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Abstract: The Eµ-TCL1 transgenic mouse model represents the most widely and extensively used
animal model for chronic lymphocytic leukemia (CLL). In this report, we performed a meta-analysis of
leukemia progression in over 300 individual Eµ-TCL1 transgenic mice and discovered a significantly
accelerated disease progression in females compared to males. This difference is also reflected in an
aggressive CLL mouse model with additional deletion of Tp53 besides the TCL1 transgene. Moreover,
after serial adoptive transplantation of murine CLL cells, female recipients also succumbed to CLL
earlier than male recipients. This sex-related disparity in the murine models is markedly contradictory
to the human CLL condition. Thus, due to our observation we urge both careful consideration in the
experimental design and accurate description of the Eµ-TCL1 transgenic cohorts in future studies.

Keywords: chronic lymphocytic leukemia; sex difference; TCL1; transgenic mouse model; adoptive
transplantation

1. Introduction

Increasing understanding of the biology and pathogenesis of chronic lymphocytic leukemia
(CLL) has led to many breakthroughs in the treatment of this disease [1,2], which has been acquired
owing considerably to the use of animal models. To date, the Eµ-TCL1 transgenic mouse model is the
most widely used CLL model, indicated by over 500 citations of the original paper [3]. The ectopic
expression of the human T cell leukemia 1 (TCL1) oncogene under the control of the VH-promoter
and IgH-Eµ-enhancer in transgenic mice enables the development of a highly similar CLL-like disease
with 100% penetrance. The close resemblance of the human CLL disease and high penetrance in the
Eµ-TCL1 transgenic mice renders this model a popular tool to study pathogenic interactions leading to
CLL. The Eµ-TCL1 transgenic mice have been extensively used in the field of CLL research, in which
these mice either were intercrossed with a vast variety of mice bearing other mutations or served as
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a pre-clinical model for different treatment options [4–7]. Given their intensive usage, a thorough
understanding of CLL pathogenesis in Eµ-TCL1 transgenic mice is critical for the precise interpretation
of the acquired results.

The prevalent influences of sex on the disease phenotypes of many mouse lines have been
evaluated [8], including several mouse models for cancers [9–11]. Although the incidence and clinical
course of CLL is strongly different between men and women [1], the sex-related characteristics of
the CLL mouse model remain unexplored. Here, we report a profound difference in the leukemic
progression and overall survival between male and female Eµ-TCL1 transgenic mice, which is markedly
contradictory to the human CLL condition. Our finding based on the analysis of over 300 mice argues
for unbiased experiment design and more accurate description of the Eµ-TCL1 transgenic mouse
cohorts in future studies.

2. Materials and Methods

2.1. Mouse Cohorts and Housing Facilities

All mouse experiments were approved by the state authorities of North Rhine–Westphalia,
Germany (LANUV) #K17,12/04; #9.93.2.10.31.07.097; #9.93.2.10.31.07.098; #8.87-50.10.37.09.241;
#84-02.04.2014.A146; #84-02.04.2016.A058. All analyzed mice were hemizygote for the TCL1 transgene
(Eµ-TCL1tg/wt), had either a hybrid C3H/HeJ × C57BL/6 (B6C3) or a C57BL/6 (B6) genetic background,
and were housed in groups of up to five animals per cage in individually ventilated cages (IVC) in
three different animal facilities of the University Hospital of Cologne (Table 1). Mice housed in the
Institute of Experimental Medicine (EM) and the Institute of Pathology (PA) were specific pathogen-free
(SPF), mice housed in the facility of the CECAD Research Center were specific and opportunistic
pathogen-free (SOPF). Mice from four cohorts harbored additional, unaffecting mutations besides the
TCL1 transgene (Table 1).

Table 1. Characteristics of the analyzed Eµ-TCL1tg/wt mice.

No. Ref.
Genetic

Background
Additional,

Unaffecting Transgene
Housing
Facility

Number of Mice Median Survival (Days)

Total Male Female Male Female P
(Log-Rank)

1 [12] B6C3 - EM 41 17 24 378 339.5 0.0080

2 [13] B6C3 - EM 36 15 21 424 369 0.0808

3 [14] B6C3 - EM 38 16 22 454.5 376.5 0.0025

4 [15] B6 (J/N-mix)
Hemizygote CD19-Cre
transgene without any

loxP-flanked allele
PA 13 8 5 369 320 0.9621

5 - B6 (J/N-mix)
LoxP-flanked mutant

alleles without any
Cre transgene

EM 29 17 12 402 358 0.2971

6 - B6C3 - EM 43 21 22 425 404.5 0.2700

7 - B6C3
LoxP-flanked mutant

alleles without any
Cre transgene

EM 6 3 3 430 434 0.6537

8 - B6C3
LoxP-flanked mutant

alleles without any
Cre transgene

EM 22 10 12 429.5 400.5 0.5522

9 - B6C3 - EM 47 28 19 357 345 0.2092

10 - B6 (J) - CE 21 10 11 443 389 0.0466

11 - B6 (J/N-mix) - PA 22 15 7 360 308 0.0079

2.2. Mouse Blood Analyses

Procedures for differential blood counts and determination of CLL burden were previously
described [12–15]. Leukocyte count (LC) was measured with a SYSMEX XE-5000 system (Sysmex,
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Kobe, Japan). CLL cells defined as CD19+ CD5+ or IgM+ CD5+ were identified by flow cytometry
with either a BD FACSCanto (BD, Franklin Lakes, New Jersey), or a Gallios (Beckman Coulter, Brea,
CA, USA), or a MACSQuant VYB or a MACSQuant X (Miltenyi Biotec, Bergisch Gladbach, Germany).
Data were analyzed using Kaluza Flow Analysis Software (Beckman Coulter) or FlowJo™ Analysis
Software (BD).

2.3. Survival Determination

Mice reaching endpoint defined by the animal welfare law were euthanized by cervical dislocation.
All death events unrelated to leukemia were excluded from this study. Survival of Eµ-TCL1 transgenic
mice was recorded from birth until death or euthanasia. Survival of transplanted recipients was
recorded from the day of CLL injection until death or euthanasia.

2.4. Syngeneic Adoptive Transplantation

Freshly homogenized and filtered splenocytes from moribund Eµ-TCL1 transgenic mice of pure
C57BL/6 (J) genetic background were layered with Pancoll separating solution (PAN Biotech, Aidenbach,
Germany), followed by centrifugation and separation of interphase-concentrated mononuclear cells.
After several washing steps, 107 cells were injected intraperitoneally into sex-matched C57BL/6 (J)
mice between eight and 14 weeks of age, generating Passage 1 (P1) recipients. Similar procedures
were applied in Passage 2 (P2) transplantation, in which splenocytes of moribund P1 recipients were
injected into P2 recipients.

2.5. Statistical Analysis

All statistical differences of blood data were calculated with the Mann–Whitney test, comparisons
of the survival curves were calculated with the Mantel–Cox logrank test using Prism 8 (GraphPad
Software, San Diego, CA, USA).

3. Results

We assessed CLL progression in male and female Eµ-TCL1 transgenic mice in 11 independent
studies ([12–15] and unpublished data) regarding the percentage of CD5 positive B-CLL cells in the
murine peripheral blood (% CLL) at six and 12 months, and the overall survival (OS). Our meta-analysis
of all Eµ-TCL1tg/wt mice revealed a significantly slower CLL progression in males compared to their
female counterparts. At six months—the estimated time of disease establishment—% CLL was
significantly lower by 7.876% in males versus females (Males: n = 123; Mean ± SEM: 17.55% ± 1.435%.
Females: n = 121; Mean ± SEM: 25.24% ± 1.953%) (Figure 1A). At this time point, the mean leukocyte
count in blood (LC) was slightly lower in males compared to females by 3,136 cells/µL (Males: n = 174;
Mean ± EM: 18,420 ± 821.3. Females: n = 116; Mean ± SEM: 21,556 ± 3112) (Figure 1B). The difference
in CLL burden became more compelling at the fully developed disease state of 12 months, the sex
difference in % CLL increased to 15.37% (Males: n = 95; Mean± SEM: 43.87%± 2.758%. Females: n = 60;
Mean ± SEM: 59.24% ± 3.701%) (Figure 1C), the LC difference increased to 30,861 cells/µL (Males:
n = 97; Mean ± SEM: 45,581 ± 8,089. Females: n = 61; Mean ± SEM: 76,442 ± 16,062) (Figure 1D).

The substantial reduction in the number of females at 12 months as a consequence of their shorter
OS also indicates the more progressive leukemic courses in females. In 10 mouse cohorts that were
characterized independently by different investigators, a longer OS of the males could be congruently
observed, independently of the mouse genetic background and housing facility (Table 1). Altogether,
males (n = 160) had a median OS of 397 days, whereas the median OS of females (n = 158) was only
360 days, implying a significantly longer OS of 37 days in males than females (Figure 2A). Recently,
the Eµ-TCL1 transgenic mice have been crossed with other mouse lines lacking tumor-suppressor
genes [15] or harboring an additional oncogene [16], leading to accelerated leukemia development and
enhanced disease aggressiveness in these mice. To investigate whether these additional transgenic
alleles could compromise the male–female bias in the Eµ-TCL1 transgenic mice, we analyzed the OS of
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Eµ-TCL1tg/wt; CD19CreCre/wt; Trp53fl/fl (TCP) mice—a mouse model with features of high-risk human
CLL. Due to B cell-specific deletion of Tp53, the TCP mice showed earlier disease onset, accelerated
disease progression with occasional Richter transformation, and a significantly shorter lifespan than
Eµ-TCL1tg/wt mice [15]. Despite a smaller cohort of TCP mice in our analysis, a clear trend in sex
difference could also be observed. Independent of their genetic background and housing condition
(Table 2), TCP males had a survival benefit of 32 days compared to TCP female littermates (Males:
n = 29, median OS: 252 days, Females: n = 27, median OS: 220 days) (Figure 2B). This result suggests
that the sex difference in leukemia development might be passed on to other mouse models with
additional genetic lesions that were crossbred with the Eµ-TCL1 transgenic mice. Of note, the shorter
survival in females appeared to be a sole effect of TCL1-induced CLL in mice, because wildtype (WT)
females lived longer than WT males in the same animal husbandry (Figure 2C). These WT mice are
littermates of the Eµ-TCL1tg/wt mice in cohort #3 and #5 (Table 1).
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Figure 1. Significant sex difference in chronic lymphocytic leukemia (CLL) progression in the
Eµ-TCL1tg/wt mice. (A) Significantly lower CLL load in the peripheral blood of males compared
to females at six months. Blood samples from tail vein were assessed by flow cytometry to determine
the CD5-positive CLL percentage in lymphocytes. Males: n = 123; Mean ± SEM: 17.55% ± 1.435%.
Females: n = 121; Mean ± SEM: 25.43% ± 1.953%. Mann–Whitney test: ** p = 0.0034. (B) Lower
leukocyte count in the peripheral blood (cells per µL) in male than female Eµ-TCL1tg/wt mice at six
months. Males: n = 174; Mean ± SEM: 18,420 ± 821.3; Females: n = 116; Mean ± SEM: 21,556 ± 3112;
Mann–Whitney test: * p = 0.0263. (C) Significantly lower CLL load in the peripheral blood of males
compared to females at 12 months. Males: n = 95; Mean ± SEM: 43.87% ± 2.758%. Females: n = 60;
Mean ± SEM: 59.24% ± 3.701%. Mann–Whitney test: *** p = 0.0007. (D) Lower leukocyte count in the
peripheral blood (cells per µL) in male than female Eµ-TCL1tg/wt mice at 12 months. Males: n = 97;
Mean ± SEM: 45,581 ± 8,089; Females: n = 61; Mean ± SEM: 76,442 ± 16,062; Mann–Whitney test:
p = 0.0897.
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Figure 2. Significant sex difference in the overall survival of Eµ-TCL1tg/wt and Eµ-TCL1tg/wt;
CD19CreCre/wt; Trp53fl/fl (TCP) mice. (A) Kaplan–Meier curves representing the overall survival of
160 male and 158 female Eµ-TCL1tg/wt mice showed significantly longer survival of males than females.
Median survival: Eµ-TCL1tg/wt males = 397 days; Eµ-TCL1tg/wt females = 360 days. Mantel–Cox logrank
test: **** p < 0.0001. (B) Kaplan–Meier curves representing the overall survival of 29 male and 27 female
TCP mice demonstrating the longer survival of males than females. Median survival: TCP males =

252 days; TCP females = 220 days; Mantel–Cox logrank test: p = 0.0619. (C) Kaplan–Meier curves
representing the overall survival of 27 male and 31 female wild type (WT) mice showed significantly
longer survival of females compared to males, in contrast to the sex difference observed in the Eµ-TCL1
transgenic mice. Median survival: WT males = 667 days, WT females = 801 days; Mantel–Cox logrank
test: * p = 0.0218.

Table 2. Characteristics of the analyzed Eµ-TCL1tg/wt; CD19CreCre/wt; Trp53fl/fl (TCP) mice.

No. Ref.
Genetic

Background
Housing
Facility

Number of Mice Median Survival (Days)

Total Male Female Male Female P
(Log-Rank)

1 [15] B6 (J/N-mix) PA 21 13 8 252 205.98 0.0223

2 - B6 (J) CE 35 16 19 256.5 227 0.2633
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Recently, the adoptive transplantation of murine CLL cells in immunocompetent mice,
which significantly accelerates the CLL course in recipients compared to the Eµ-TCL1transgenic
mice, is increasingly used, particularly in studies involving the CLL tumor microenvironment [14,17–19].
To determine if the sex difference in Eµ-TCL1tg/wt mice can also be observed in the adoptive transfer setting,
we performed sequential transplantation of Eµ-TCL1tg/wt leukemia cells in syngeneic, immunocompetent
recipient mice. Using strictly syngeneic donor and recipient mice of the C57Bl/6 (J) genetic substrain,
107 CLL cells from each leukemic donor were injected peritoneally into sex-matched WT recipients.
Here, Passage 1 (P1) male recipients lived 23 days longer than P1 females (Figure 3A), suggesting a
tendency of sex disparity in the transplantation model. In a second transfer into Passage 2 (P2) recipients,
a longer survival of 23 days could also be observed in P2 males compared to P2 females (Figure 3B),
which represents a significant difference due to the shortened survival of P2 recipients compared to
P1 recipients. In contrary to the sex-matched transplantation that always ensured engraftment and
CLL progression in recipient mice, some sex-mismatched transplantation of leukemia cells failed to
induce CLL, highlighting the importance of a sex-matched environment for CLL cells to engraft. In a
few cases where CLL cells could be detected in sex-mismatched recipients, mismatched recipients
had delayed disease onset and longer survival than sex-matched recipients receiving the same CLL
cell clones. Of note, both male and female leukemia cells could grow in sex-mismatched recipients,
which allows the sole effect of an immune response against the H-Y antigen to be excluded.Cancers 2020, 12, x 7 of 11 
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Figure 3. Significant sex difference in the survival of recipients after chronic lymphocytic leukemia
(CLL) transplantation. (A) Kaplan–Meier curves of Passage 1 (P1) wild type (WT) recipient mice after
syngeneic transplantation with murine CLL cells showing longer survival of males than females. Eleven
male donor clones were transplanted in 23 male recipients; Eleven female clones were transplanted in
20 female recipients. Median survival: P1 males = 94 days, P1 females = 71 days; Mantel-Cox logrank
test: p = 0.0517. (B) Kaplan–Meier curves of Passage 2 (P2) WT recipient mice after serial syngeneic
transplantation with murine CLL cells showing longer survival of males than females. Six P1 male
clones were transplanted in 19 male recipients; Five P1 female clones were transplanted in 13 female
recipients. Median survival: P2 males = 72 days, P2 females = 49 days; Mantel–Cox logrank test:
** p = 0.0024.
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4. Discussion

Our analyses of over 300 Eµ-TCL1tg/wt mice and 56 TCP mice, together with the serial adoptive
transplantation experiment revealed a significantly accelerated CLL progression followed by shorter
survival in females compared to males. Despite the variable factors that might interfere with data
acquisition such as husbandry, handling, and mouse genetic substrain, this sex difference in CLL
progression is highly consistent in our Eµ-TCL1tg/wt study cohorts. Over a decade of breeding the
Eµ-TCL1tg/wt mice with WT mice, the hereditary pattern in our cohorts allow the X-linked inheritance
of the TCL1-transgene to be excluded. Furthermore, the highly complex and heterogeneous genetic
landscape of murine TCL1 tumors was recently elucidated by whole exome sequencing, which did
not disclose major abnormalities in the sex chromosomes [20]. Although a causal genetic variation
in sex chromosomes cannot be entirely excluded at the moment, it seems more likely that our
observed difference between male and female Eµ-TCL1tg/wt mice is an effect of autosomal variants
or of sex-specific features such as hormones, metabolisms, or epigenetic alterations. These factors
are not only distinctive between the sexes but also have critical influences on cancer susceptibility
and tumor growth [21]. Interestingly, TCL1 as the oncogenic driver of this CLL mouse model was
shown to be regulated by estrogen [22,23], to be involved in critical cancer-related metabolic pathways
including glycolysis [24,25], and to inhibit DNA methylations [26,27]. Moreover, the stark differences
in the immune cell subsets [28] and immune responses [29] between male and female mice might
also contribute to the unequal leukemic growth, particularly in a malignancy strongly dependent on
the immune niche such as CLL [18,30]. Thus, further studies to compare the molecular signatures of
leukemic and immune cells in males versus females, or analyses of CLL development in Eµ-TCL1tg/wt

mice with hormone therapy might be helpful approaches to identify the determinant factors underlying
this sex difference.

In particular, our observation revealed a discrepancy of sex influence on disease progression in
the Eµ-TCL1 transgenic mouse model compared to CLL patients. Men are not only twice as likely
to develop CLL, but also have a worse prognosis than women [1]. Several studies have consistently
reported that female CLL patients had more benign clinical courses including reduced incidence,
superior 10-year survival, and better treatment response [31–33]. In CLL cases with unmutated IGHV
genes that can be modelled in the Eµ-TCL1 transgenic mice [20,34], female patients also showed
significantly longer survival [32]. Although the explicit elements underlying the gender disparity
in human CLL still remain largely unknown, the levels of circulating sex hormones or altered DNA
methylation in sex-related gene promoters have been suggested to be relevant factors contributing to
the better prognosis of women [35,36].

This sharp contradiction to the human condition in the Eµ-TCL1 transgenic mice might represent a
drawback in modelling CLL and requires further investigations. Meanwhile, this sex difference should
be promptly addressed during experimental design, data interpretation, and publications. First and
foremost, comparisons between a male-excessive and a female-excessive cohort must be avoided [37].
Moreover, the generation of additional CLL models should be facilitated [38,39], with consideration to
any possible disparity in CLL development between the sexes.

5. Conclusions

The use of both sexes and of sex-matched animal cohorts has been implemented in the standard
procedure for animal studies [40] and should be reported transparently and precisely in publications.
However, the number of male and female mice was only specified in a very limited number of papers
involving the Eµ-TCL1 transgenic mice, most likely due to unawareness of the significant sex difference
in this model. Based on the results of this study, together with the report on the importance of the
genetic background of Eµ-TCL1 transgenic mice in the adoptive transplantation setting [41], we urge for
more transparent, accurate descriptions of animal models in future publications, including specification
of the male-to-female ratio in each study cohort and the accurate genetic substrains of the mice.
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