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ABSTRACT Gastric cancer is a leading cause of cancer-related death worldwide. Helicobacter pylori infection is the strongest
known risk factor for this malignancy. An important goal is to identify H. pylori-infected persons at high risk for gastric cancer,
so that these individuals can be targeted for therapeutic intervention. H. pylori exhibits a high level of intraspecies genetic diver-
sity, and over the past two decades, many studies have endeavored to identify strain-specific features of H. pylori that are linked
to development of gastric cancer. One of the most prominent differences among H. pylori strains is the presence or absence of a
40-kb chromosomal region known as the cag pathogenicity island (PAI). Current evidence suggests that the risk of gastric cancer
is very low among persons harboring H. pylori strains that lack the cag PAI. Among persons harboring strains that contain the
cag PAI, the risk of gastric cancer is shaped by a complex interplay among multiple strain-specific bacterial factors as well as host
factors. This review discusses the strain-specific properties of H. pylori that correlate with increased gastric cancer risk, focusing
in particular on secreted proteins and surface-exposed proteins, and describes evidence from cell culture and animal models
linking these factors to gastric cancer pathogenesis. Strain-specific features of H. pylori that may account for geographic varia-
tion in gastric cancer incidence are also discussed.

About 2 million new cancer cases each year worldwide are at-
tributable to infections (1). Hepatitis viruses, papillomavirus,

and Helicobacter pylori are responsible for most of these malignan-
cies (arising in the liver, cervix, and stomach, respectively). Since
H. pylori is the only bacterium known to be a common cause of
cancer in humans, the relationship between H. pylori and gastric
cancer is of particular interest.

A large body of evidence links H. pylori to two types of stomach
cancer— gastric adenocarcinoma and gastric lymphoma. This re-
view focuses on gastric adenocarcinoma, the most common type
of stomach cancer. Epidemiological studies have shown that the
risk of gastric cancer is higher in H. pylori-infected persons than in
H. pylori-negative persons and that H. pylori infection precedes
the development of gastric cancer (2–4). H. pylori is associated
with adenocarcinoma of the distal (noncardia) stomach but not
cancer of the proximal stomach. Experimental orogastric infec-
tion of Mongolian gerbils with H. pylori can result in the develop-
ment of gastric cancer (5), which provides further evidence of a
causative role. Consequently, the International Agency for Re-
search on Cancer (World Health Organization) classifies H. pylori
as a group I carcinogen (4), a category that includes well-known
carcinogens such as tobacco smoke and asbestos.

H. pylori colonizes the stomach and elicits a gastric mucosal
inflammatory response termed “gastritis” in both humans and
experimentally infected animals. Once established in the human
stomach, H. pylori and gastric inflammation can persist for many
decades in the absence of antimicrobial treatment. Longitudinal
studies indicate that gastritis is one of the first detectable changes
in a stepwise pathway of histologic abnormalities that can ulti-
mately culminate in gastric cancer: inflammation, gastric atrophy
(loss of specialized cell types such as parietal cells and chief cells),
intestinal metaplasia (presence of intestinal-type epithelium in the
stomach), and dysplasia (6, 7). The development of gastric cancer
in the setting of H. pylori infection is thought to be a long-term
consequence of many alterations, including chronic inflamma-
tion (which contributes to the pathogenesis of many types of ma-
lignancy) (8), DNA damage, activation of gastric stem cells,

changes in cell proliferation and apoptosis, changes in epithelial
differentiation and polarity, degradation of tumor suppressors,
and impaired gastric acidification, leading to bacterial overgrowth
with species not found in the normal acidic stomach (6, 7).

EPIDEMIOLOGY OF GASTRIC CANCER

The incidence of gastric cancer varies markedly throughout the
world, and it occurs about twice as commonly in males than fe-
males (3). The highest incidence rates are currently observed in
East Asia (about 60 cases per 100,000 males in Japan and Korea)
(3). In all parts of the world, H. pylori is the strongest known risk
factor for gastric cancer (3, 4). Regions of the world with a low
prevalence of H. pylori infection tend to have a relatively low in-
cidence of gastric cancer, but geographic variation in gastric can-
cer rates cannot be explained entirely by variations in H. pylori
prevalence. For example, populations in many parts of Africa and
India have a high prevalence of H. pylori infection but a relatively
low incidence of gastric cancer (3).

Although H. pylori is the strongest known risk factor for gastric
cancer, most H. pylori-infected persons tolerate the presence of
this organism over an entire lifetime without any adverse effects,
and some persons may even derive health benefits from H. pylori
(9). An important goal is to define the factors that determine
whether gastric cancer will develop, so that the subset of H. pylori-
infected persons with the highest risk of gastric cancer can be
identified and targeted for therapeutic interventions.
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H. PYLORI STRAIN-SPECIFIC PROPERTIES ASSOCIATED WITH
GASTRIC CANCER

H. pylori is characterized by a high level of intraspecies genetic
diversity (10, 11). Diversity in the nucleotide sequences of indi-
vidual genes is attributable to a high mutation rate, as well as a
high rate of intraspecies recombination (12, 13). Strains from un-
related persons not only differ in the sequences of individual genes
but also exhibit differences in gene content and chromosomal
organization. The core genome of H. pylori consists of about 1,100
genes (present in all H. pylori strains), and each strain typically
contains several hundred additional genes that are not universally
present.

Over the past two decades, numerous studies have analyzed
H. pylori isolates from persons with different disease states in an
effort to identify strain-specific features that correlate with the
presence of gastric cancer or premalignant histologic lesions. This
review focuses on strain-specific variations in secreted proteins or
surface-exposed proteins that correlate with increased gastric can-
cer risk (Table 1) and describes the actions of these factors in cell
culture and animal models that link these proteins to gastric can-
cer pathogenesis.

The cag pathogenicity island. One of the most striking varia-
tions among H. pylori strains from unrelated persons is the pres-
ence or absence of a chromosomal region known as the cag patho-
genicity island (PAI). Individual strains may contain an intact cag
PAI (about 40 kb), a cag PAI that has undergone chromosomal
rearrangements, or an incomplete cag PAI that lacks one or more
genes (14). The cag PAI encodes an antigenic effector protein
(CagA) and contains about 18 genes required for the entry of
CagA into host cells through a type IV secretion system (T4SS)-
mediated process (15–17). In addition to its role in translocating
CagA into host cells, the type IV secretion system is required for
H. pylori-induced upregulation of proinflammatory cytokine se-
cretion by gastric epithelial cells (18).

Upon entry into host cells, CagA undergoes tyrosine phos-
phorylation by Src and Abl family kinases at sites known as EPIYA
motifs (16, 17, 19). CagA in either its phosphorylated form or its
nonphosphorylated form can interact with at least 10 host cell
components, resulting in a complex assortment of cellular altera-
tions (16, 17). These include changes in epithelial cell shape and
polarity (20, 21), disruption of apical epithelial junctional com-

plexes (22), changes in epithelial differentiation (resulting in an
invasive phenotype, resembling an epithelial to mesenchymal
transition) (23), enhanced proliferation and inhibited apoptosis
(24, 25), activation of gastric stem cells (26), and degradation of
the p53 tumor suppressor (27). When experimentally introduced
into the stomachs of Mongolian gerbils, H. pylori strains contain-
ing cagA and an intact cag PAI promote the development of pre-
malignant changes and gastric cancer, whereas cagA mutant
strains or mutant strains with a defective cag T4SS fail to cause
gastric cancer (28–31). Similarly, strains containing cagA and an
intact cag PAI cause more severe gastric inflammation in gerbils
than do cagA mutant strains or mutant strains with a defective cag
T4SS (28–31). Transgenic mice expressing CagA spontaneously
develop gastric epithelial hyperplasia, adenocarcinoma of the
stomach and small intestine, and hematologic malignancies (32).
Therefore, CagA has been designated a bacterial oncoprotein (17).

A large body of evidence indicates that the risk of gastric cancer
or premalignant lesions is higher in persons infected with cagA-
positive H. pylori strains than in persons infected with cagA-
negative strains (33–35). The increased risk of gastric cancer ob-
served with cagA-positive strains (which often contain the entire
cag PAI) is attributed to the cellular effects of CagA (described
above), combined with an enhanced gastric mucosal inflamma-
tory response (36).

Most studies linking CagA-producing strains to increased gas-
tric risk have analyzed H. pylori isolates to determine whether the
cagA gene is present or absent or have assessed the presence of
anti-CagA serum antibody responses as an indication of infection
with CagA-producing strains. The risk of gastric cancer among
persons infected with CagA-producing strains can be further
stratified by analyzing CagA amino acid sequence variations that
influence the protein’s activity. For example, the level of CagA
tyrosine phosphorylation in host cells is influenced by the number
of EPIYA motifs within the protein that can undergo phosphory-
lation (Fig. 1). CagA proteins containing higher numbers of
EPIYA motifs exhibit enhanced binding to intracellular targets
and enhanced activity within host cells (37–39), and strains har-
boring higher numbers of EPIYA motifs (Fig. 1) are associated
with greater gastric cancer risk (40, 41). The intracellular activity
of CagA is also influenced by amino acid sequence variations
within the tyrosine phosphorylation motifs. For example, strains

TABLE 1 Strain-specific H. pylori features that correlate with gastric cancer risk

Gene or region Encoded protein(s)

Feature of gene in H. pylori strainsa

Higher gastric cancer risk Lower gastric cancer risk

cag PAI CagA and T4SS Present Absent
cagA Effector protein More EPIYA motifs* Fewer EPIYA motifs

EPIYA-D motif* Lack of EPIYA-D motif
EPIYA-B motif* EPIYT-B motif
High levels of CagA production* Lower levels of CagA production

vacA Secreted toxin s1, i1, m1 forms s2, i2, m2 forms
babA OMP Present Absent
sabA OMP In frame Out of frame
homB OMP Present Absent
oipA (hopH) OMP In frame Out of frame
hopQ OMP Type I form Absence of type I form
dupA VirB4 homolog Absent Present
a cagA-positive strains are associated with a higher risk of gastric cancer than are cagA-negative strains. Among cagA-positive strains, those producing CagA with the features
indicated with an asterisk are associated with a higher risk of gastric cancer.
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containing EPIYT-B motifs are less frequently associated with gas-
tric cancer than are strains containing EPIYA-B motifs (42).

Among H. pylori strains that produce CagA, there is variation
in the levels of CagA production. This variation is attributable to
nucleotide sequence variation downstream of the cagA transcrip-
tional start site, within the 5= untranslated region of the cagA tran-
script (Fig. 1) (43, 44). Two recent studies showed that strains
producing high levels of CagA are linked to an increased risk of
premalignant lesions compared to strains producing lower levels
of CagA (43, 44).

Vacuolating toxin. H. pylori secretes a protein known as VacA
through an autotransporter or type V secretion pathway (45–47).
VacA was originally identified based on its capacity to cause vac-
uolation of epithelial cells (48) but is now known to have a much
broader range of activities (45–47). The amino acid sequence,
structure, and cellular effects of VacA are unrelated to those of any
other known bacterial toxins (49). Most VacA-induced cellular
alterations are attributable to its capacity for pore formation in cell
membranes (45–47).

All H. pylori strains contain a vacA gene, and nearly all secrete a
VacA protein, but there is considerable variation among strains in
VacA-mediated effects on host cells. This is due to differences
among strains in the levels of VacA produced or secreted (50), as
well as amino acid sequence variation among VacA proteins. Sev-
eral families of vacA alleles have been described based on se-

quences differences in regions of vacA designated the s, i, and m
regions (Fig. 1) (51–53). Type s1/i1/m1 forms of VacA are more
active in assays of cell-vacuolating activity than are forms of VacA
designated s2, i2, or m2, and type s2 forms of VacA lack detectable
activity in this assay (51, 52, 54, 55). The differences in activity of
type s1 and s2 forms of VacA are attributable to impaired channel-
forming properties of the type s2 protein (54).

Thus far, most studies of VacA cellular effects have been con-
ducted with type s1/i1/m1 forms of VacA. Studies with this form of
the protein indicate that it enters host cells through a clathrin-
independent process and can ultimately localize in endosomes as well
as mitochondria (56–58). Consequences of VacA intoxication in ep-
ithelial cells include altered endosomal function (59), changes in mi-
tochondrial membrane permeability (56), stimulation of autophagy
(60), reactive oxygen species accumulation (61), and sometimes cell
death (45–47). VacA inhibits the acid-secretory capacity of parietal
cells (62) and causes functional alterations in a variety of immune
cells. Inhibitory effects of VacA on T cells have been studied in the
most detail (63, 64), but B cells, eosinophils, mast cells, and dendritic
cells are also targeted (45–47).

Strains containing vacA alleles classified as s1, i1, or m1 (en-
coding the more active forms of VacA) are associated with a higher
risk of gastric cancer or premalignant lesions (such as intestinal
metaplasia) than strains classified as s2, i2, or m2 (34, 41, 52, 65).
In a mouse model, H. pylori strains producing s1/i1 forms of VacA

FIG 1 Diversity in amino acid sequences of CagA and VagA proteins. Dark blue coloration indicates regions of diversity that influence gastric cancer risk. (A) CagA is
a translocated into host cells through a type IV secretion system-dependent process. Within host cells, CagA undergoes tyrosine phosphorylation at sites known as EPIYA
motifs. Most CagA proteins contain multiple EPIYA motifs, which are designated EPIYA-A, EPIYA-B, EPIYA-C, or EPIYA-D based on the flanking sequences. Among
CagA proteins produced by different H. pylori strains, there is variation in the number and type of EPIYA motifs. EPIYA-D motifs are found almost exclusively in CagA
proteins produced by H. pylori strains from East Asia. Nucleotide sequence variation in an untranslated region upstream of the ATG start codon in the vicinity of an
AATAAGATA motif influences levels of CagA production. TS, transcription start site. (B) VacA is secreted by a type V (autotransporter) secretion system. A 140-kDa
VacA precursor protein undergoes cleavage of an amino-terminal signal sequence and C-terminal proteolytic processing, resulting in an 88-kDa secreted passenger
domain, a small secreted peptide, and a �-barrel domain localized to the outer membrane. There are three main regions of diversity within the 88-kDa passenger domain,
designated the s, i, and m regions; within each region, sequences can be classified into one of two main types (s1 or s2, i1 or i2, and m1 or m2). Multiple possible
combinations (s1/i1/i1, s2/i2/i2, s1/i2/m2, etc.) can be present in different H. pylori strains as a result of recombination.
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induced more severe and extensive intestinal metaplasia and in-
flammation in the stomach than strains producing s2/i2 toxins
(65). The increased risk of gastric cancer associated with strains
producing more active forms of VacA may be a consequence of
several actions, including the capacity of VacA to stimulate gastric
epithelial cell injury, alter parietal cell function and gastric acidi-
fication, and interfere with immune cell function.

Outer membrane proteins and DupA. The H. pylori genome
contains about 60 genes that are predicted to encode outer mem-
brane proteins (OMPs). While many OMP-encoding genes are
conserved among all H. pylori strains, others may be present or
absent in individual strains, and production of OMPs can be reg-
ulated by slipped-strand mispairing within polynucleotide repeat
regions. Two of the most extensively studied OMPs, BabA and
SabA, function as adhesins that mediate H. pylori binding to gas-
tric epithelial cells. BabA binds to the fucosylated Lewis b histo-
blood group antigen on host cells, and SabA binds to the sialyl
dimeric Lewis x glycosphingolipid (66, 67). In addition to its role
in mediating H. pylori adherence to epithelial cells, SabA can func-
tion as a sialic acid-dependent hemagglutinin and has a role in
nonopsonic activation of neutrophils (68).

Several studies have reported that infection with H. pylori
strains containing in-frame babA or sabA genes is associated with
an increased risk of gastric cancer, premalignant changes, or en-
hanced gastric inflammation, compared to infection with strains
that lack these genes or that harbor out-of-frame genes (69–72).
When challenged with a BabA-producing H. pylori strain, trans-
genic mice expressing the BabA receptor developed more severe
gastritis, atrophy, and anti-parietal cell antibodies than infected
wild-type animals (73). These results indicate that BabA-mediated
adherence modulates the outcome of infection.

Three other OMPs (HomB, HopQ and HopH [OipA]) have
been linked to gastric cancer. HomA and HomB are two closely
related H. pylori OMPs; individual strains may contain one or
both of the corresponding genes (74). Similarly, two forms of
HopQ (designated type I and type II) have been described; indi-
vidual strains may contain one or both of the corresponding genes
(75). Strains containing homB or type I hopQ or in-frame hopH
(oipA) alleles have been associated with an increased risk of gastric
cancer, compared to strains lacking these features (72, 76–78).
The presence of an in-frame hopH (oipA) allele contributes to
development of gastric cancer in Mongolian gerbils and has been
linked to increased gastric inflammation in mice (29, 79). In com-
parison to a wild-type strain, a homB mutant strain exhibited di-
minished adherence to gastric epithelial cells and reduced capacity
to stimulate production of the proinflammatory cytokine inter-
leukin 8 (IL-8) (74). HopQ is required for maximal activity of the
cag T4SS (80). Cell culture experiments suggest that HopH
(OipA) can contribute to H. pylori adherence (81) and also may
have a role in regulating expression of proinflammatory cytokines
and other processes in gastric epithelial cells (82). HopH (OipA)
does not contribute to stimulation of cytokine expression unless
the cag PAI is also present (81, 83).

Finally, a gene designated dupA (for “duodenal-ulcer-promoting
gene”), located within a nonconserved region of the H. pylori
chromosome known as the plasticity region, is reported to be a
marker of gastric cancer risk. Strains containing this gene have
been associated with a reduced risk of gastric atrophy and gastric
cancer compared to strains lacking this gene (84, 85). There is
variation among strains in the length of the dupA ORF, and this

may also influence the risk of gastric cancer (86, 87). The dupA
gene exhibits weak sequence similarity to virB4 components of
type IV secretion systems, but at present it is not known whether
dupA has a similar activity in H. pylori. DupA is reported to have a
role in stimulating IL-8 production in gastric epithelial cells and
promoting H. pylori survival at low pH (84), and strains contain-
ing active forms of the dupA gene induce proinflammatory cyto-
kine production in mononuclear cells (86).

Associations of specific OMPs or dupA with gastric cancer have
been detected less consistently than associations between the cag
PAI or vacA and gastric cancer. Nevertheless, a substantial body of
experimental evidence indicates that several OMPs and dupA in-
fluence H. pylori-host interactions, and as discussed below, there
is an association between the presence of several of these genes and
the presence of the cag PAI and type s1 vacA. These OMPs and
DupA may contribute to gastric cancer pathogenesis by augment-
ing H. pylori adherence, enhancing the activity of the cag T4SS,
influencing H. pylori-induced signaling in host cells, or stimulat-
ing proinflammatory immune responses.

RELATIONSHIPS AMONG STRAIN-SPECIFIC DETERMINANTS
OF GASTRIC CANCER RISK

Intraspecies genetic recombination occurs commonly in H. pylori,
and the species is considered to have a recombinational popula-
tion structure (12, 13). Therefore, most polymorphisms are dis-
tributed randomly among individual strains (12). Interestingly,
the strain-specific features associated with gastric cancer (Table 1)
tend to be distributed nonrandomly, even though these genes are
localized at unlinked sites in the H. pylori chromosome. For ex-
ample, the majority of cag PAI-positive strains contain type s1
vacA, babA, homB, type I hopQ, and in-frame oipA alleles, and the
majority of cag PAI-negative strains contain type s2 vacA, type II
hopQ, and out-of-frame oipA alleles and lack babA and homB (51,
69, 74, 75, 81, 83, 88, 89).

The nonrandom distribution of strain-specific features associ-
ated with gastric cancer (Table 1) is presumably attributable to
selective forces that favor certain combinations. Recent studies in
cell culture models have revealed functional interactions among
these proteins that may account for the observed associations. For
example, both CagA and VacA are used by H. pylori to acquire
nutrients such as iron from host cells (90), and this process may
require a balanced activity of the two proteins. In addition, the
effects of CagA on gastric epithelial cells are attenuated by
the presence of VacA, and the actions of VacA are attenuated by
the presence of CagA (91–94). VacA stimulates degradation of
CagA through autophagy (61), which may account for some of the
observed antagonism. Functional interactions between OMPs and
the T4SS also have been reported (80, 95). For example, BabA and
HopQ can potentiate cag T4SS-dependent phenotypes (80, 95). In
addition, cag-positive strains stimulate expression of a host cell
gene required for synthesis of sialyl Lewis x (the receptor for the
SabA adhesin) (96). By inducing higher levels of gastric inflam-
mation, cag-positive strains can indirectly stimulate increased
SabA-mediated attachment of the bacteria to epithelial cells.

Several studies have analyzed the correlation between multiple
strain-specific features and the development of gastric cancer.
These studies indicate that the risk of gastric cancer is highest in
persons infected with strains harboring multiple constituents
listed in Table 1 (e.g., cagA, type s1 vacA and babA) (34, 69).
Strains harboring few or none of these features are less frequently
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associated with gastric cancer. Collectively, these studies suggest
that there is a spectrum of strains, ranging from those associated
with a very high incidence of gastric cancer to those associated
with a very low risk of gastric cancer.

GEOGRAPHIC VARIATION IN GASTRIC CANCER INCIDENCE

The incidence of gastric cancer varies markedly throughout the
world, for reasons that are not well understood. Since the inci-
dence of gastric cancer is particularly high in East Asia (3), efforts
have been directed toward comparing H. pylori isolates from East
Asia with isolates from other parts of the world. One of the most
striking observations is that several of the strain-specific features
linked to high gastric cancer risk (including the cagA PAI, type s1
forms of vacA and babA) are present in nearly all East Asian H. py-
lori isolates (88, 97, 98). Conversely, cagA-negative strains con-
taining type s2 vacA alleles and lacking babA are commonly found
in the United States and Western Europe but are rarely isolated in
East Asia (51, 88, 89). The predominance of strains harboring
cagA, type s1 vacA, and other strain-specific markers linked to
gastric cancer (Table 1) may be one of the factors contributing to
a high rate of gastric cancer in East Asia.

Most H. pylori isolates from East Asia constitute a distinct
group based on multilocus sequence typing of housekeeping genes
(99), and genes under positive selection (including cagA and vacA)
are highly divergent in East Asian strains compared to strains iso-
lated elsewhere in the world (100). The distinctive properties of
CagA in East Asian strains have been studied in the most detail.
Specifically, a CagA tyrosine phosphorylation motif (EPIYA-D)
found exclusively in East Asian strains is associated with a higher
level of CagA tyrosine phosphorylation within cells and greater
cellular effects than are seen with non-Asian forms of CagA (37,
101, 102). Correspondingly, strains producing CagA proteins with
EPIYA-D motifs have been associated with a higher risk of gastric
cancer than strains producing other forms of CagA (103). There
has been relatively little effort to analyze the functions of other
proteins besides CagA in East Asian strains compared to non-
Asian strains, but East Asian forms of AlpA and AlpB outer mem-
brane proteins are reported to have different effects on signaling in
gastric epithelial cells than forms of AlpA/AlpB found elsewhere in
the world (104). Thus, specialized properties of CagA and other
constituents in East Asian H. pylori strains may contribute to the
high incidence of gastric cancer in that part of the world. Varia-
tions in host genetics and environmental factors are also likely to
contribute to geographic differences in gastric cancer incidence.

RELATIONSHIP BETWEEN BACTERIAL AND HOST RISK
FACTORS FOR GASTRIC CANCER

Multiple host-related factors are known to be determinants of
gastric cancer risk (105). In the context of H. pylori infection,
polymorphisms in genes involved in cytokine production have
been studied in the most detail (6, 105, 106). An association be-
tween gastric cancer risk and polymorphisms linked to IL-1� pro-
duction is relevant because this cytokine not only contributes to
gastric inflammation but also regulates gastric acid secretion. Sev-
eral studies have shown that the contribution of specific bacterial
factors to gastric cancer risk is augmented in persons who have
specific genetic risk factors. For example, the risk of gastric cancer
is particularly high in persons harboring certain polymorphisms
in genes encoding cytokines (IL-1�, tumor necrosis factor [TNF],
and IL-10) who are infected with H. pylori strains containing type

s1 vacA and cagA (34, 106, 107). These studies indicate that the risk
of gastric cancer is determined by both bacterial and host factors.

The composition of the human diet is another factor that in-
fluences gastric cancer risk. For example, a high-salt diet and a diet
low in fruits and vegetables have been associated with increased
gastric cancer risk (3, 108). A relationship between composition of
the diet and strain-specific H. pylori risk factors for gastric cancer
also has been observed in experiments with animal models of gas-
tric cancer. Specifically, Mongolian gerbils infected with a cag PAI-
positive strain and fed high-salt or low-iron diets had an increased
incidence of gastric cancer compared to infected animals fed a
regular diet, whereas the high-salt and low-iron diets did not con-
fer an increased risk of gastric cancer in animals infected with a
cagA mutant strain or uninfected animals (30, 31). The mecha-
nisms by which dietary composition influences gastric cancer risk
are not yet well understood. Changes in H. pylori gene transcrip-
tion in response to the composition of the diet may be one mech-
anism. For example, H. pylori produces increased levels of CagA
when exposed to high-salt conditions (109), and low-iron condi-
tions stimulate enhanced activity of the cag T4SS (30). These re-
sults in animal models suggest that certain dietary risk factors for
gastric cancer are relevant mainly in persons who are infected with
cag PAI-positive strains.

Multilocus sequence typing of housekeeping genes in H. pylori
isolates from human populations throughout the world has al-
lowed the identification of groups of strains with distinct geo-
graphic distributions (99). The observed patterns of geographic
diversity suggest that H. pylori has been present in humans for at
least 100,000 years (110), that H. pylori accompanied humans out
of Africa in multiple waves of migration beginning about
60,000 years ago (111), and that H. pylori strains subsequently
diversified in relative isolation in various parts of the world (111).
Evolutionary theory posits that prolonged association of patho-
genic organisms with hosts should lead to a progressive loss of
virulence. Since H. pylori has been associated with humans for at
least 100,000 years, one might anticipate a gradual reduction in
the capacity of these bacteria to cause disease.

The development of a commensal or symbiotic relationship
between H. pylori and humans is presumably dependent on co-
evolution of the bacteria and human hosts over a prolonged time
period. In many parts of Africa, a high proportion of humans
carry H. pylori, but the rate of gastric cancer is relatively low (a
phenomenon known as the African enigma) (3). Similarly, a re-
cent study in the country of Colombia revealed that humans of
African origin, when infected with H. pylori strains of African
origin, had relatively benign gastric pathology with little evidence
of progression to gastric cancer (112). The low incidence of dis-
ease in these populations illustrates a relationship between H. py-
lori and humans reflecting coevolution of both species over a pro-
longed period of time. Introduction of H. pylori into a
noncoevolved human population may result in a less favorable
outcome. In support of this hypothesis, mismatch between the
geographic origin of H. pylori strains and the geographic ancestry
of human hosts has been associated with more severe gastric pa-
thology and development of premalignant gastric lesions (112).
These findings bolster the view that gastric cancer risk is influ-
enced by both bacterial and host factors and suggest that disrup-
tions in coevolved bacterial-human relationships may contribute
to elevated gastric cancer risk.
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FUTURE PROSPECTS

Comparison of H. pylori strains isolated from patients with gastric
cancer to isolates from patients with non-malignant gastric histol-
ogy has led to the identification of multiple strain-specific constit-
uents that contribute to gastric cancer pathogenesis (Table 1).
Most previous studies have analyzed H. pylori strains isolated
from single gastric biopsy specimens obtained at the time when
gastric cancer was diagnosed. In future studies, more robust sam-
pling approaches will allow analysis of H. pylori strains at earlier
time points (prior to the development of gastric cancer) and will
allow the detection of multiple strains of H. pylori within individ-
ual stomachs. Inhibition of T4SS-mediated phenomena has been
observed in vitro when cell lines are coinfected with two different
H. pylori strains (113), and similarly, diminished severity of dis-
ease has been observed in human subjects coinfected with cagA-
positive and cagA-negative strains (114). Therefore, further stud-
ies of the functional consequences of coinfection with multiple
strains of H. pylori are warranted.

Thus far, only a few candidate strain-specific H. pylori genes
have been evaluated to detect possible links to gastric cancer, and
often the analysis has been limited to a determination of whether
a gene is present or absent. In future studies, it will be important to
use a more comprehensive approach for analyzing H. pylori ge-
netic variation to permit analysis of a larger number of strain-
specific bacterial factors. In addition to determining whether
genes are present or absent, important insights will be gained by
investigating whether the encoded proteins are produced, analyz-
ing levels of gene transcription or protein production, and analyz-
ing variations in gene sequences that are linked to variations in
protein function. It will also be important to investigate further
the functions of the strain-specific H. pylori features listed in Ta-
ble 1 as well as newly identified strain-specific constituents in cell
culture and animal models and thereby elucidate the mechanisms
by which these factors contribute to gastric cancer pathogenesis.

Recent studies have revealed functional interactions among
several bacterial factors linked to gastric cancer pathogenesis (91–
94). Developing an improved understanding of these functional
interactions and the effects of such interactions on gastric cancer
pathogenesis is also an important goal. For example, since VacA
can inhibit the actions of CagA in cell culture models, it will be
important to determine whether imbalances in VacA and CagA
production can influence gastric cancer risk.

Further investigation of the geographic variation in gastric cancer
incidence is also warranted. In particular, there has been relatively
little effort thus far to evaluate whether the variations in amino acid
sequences of H. pylori proteins in strains from different geographic
regions are accompanied by alterations in protein function and
whether this sequence variation influences the development of gastric
cancer. It will also be important to investigate further the coevolved
relationships between H. pylori and humans that minimize the risk of
gastric cancer, as well as the molecular basis by which disruption in
these relationships leads to increased cancer risk.

In summary, a large body of evidence indicates that there is a
correlation between the risk of gastric cancer and strain-specific
features of H. pylori strains, and studies in cell culture systems and
animal models provide mechanistic support for the observed cor-
relations. In future studies, it should be possible to define more
clearly the role of strain-specific H. pylori constituents in gastric
carcinogenesis. A better understanding of this topic may lead to

the development of improved methods to identify H. pylori-in-
fected persons at high risk for development of gastric cancer, so
they can be targeted for therapeutic interventions.
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