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Abstract
MicroRNAs play important regulatory roles in eukaryotic lineages. In this paper, we

employed deep sequencing technology to sequence and identify microRNAs inM. incog-
nita genome, which is one of the important plant parasitic nematodes. We identified 102M.

incognitamicroRNA genes, which can be grouped into 71 nonredundant miRNAs based on

mature sequences. Among the 71 miRANs, 27 are known miRNAs and 44 are novel miR-

NAs. We identified seven miRNA clusters inM. incognita genome. Four of the seven clus-

ters,miR-100/let-7,miR-71-1/miR-2a-1,miR-71-2/miR-2a-2 andmiR-279/miR-2b are

conserved in other species. We validated the expressions of 5M. incognitamicroRNAs,

including 3 known microRNAs (miR-71,miR-100b and let-7) and 2 novel microRNAs

(NOVEL-1 and NOVEL-2), using RT-PCR. We can detect all 5 microRNAs. The expression

levels of four microRNAs obtained using RT-PCR were consistent with those obtained by

high-throughput sequencing except for those of let-7. We also examined howM. incognita
miRNAs are conserved in four other nematodes species: C. elegans, A. suum, B.malayi
and P. pacificus. We found that four microRNAs,miR-100,miR-92,miR-279 andmiR-137,
exist only in genomes of parasitic nematodes, but do not exist in the genomes of the free liv-

ing nematode C. elegans. Our research created a unique resource for the research of plant

parasitic nematodes. The candidate microRNAs could help elucidate the genomic structure,

gene regulation, evolutionary processes, and developmental features of plant parasitic

nematodes and nematode-plant interaction.

Introduction
Meloidogyne incognita is a world-wide serious plant pathogen that can infect almost all culti-
vated plants and cause billions of dollars in losses annually [1]. Currently, the draft genomic
sequences ofM. incognita [2] are available, which can help elucidate the biology of RKN and
their interaction with hosts.
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MicroRNAs are small (~22 nt) RNAs that target the mRNAs and regulate their degradation
and transcription [3, 4]. Increasing evidence has demonstrated that microRNAs play a key
function in many biological processes such as tissue identity, response to environmental stress,
and developmental timing [5]. MicroRNAs were first identified in C. elegans [6] and are highly
evolutionarily conserved in other species. MicroRNAs are found in various eukaryotes, includ-
ing plants [7, 8], animals [5, 9] and viruses [10]. It is an important step to identify microRNAs
in organisms for elucidating their genome biology and evolution [11]. Although there are hun-
dreds of microRNAs identified in different nematodes, such as C. elegans [12] and C. briggsae
[13], to our knowledge, there is no report of microRNAs of plant parasitic nematodes yet. The
availability of draft genomic sequences ofM. incognitamakes it possible to identify its micro-
RNAs on a genome-wide level.

This research used two major approaches to identify microRNAs: (1) the direct cloning
approach by cloning and sequencing the microRNAs enriched libraries [14, 15] and (2)
computational prediction [16–19]. Although increasing sequences available in the public data-
bases, including expressed sequence tags (ESTs), genome survey sequences (GSS), and high
throughput genomic sequences (HTGS), made it possible to identify microRNAs by computa-
tional prediction, there are two drawbacks for computational prediction of microRNAs. First,
the available nucleotide sequences in the database are limited. Computational prediction meth-
ods based on a homology search cannot predict new microRNAs if they do not exist in the
database. Second, it is hard to validate the predictions using experiments because of the high
false positive rate in computational prediction results. Recently, deep sequencing technology
has been extensively used in microRNA genes discoveries in many species [20–27]. In this
study, we employed the deep sequencing technology to sequence and identify microRNAs in
theM. incognita genome.

Methods

Preparation of specimens
Nematode inoculums were obtained from a population ofMeloidogyne incognita (Kofoid and
White) isolated from pepper root and were reproduced in greenhouse with pepper cultivar
Qiemen (Capsicum annuum L. cv), a RKN-susceptible cultivar. Inoculums consisted of freshly
hatched juveniles from egg masses. RKN J2 were concentrated and filtered off foreign matter
through a 1 mm pore size nylon sieve. Seedlings of pepper cultivars were grown in a green-
house (25°C–28°C). The samples were collected quickly. Then, the samples were snap-frozen
in liquid nitrogen and stored at -80°C.

Small RNA libraries construction and DNA sequencing
We extracted total RNA from each RKN samples (about 1 × 106 individuals) using TRIzol
reagent following the manufacturer’s recommended protocol (Invitrogen, USA). The RNA
quality was examined using Bioanalyzer (Agilent2100) with RIN>8.0. We collected and puri-
fied RNAs between 10–30 nt using 15% polyacrylamide gel electrophoresis (PAGE) for the
sample. After PAGE purification, we added a pair of adaptors to the ends of the small RNAs
according to the Illumina TruSeq Small RNA Library Prep protocol. In briefly, a 5’ adaptor
(Illumina, San Diego, CA, USA) was ligated to the 5’ ends of the small RNAs and the ligation
products were purified on Novex 15% PAGE. Then, a 3’ adaptor (Illumina) was ligated to the
first ligation product and further purified on Novex 10% PAGE. The small RNAs were con-
verted to cDNA by RT-PCR and then 6% TBE-Urea gel (Invitrogen) was used to purify the
amplification products. Finally, the DNA fragments were used for the high-throughput
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sequencing. The sequencing process was done in BGI (Beijing Genome Institute at Shenzhen)
using the Illumina Genome Analyzer according to the manufacturer’s instructions.

Preprocessing of microRNAs Sequencing Data
The raw data was processed by a bioinformatics’ pipeline and include the following steps: (1)
Remove low quality reads. Reads with quality score lower than 20 were removed. (2) Trim 3'
prime adaptor sequences. (3) Remove adaptor-only contaminants. (4) Collect short RNAs
ranging from 10 to 30 nt. Too short (<10 nt) and too long (>30 nt) reads were removed. (5)
Remove sequences with polyA tails. Raw data are available at NCBI-GEO with accession num-
ber: GSE24833.

Analysis ofM. incognitamicroRNAs
We grouped the identical clean reads into unique sequence tags (unitags). The abundance of
each unitag was indicated by the number of reads belonging to it. We used bowtie [28] to map
the unitags to the draft genome ofM. incognita, which was downloaded from wormbase
(WS205). We only used perfectly matched reads to identify microRNA genes. We employed
the miRDeep2 [29] to map sequencing tags. We only kept the candidate precursors with hair-
pin-like structures, which were perfectly mapped by sequencing tags. We then used the default
parameters of miRDeep2 to predict the precursors and the mature sequences of microRNA
genes. Finally, the candidate precursor and mature microRNAs were checked manually for sec-
ondary structure and sequenced profiles.

Then, we aligned mature microRNAs ofM. incognita to known microRNAs downloaded
from the miRBase database (version 21) [30] (http://www.mirbase.org/) with BlastN [31].
Those microRNAs with 80% identities and shared the same seed sequences (2–7 nt) and were
supposed to be orthologous and named after the known microRNAs. If the mature sequences
of two microRNA genes were identical, we treated them as the same microRNA genes with two
copies in the genome, such asmiR-100a-1 andmiR-100a-2 inM. incognita with mature
sequences both as uacccguagauccgaacuaguc. If the mature sequences of two microRNA
genes were different from less than three bases, we labeled them as derivations of the same
microRNA gene, such asmiR-100a-1 andmiR-100b, with mature sequences such as uaccc
guagauccgaacuaguc and aacccguagauccgaacuagucu, respectively.

We grouped the microRNA genes into a cluster if their distances in the genome were less
than 2000 bp.

Abundance estimate of each class of small RNAs
Clean reads were aligned to each class of small RNAs sequences, including miRNAs, rRNA,
tRNA, snRNA and mRNA, using bowtie [28] with default parameters except the perfect match
(-v 0). Then total reads of each class were counted to estimate the abundance of expression.

Validation of the expressions of fiveM. incognitamicroRNAs using
RT-PCR
Nematodes of fresh hatched J2 were firstly exposed to freeze thaw cycles fusing liquid nitrogen
and a 30°C water bath three to four times. Then the total RNAs were extracted using the TRIzol
reagent (Invitrogen). The cDNA fragment was synthesized from total RNA using Superscript
III reverse transcriptase (Invitrogen). The microRNA primers designed according to the pre-
mature microRNA sequences (S2 Table).
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Real-time qPCR was performed on CFX96 Real-time PCR Detection System (Bio-Rad,
USA) with 1.1 software, as follows: 95°C for 30 s, followed by 40 cycles of 95°C for 10 s, 58°C
for 30 s, using qPCR SYBR Premix Ex Taq II for fluorophore SYBR green with fluorescein
(Takara, Japan). Standard curves were established with five serial dilutions of first-strand
cDNAs, ranging from 1 to 1/10 000. As reference, theM. incognita 18S ribosomal cDNA (Gen-
eBank accession number U81578) was amplified using the primers 18S-F-852 and 18S-R-966
[32]. Relative quantity of gene expression was calculated and normalized to 18S ribosomal. The
real-time qPCR were carried out with 5 technical repeats. We used the values of 2-ΔCt as the
gene expression abundance level [33].

Identification and phylogenetic analysis of Argonaute protein family inM.
incognita
The Argonaute protein family, which is defined by the presence of PAZ (Piwi-Argonaute-
Zwille) and PIWI domains, was first identified in plants [34]. The Argonaute protein family
could be phylogenetic divided into the Ago subfamily and the Piwi subfamily [35]. In general,
the expression of Piwi proteins is restricted to the germ line, where they bind Piwi-interacting
proteins (piRNAs). We identified the Argonaute family proteins based on the Pfam domains.
Firstly, we searched the PAZ (PF02170) and Piwi (PF02171) domains in theM. incognita pro-
teins using hmmsearch [36] against Pfam database with the e-value less than 0.01 [37]. The
proteins with both PAZ and Piwi domains were identified as Argonaute family proteins. In
total, we identified 15 Argonaute family proteins in theM. incognita draft genome. We also
used the same method to identify Argonaute proteins from the genome of C. elegans, B.malayi,
B. xylophilus andM. hapla, which were downloaded fromWormBase (version WS243). We
aligned Argonaute family proteins from five genomes using MAFFT [38]. Then we trimmed
the alignment using trimAL [39] with parameter–automated1. Finally, we constructed a phylo-
genetic tree using PhyML [40] with default parameters.

Results

Overview of the small RNA sequencing results
We obtained 18,509,803 raw reads from the small RNA library of J2 juveniles ofM. incognita.
After removing low-quality bases, contaminants and masking adaptor sequences, we obtained
16,020,648 clean reads. The clean reads were mainly distributed between 15 and 23 nt
(15,005,173, 93.7%) and had a peak length of 23 nt (Fig 1A). We were able to group the clean
reads into 761,538 unique tags based on their sequence similarity. The most abundance
sequence tag had 1,925,637 reads. 90.6% of the clean reads (14,515,814) can be mapped onto
the draft genome sequences ofM. incognita using bowtie [28] with no mismatches (-v 0).

To annotate the small RNAs, we aligned the clean reads against the microRNAs, tRNA,
rRNA, snRNA and mRNA sequences ofM. incognita and then counted the reads of each class.
There were 74.35%, 5.38% and 1.10% of clean reads mapped to predicted microRNA, protein
encoding and tRNA genes, respectively. There were 19.14% of clean reads mapped to other
classes, including rRNA, snRNA, and siRNA (Fig 1B). There were 9.4% of clean reads that
were unable to be mapped to theM. incognita genome with no mismatches. The top 10 most
abundance sequence tags were all microRNAs. The lengths of the microRNA reads were
mainly distributed between 18 and 23 nt, which include 86.34% of the total microRNA reads
(Fig 2).
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Identification and validation of microRNA genes ofM. incognita
We identified 102 candidate microRNA genes ofM. incognita (S1 Table) using miRDeep2 with
a score of more than 0. We then predicted the mature microRNA from precursor microRNAs.
The mature microRNAs were from 18 to 24 nt in length. We noted a significant bias of A and
U at the first position of mature microRNAs (Fig 3B). 94 out of 102 mature microRNAs started
with A or U (41 microRNAs started with A, 53 microRNAs started with U). The other parts of
precursor microRNAs besides mature microRNAs usually undergo the degradation process.
As a result, the mature microRNA had a significantly deeper coverage than those of the other
parts of microRNA genes, such as the star microRNA (miRNA�), the other strand of mature
microRNA on the hairpin structure of precursor microRNA, and loop sequences (the
sequences between mature miRNA and miRNA�). Most of the putative pre-miRNAs had a
very high read depth in mature arm and a much low depth in the other arm with a typical hair-
pin structure (Fig 4).

Based on mature microRNA sequence, we were able to group 102 microRNAs into 71
unique microRNA genes. Among them, 25 microRNA genes had multiple copies in the draft
genome ofM. incognita. From those 71 unique miRNAs, we identified 27 known miRNA fami-
lies, which are known in the miRBase database (Table 1).

We selected 5 microRNAs for validation using RT-PCR, including 3 known microRNAs
and 2 novel microRNAs ofM. incognita. All of the 5 microRNAs could be detected using real

Fig 1. General description of the small RNA sequences ofM. incognita. (A) Size distribution of the raw
reads ofM. incognita small RNAs. (B) Classification of the small RNA reads.

doi:10.1371/journal.pone.0133491.g001

Fig 2. Size distribution of reads frommicroRNA, protein encoding genes and others.

doi:10.1371/journal.pone.0133491.g002
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Fig 3. Distribution of bases at each position of maturemicroRNAs. The first base of mature microRNA tend to be A and U.

doi:10.1371/journal.pone.0133491.g003

Fig 4. min-miR-1 hairpin structure and sequencing profile. (A) Hairpin structure predicted with RNAfold. (B) Proportion of small RNA tags mapped to the
pre-miRNA ofmin-miR-1.

doi:10.1371/journal.pone.0133491.g004
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time RT-PCR with the mature microRNAs as a primer. The microRNA expression was deter-
mined using real time RT-PCR by 2-ΔCt measurements. The expression levels of four micro-
RNAs,miR-71,miR-100b, NOVEL-1 and NOVEL-2, were consistent with those obtained by
high-throughput sequencing. The expression levels ofmiR-71 andmiR-100b were much higher
than those of NOVEL-1 and NOVEL-2 in both results of sequencing and qRT-PCR. However,
the expression abundance of let-7 detected by real time RT-PCR is much higher than that by
high-throughput sequencing (Fig 5).

Identification of microRNA clusters inM. incognita
MicroRNAs are often clustered in the genome [30]. We identified seven microRNA clusters in
M. incognita genome (Table 2), and four of them were also found in other species.

MiR-100 orthologues are often found in clusters with let-7 and the clusters range in size
from ~300 to 4000 bp [41]. The microRNA cluster let-7 andmiR-100 has been found in Brugia
malayi [41], Drosophila [42] and humans [43]. In theM. incognita genome, themiR-100 is
clustered within ~350 bp of let-7. Many organisms express multiplemiR-100 paralogues. There
are four paralogues (miR-100a through 100d) in B.malayi. We have identified 3miR-100 para-
logues inM. incognita. The sequences alignment of themiR-100 orthologues from human, fly,
B.malayi, A. suum, B. xylophilus, andM. incognita showed that the seed sequence, ACCCGUA,

Table 1. KnownmiRNA families identified inM. incognita.

Name Mature Length GC% Reads number

miR-71 ugaaagacauggguaguugaga 22 40.9% 3489388

miR-100b aacccguagauccgaacuagucu 23 47.8% 2870101

miR-124 uaaggcacgcggugaaug 18 55.6% 1639977

miR-1 uggaauguaaagaaguau 18 27.8% 880854

miR-72 aggcaagauguuggcauugcuga 23 47.8% 495031

miR-92 uauugcacucguuucggccu 20 50.0% 313210

miR-252 cuaaguaguagugccgcauuuaa 23 39.1% 65196

miR-2a uaucacagccugcuuuagcgua 22 45.5% 57375

miR-87 gugagcaaaguuucaggugugc 22 50.0% 42872

miR-100a uacccguagauccgaacuaguc 22 50.0% 28784

miR-2b uaucacaguucgauauggcc 20 45.0% 25154

miR-50 ugauaugucuuguauucuug 20 30.0% 20539

miR-184 uggacggaagucugauaaggag 22 50.0% 17866

miR-81 ugagaucauaccagaucac 19 42.1% 15488

miR-86 uaagugaauaucuugccacaagcu 24 37.5% 9234

miR-279 ugacuagauccacacucaucu 21 42.9% 9908

miR-137 agguauucuccguggugaugaca 23 47.8% 6368

miR-59 acgaaucguuugcacaucgguguu 24 45.8% 6103

miR-79 auaaagcuagauuaccagag 20 35.0% 5635

miR-67 ucacaacccccuagaguucgcua 23 52.2% 5292

miR-239 uuuguacuagccaaaaugucugca 24 37.5% 4576

miR-36 ucaccgggaauuuauucaug 20 40.0% 698

let-7 ugagguaguagguuguauaguu 22 36.4% 223

miR-242 uugcguaggcaucuugucag 20 50.0% 121

miR-240 cacuggccuuucaaaccu 18 50.0% 60

miR-76 uucguuguuucugaaaccugaa 22 36.4% 12

miR-790 acgguuugacaaaguuau 18 33.3% 9

doi:10.1371/journal.pone.0133491.t001
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conserved in these species (Fig 6A). It is interesting thatmiR-100 has been lost in free living
nematodes such as C. elegans [44] and P. pacificus (Fig 6B).

ThemiR-71/miR-2 cluster is found in two locations inM. incognita. Previous functional
analysis showed that Drosophila miR-2 is associated with the suppression of embryonic apo-
ptosis [45]. ThemiR-71 of C. elegans is related to lifespan, stress response [46]. ThemiR-71 of
C. elegans also was reported to function in neurons to promote germline-mediated longevity
and facilitates the localization and activity of DAF-16 in the intestine [47]. ThemiR-71/miR-2
cluster was also found inH. contortus [48], which also suggest the functional linkage of these
two miRNAs.

ThemiR-279 andmiR-2b were also in a close cluster inM. incognita. ThemiR-279 was
reported to regulate the JAK/STAT pathway to drive rest:activity rhythms in Drosophila [49].

Fig 5. The expression abundance of microRNAs detected by real time RT-PCR (bars) and by high-
throughput sequencing (lines).

doi:10.1371/journal.pone.0133491.g005

Table 2. List of the miRNA clusters ofM. incognita.

Contig Position Strand Cluster Reported in other nematode

MiV1ctg20 43319–43619 + miR-71-1 H. contortus [48]

miR-2a-1

MiV1ctg221 69290–69588 - miR-71-2

miR-2a-2

MiV1ctg1924 3647–4158 + let-7 B. malayi [41]

miR-100

MiV1ctg644 18822–19030 - miR-279 B. pahangi [48]

miR-2b

MiV1ctg27 99326–99923 - NOVEL-1-1

NOVEL-39

MiV1ctg2865 1792–2014 + miR-240

NOVEL-30

MiV1ctg1143 4187–4580 + NOVEL-12

NOVEL-11

NOVEL-14

doi:10.1371/journal.pone.0133491.t002
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The highly expressed microRNA genes inM. incognita
Few microRNA genes are highly expressed in our sequencing data. The numbers of reads for
the top 10 abundance microRNAs are shown in Fig 7. The first two abundance microRNAs,
miR-71 andmiR-100b, have 6,359,489 reads, which are approximately 50% of the total clean
reads. The very high expression level indicated that these miRNAs may be important to the life
ofM. incognita. Interestingly, there are two microRNAs,miR-100 andmiR-92, that were highly
expressed inM. incognita, but were lost in C. elegans.

The most expressed microRNA,miR-71, has important roles in extending the life span in C.
elegans after germline removal [47]. ThemiR-71 regulates the DAF-16/FOXO in neurons to
enhance germline-mediated longevity [47]. It has also been reported thatmiR-71 can target the
TIR-1/Sarm1 adaptor protein to inhibit calcium signaling pathway [50].

The second most expressed microRNA,miR-100, was found to be an oncogene in human,
which is differently expressed in many cancer cells [51]. In nasopharyngeal cancer,miR-100
regulates the expression of Polo-like kinase 1 [52]. In adrenocortical cancer cells and in clear
cell ovarian cancer,miR-100 targets mTOR [53]. In acute myeloblastic leukemia,miR-100 tar-
gets the RBSP3 to regulate cell differentiation and survival [51].

The third highly expressed microRNA,miR-124, may function in the neural cell. The
humanmiR-124 is the most abundant microRNA expressed in neuronal cells although the dif-
ferentiation was not affected by the changing ofmiR-124 expression in neural cells [54]. The
micemiR-124 regulated the temporal progression of adult neurogenesis. SuppressingmiR-124
function during regeneration caused hyperplasias and neurogenesis delay in mice [55].

Fig 6. Conservation ofmiR-100, in sequence and genomic organization. (A) Sequence alignment of
miR-100microRNAs among different species (asu-: A. suum, bma-: B.malayi, bxy-: B. xylophilus, min-:M.
incognita, dme-: D.melanogaster, has-:H. sapiens). The seed sequences indicated with red square area. (B)
miR-100 and let-7were clustered together in diverse animals but themiR-100 had lost in the common
ancestor ofC. elegans and P. pacificus.

doi:10.1371/journal.pone.0133491.g006
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The fourth abundant microRAN,miR-1, is a muscle-specific microRNA. ThemiR-1 con-
trols both pre- and postsynaptic function in C. elegans neuromuscular junctions [56]. The
miR-92 gene has been found in B.malayi and A. suum. It is also a key oncogenic gene in colon
cancer in humans [57].

Lack of piRNA and piRNA pathway components inM. incognita
piRNAs are critical microRNAs for germ line cell development in many species. The genera-
tion of piRNAs employed a distinct mechanism that does not involve Dicer [58]. In C. elegans,
piRNA orthologs are only 21 nt in length with a 5' terminal U, which are known as 21U-RNAs.
The piRNAs are not conserved at the sequence level among other Caenorhabditis species and
do not have significant complementarity to targets [20]. Piwi proteins and piRNAs have been
found in worms, flies, sponges, and humans [59]. PiRNAs interact with Piwi proteins to form
RNA-protein complexes. The Piwi Argonaute ortholog PRG-1 is required for interaction with
piRNAs [60]. The piRNA-Piwi protein complex has been reported to play an important role in
silencing the retrotransposons in germ line cells through regulating both epigenetic and post-
transcriptional pathways, particularly those in spermatogenesis [61].

However, in our small RNA sequencing results of the J2 library forM. incognita, we did not
found any small RNAs with characteristics of piRNAs. Moreover, the Piwi-clade Argonaute
orthologs could not be found inM. incognita genome (Fig 8). Recently, the HEN1 ortholog
henn-1 was identified and proved to be required in piRNAs pathway in C. elegans [62]. How-
ever, we failed to detect any ortholog of the HEN1 methyltransferase inM. incognita genome.
Notably, the Piwi-clade Argonaute and HEN1 orthologs are also not found in the parasite nem-
atode B.malayi [63] and A. suum [64]. It was hypothesized that the piRNA pathway may be
lost in A. suum [64]. In a very recent study, it is also indicated that piRNAs exist only in nema-
tode C. elegans and closely related nematodes, and absent in all other nematode lineages [65].
The lacking of piRNAs and piRNA pathway components imply that the piRNA pathway may
also be lost inM. incognita.

Conservation of miRNAs ofM. incognita in other nematodes
We examined howM. incognitamiRNAs were conserved in other four nematodes species: C.
elegans, A. suum, B.malayi and P. pacificus. Table 3 shows howM. incognitamicroRNAs exist
at least in one other nematodes genome. There are 26M. incognitamicroRNAs conserved in at
least one other nematode genome. However, only sevenM. incognitamicroRNAs are con-
served in all five nematodes: let-7,miR124,miR-2,miR-71,miR-72,miR-79,miR-87. There are

Fig 7. The top 10 abundance miRNAs inM. incognita J2 library

doi:10.1371/journal.pone.0133491.g007
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four microRNAs,miR-100,miR-92,miR-279 andmiR-137, which exist only in genomes of par-
asitic nematodes A. suum, B.malayi, P. pacificus andM. incognita, but do not exist in the
genomes of the free living nematode C. elegans. These four microRNAs may have an important
function in the parasite process.

Discussion and Conclusions
In this study, we generated about 18 million raw microRNA reads. After preprocessing, we
eventually obtained a total of about 0.5 million non-redundant unitags with high quality reads.
However, only 43.44% (232307 out of 534834) of these non-redundant small RNA unitags
have a perfect match in the draftM. incognita genome. This could due to the following reasons:
(1) Genetic polymorphisms: It is well known that the genetic variation ofM. incognita is due to
the heteroploid phenomenon; (2) Incompleteness of the genome: The public-released draft
genome ofM. incognita was supposed to be only part of the genome [2]. There are lots of gaps
in the assembled genome; (3) Systemic errors: Sequencing errors can block perfect alignment.

In summary, this first report of microRNAs of plant parasitic nematodes and the genome-
wide identification ofM. incognitamicroRNAs have created a unique resource for the research

Fig 8. M. incognita lacks Piwi-clade argonaute proteins, which is essential for Pi-RNA biosynthesis.
All of argonaute proteins, containing Piwi and PAZ domain, were identified from the genome of C. elegans, B.
xylophilus, B.malayi,M. hapla andM. incognita and the multiple sequences alignment were carried out using
mafft with default parameters. The phylogenetic tree was constructed using PhyML and the number on the
branch indicated the bootstrap values.

doi:10.1371/journal.pone.0133491.g008
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of plant parasitic nematode. The candidate microRNAs will help researchers better understand
and refine their approach to studies on genomic structure, gene regulation, evolutionary pro-
cesses, and developmental features of plant parasitic nematodes and nematode-plant interac-
tion. However, further biological experiments are needed to verify the functionalities ofM.
incognitamicroRNAs and how they regulate their target genes in the developing process.
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