more 
weather specific. Hence, by using this model, it is possi-
ble to get an option to set zone specific weather data as 
input to observer the seasonal pattern of vector abun-
dance for that zone.

Fig. 9  This figure shows the percent reductions in mosquito abundance as a function of LSM coverage, ITNs coverage and IRS coverage when 
LSM, ITNs and IRS are applied in combination. The X-axis denotes ITNs coverage and the Y-axis denotes LSM coverage. Each subfigure represents FA 
reduction percentage for LSM and ITNs coverage with fixed a IRS coverage. ITN and IRS mortality (M) are fixed at 0.5, ITN repellence (R) is fixed at 0.5 
and IRS repellence (R) is fixed at 0.1. Each simulation is run for 1 year; LSM, ITNs and IRS are applied at day 100, and continued up to the end of the 
simulation. The filled contour plots in each subfigure shows isolines which are labelled with specific percent reduction (PR) values. The colourbar at 
the right side quantifies the PR isolines. The figure represents average percent reduction values of FA of a total of 500 (4 × 5 × 5 × 5) simulations. 
For ITNs, household-level complete coverage scheme with non-absorbing boundary is used
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Impact of rainfall on mortality rates
To incorporate the impact of rainfall on the daily mortal-
ity rate of all immature stages the existing mortality rate 
defined by some studies [26, 29, 30] were modified and 
introduced a new parameter, the quantifier, σs addition-
ally to make core model closer to real life.

By varying the quantifier, σs in Eq.  1, the researchers 
were able to see the impact of daily mortality rate of any 
immature stage for other mosquitoes. This approach will 
help to explore the impact of rainfall and its reflection on 
vector abundance.

Real‑life data to generate landscapes
When geographic information system (GIS) data is not 
available for a particular area, the respective landscapes 
have been designed and developed using the field data of 
breeding sources. When GIS data of an area is not avail-
able, the above mentioned techniques can be very useful 
for researchers for generating landscapes for that area 
using field data.

Docking of ABMs
Following the literature [26, 28–30], docking techniques 
have been used to verify and validate (V and V) the core 
model. For docking the core model, several different ver-
sions of the ABM are generated by changing some con-
figurations/mechanisms in some stages based on the field 
data or the data found in the literature. Among all differ-
ent versions of the ABM, ABMvagus produces the output 
which fits to the real-life data closely.

Interventions
Following the work of Arifin et  al., some interventions 
(such as, ITNs, LSM) [29] have been incorporated in 
the model. Additionally, the logic for incorporating IRS 
as an intervention has been introduced into the model. 
Some discussions on the applied interventions in differ-
ent modes as briefly highlighted below.

Incorporation of IRS
The IRS logic that has been developed here can be used 
in other models for other Anopheles species. The logic 
may also be modified as and when appropriate.

Applying interventions in combination
It has been observed from Fig.  9 that ITNs with IRS in 
combination produces better results compared to ITNs 
with LSM and IRS with LSM in combination. This output 
is also supported by some studies. Mohammad Shafiul 
Alam and Hasan Mohammad Al-Amin have said that 
when ITNs with IRS is applied in combination, mosqui-
toes would not be able to bite, fed on humans inside and 
could not rest inside and thus, ITNs with IRS can produce 

better result compared to others (personal communica-
tion, January 15, 2014). MSA and HMA also argued that 
for IRS with LSM and ITNs with LSM in combination 
would only provide good results if the vectors oviposit 
in permanent or semi-permanent habitats which are 
fixed, findable and few. Hence, if vector oviposition sites 
are few and findable, LSM would be the best approach. 
From the field studies (Al-Amin, HM and Alam, MS, per-
sonal communication, 2013), mosquito oviposition sites 
are not fixed nor few and for such situations WHO [100] 
suggests core (i.e., ITNs and IRS) interventions.

One of the major observations from Fig. 9 is that when 
ITNs, IRS and LSM are applied in combination it pro-
duces better output compared to the output produced 
by any two interventions together in combination. This 
is also affirmed by some studies: for example, An. vagus 
mostly rests indoor [101, 102] so the chances of contact 
with ITNs and IRS are greater for An. vagus; if LSM is 
added in the intervention it will produce even better 
results for mosquito control because the survived mos-
quitoes from ITNs and IRS will not find enough oviposi-
tion sites to increase its population.

It has been observed that ITNs, IRS, and LSM in com-
bination produces better result than any other two inter-
ventions for the Bandarban area. Hence, applying these 
three interventions altogether (in combination) is rec-
ommended whenever possible. It has also been observed 
that ITNs combined with IRS produces better outcome 
than any other combination of two interventions for the 
Bandarban area. Thus, when combination of three inter-
ventions (i.e., ITNs, IRS, and LSM) is infeasible, ITNs 
combined with IRS should be applied.

Limitations and miscellaneous issues
In this section the limitations of the core model are dis-
cussed along with other miscellaneous but important 
issues. For the development of all aquatic stages, the air 
temperature has been used instead of water temperature 
due to the unavailability of the latter. Rainfall data is not 
considered for increasing aquatic habitats for making the 
core model simple. Other environmental factors with 
temperature and rainfall incorporation would make the 
model to perform better. Also, a number of spatial fac-
tors need be incorporated to the model to make it truly a 
spatial ABM.

As the real-life field data for female abundance of An. 
vagus at Bandarban, the data reported in [8] have been 
used. The authors of [8] used CDC miniature light trap 
for trapping mosquitoes. Traps were placed for 12  h 
(6 p.m. to 6 a.m.). During the wet (dry) season 100 (50) 
houses were selected randomly. So, presumably, using 
more traps in more houses could have resulted in a higher 
abundance value. This in fact prompted us to focus on the 
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pattern of the curve for real-data validation rather than 
the actual values of the real-life data. During the V and 
V process major differences between real-life data and 
the simulated output have been seen during the months 
of February, March, April and May. As mentioned before, 
the maximum temperature of each day for February and 
March and the minimum temperature of each day for 
April and, May and the average temperature for other 
months produces output which much more closer to the 
real-life data. Note that, extensive experiments have been 
carried out considering different models/configurations/
equations at different stages of the life cycle. As a result, a 
number of versions of the model have been produced. In 
the sequel, the output of ABMvagus has been found to be 
much more realistically closer to the real-life data. Ari-
fin et al. [29] has described some miscellaneous issues are 
also applicable for the core model too since some equa-
tions or some approaches of various stages of mosquitoes 
are taken directly from that study.

As has been mentioned above, several versions of 
ABMvagus have been implemented in this research work. 
These versions differ from each other on different param-
eter combinations as well as on how the biological life 
cycle has been implemented within the core model. For 
example, in one version, 12 stages of life cycle have been 
implemented. However, during validation it failed to 
match the seasonal pattern. This is why the results of this 
model is not reported here. The reason for this mismatch 
may be attributed to a number of simplified assump-
tions taken during the core model development (e.g., not 
incorporating rainfall effects on habitats, water tempera-
ture etc.) which may have some complex dynamics in this 
case. Another reason could be the lack of enough real-life 
data for the sub stages. Further investigation along this 
line is planned.

Continuing on the discussion of several versions of 
ABMvagus, it is worth-mentioning that experiments have 
also been conducted with different landscapes consid-
ering separate configurations for wet and dry seasons. 
Unfortunately, when separate configurations for dry/wet 
seasons were used, the results failed to follow the real-
life data pattern. Why did the seasonal configuration fail? 
The assumptions were probably unrealistic. Also, the 
real-life female abundance data was a monthly estimate 
whereas the configuration planned was seasonal; this did 
not help either. On the contrary, a single configuration 
had captured an average scenario which provided us a 
good match with the real-life data pattern. Recall that, in 
this research, the highest importance has been given to 
the issue of matching the real-life data pattern for valida-
tion purposes. And this is believed to be the first attempt 
to do that.

Finally, one positive thing of this complete research 
work lies in the fact that ABMvagus is capable of taking 
any configuration as input and run simulations to pro-
duce results accordingly. Since the intervention logic has 
been incorporated in the model independent of any such 
configuration, ABMvagus will definitely give more accu-
rate results and recommendations once the more realis-
tic configurations are given as input. In fact, as a future 
research, a data acquisition project for mosquito habitats 
to get a realistic configuration, preferably on a monthly 
basis, is planed.

Conclusion
A conceptual model in malaria epidemiology is devel-
oped by utilizing the biological attributes relevant to the 
vector population dynamics of An. vagus and its agent-
based implementation (i.e., ABMvagus) is described. 
Although ABMvagus is developed specifically for An. 
vagus of a particular area, it is a form of a generalized 
technique; hence it may be applied to similar species of 
An. vagus.

After incorporating environmental factors the model is 
able to produce the seasonal patterns of An. vagus abun-
dance. It is also observed that the pattern of An. vagus 
abundance based on the environmental factors is quite 
different than that obtained using fixed temperature 
throughout the simulation period. Notably, the output 
of ABMvagus is highly dependent on real-life field data of 
the environmental factors and the landscape of a particu-
lar area. Hence, it is recommended to use ABMvagus for a 
given area with its local field data.

During the V and V process, it was observed that DMR 
of larvae and the value of CC assigned into the aquatic 
sources play important roles in the vector population 
dynamics. However, the exact locations and patterns of 
households situated in the artificial landscape had less 
impact on vector abundance.

For high malaria endemic areas like Bandarban, apply-
ing all vector control interventions (ITNs, IRS, and LSM) 
in combination is recommended. The simulations also 
demonstrate that ITNs with IRS can be applied when all 
three interventions in combination are not feasible, and 
that ITNs with LSM are less likely to produce consistent 
reduction in abundance.

In future, additional features such as the malaria par-
asite life-cycle, incorporation of GIS data and other 
weather parameters (e.g., humidity, cloudiness, desic-
cation), alternative hosts for blood-feeding (e.g., cattle), 
additional fine-tuned biological attributes of An. vagus 
(e.g., vector resistance) and variation of its flight range 
could be planned to include in the model. Adoption to 
the changes of breeding sources due to rainfall is another 
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direction for future research. Lastly, considering the mix 
of vector species in endemic regions like Bandarban, a 
more realistic model capable of handling multiple species 
within a single ABM could also be studied to best address 
malaria transmission.
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