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Abstract: The increased demand for water resources due to urban population and economic growth
has worsened the urban water crisis. In order to address this issue, a policy of “developing a
water-saving society” (namely, water-saving society policy) has been implemented in some Chinese
cities. This study takes 285 cities at the prefecture level and above as the sample and uses the
propensity score matching (PSM) method to analyze the effect of China’s urban water-saving society
policy on the reduction of water consumption per CNY 10,000 gross domestic product (GDP) from
2005 to 2017. The results show that the water-saving society policy significantly (p < 0.01) reduced
water consumption in the study period; however, the effects differed between cities with different
water resource endowments, economic development level, and urban scale. Specifically, there was a
positive water consumption reduction effect in cities in humid areas, with low economic development,
or of large scale, while the effect was limited in cities in arid areas, with high economic development,
or of small scale. Therefore, for areas where water resource supply is insufficient, water-saving policy
should be designed and implemented suiting local conditions, and it is also necessary to explore
more water sources.

Keywords: water-saving society policy; water consumption; propensity score matching; treatment
effect; water scarcity

1. Introduction

Water is one of the most important natural resources, which supports not only ecosystem
sustainability but also the development of almost all sectors [1]. However, as water demand continues
to increase and reaches its peak, human water use is beyond sustainable levels throughout the
world [2]. Due to the irreplaceability of water resources in the development of cities, rapid population
growth, fast urbanization, increasing economic development, unprecedented technological innovations,
drastic land-cover alternations, and climate change have inevitably led to a rapid growth in urban
water demand and a severe water supply crisis [3,4]. In some particular industries, such as iron
and steel industry, tremendous contributions to their rapid development are highly reliant on the
intensive water consumption [5,6]. Besides high water consumption industries, households are also
the main consumers of water resources [7]. Psychosocial and behavioral factors affect the intention of
consumers to carry out water-saving actions [8,9], causing differences in water consumption between
households. Additionally, large amounts of fresh water, soil water, and related virtual water “trade”
are playing vital roles in the sufficient supply of food [10,11]. Competition for water and the balance
between supply and demand for food are also widely concerned [12–14]. Compared with the growing
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water demand, the supply of water from traditional sources is unsatisfactory, due to environmental
constraints, storage capacity expansion limitation and extraction restrictions [15], the tensions between
water reallocation from rural to urban areas [16–18], etc. At present, scholars are paying attention to
alternatives, such as rainwater catchment systems, to supplement water sources [19–21]. However,
rainwater is easily affected by climate change; water demand and water resource availability are
affected by climatic conditions changes [21], which exacerbate the vulnerability of water resources [22].
As the diverse water nexus makes water management complicated, benefit balancing and institutional
arrangements are therefore adopted to resolve water-use conflicts [23,24].

Water saving has been widely regarded as one of the most effective ways to reduce water scarcity.
Urban water-saving projects can improve water-use efficiency and reduce water waste in various ways;
for example, economic incentives (e.g., water pricing), technical improvements (e.g., water-saving
household appliances), or regulations can increase domestic water savings [25]. Both the Chinese and
global experiences have shown that there is a positive effect of water-saving measures on urban water
consumption reduction [26–28]. However, water-saving measures only restrain the growth rate of
water consumption; the total water consumption is still increasing as the population and economy
continue to grow [29–31]. It is more critical that the water consumption reduction from urban producers
and consumers in water saving can be offset by increasing virtual water exports in goods and services
to a large extent [32]. As a result, the improvement of water-use efficiency and water technology will
not necessarily reduce the total water consumption [33–35]. In addition, there is a significantly negative
correlation between water resource endowment and water-use efficiency: the more abundant the water
resources are, the more extensive the water resource use is [36]. Thus, water-saving operations need
huge governmental subsidies to ensure water-saving effects [37]; however, water-saving subsidies may
actually increase regional water consumption under some circumstances [38]. Taking the external
environment into account, water-saving and conservation technologies may have detrimental impacts
on environmental flows in certain circumstances [39,40]. Therefore, water saving is a complex issue
involving multiple factors, and the effects of water-saving policies need to be further studied.

China is faced with resource shortage and pollution issues [41], being one of the countries with
the lowest water resources per capita in the world. The total water resource consumption in China
keeps increasing annually [42]. Previous research has shown that the amount of available water
resources, the domestic water price, and the usage rate of water-saving appliances are critical factors
affecting the daily water consumption per capita in China [43]. In order to improve the sustainability
of water resources, the Chinese government has adopted a policy to develop a “water-saving society”
(namely water-saving society policy), as incorporated into the revised Water Law of China in 2002 [32].
In the same year, the Ministry of Water Resources of China made an announcement regarding
launching a pilot project for building a water-saving society, and then a series of cities successively
implemented the policy in the period of 2002–2005, and the years of 2006, 2008, and 2010. As the
water-saving society policy was implemented, effects of the policy such as water-use efficiency [44],
water consumption [32,45], and comprehensive performance [46] in pilot cities were examined; the
logical framework and the index evaluation [44], structural decomposition analysis approach [32],
matter element analysis method [45], and AHP (Analytic Hierarchy Process)-fuzzy comprehensive
evaluation model [46] were employed. However, during the water-saving society policy implementation
period, factors such as simultaneous water-saving technology upgrades and other policies may have
also taken place. We thus have to adopt a reliable method to eliminate the impacts of other simultaneous
factors for revealing the effect of urban water-saving society policy.

To better understand the relationship between water-saving society policy and water consumption,
we attempt to address the following questions: To what extent does the water-saving society policy
affect urban water consumption? Do any differences exist between the effects of different cities? We then
take water consumption per CNY 10,000 GDP (m3/(CNY 104 ), USD 1 ≈ CNY 7) as a measure and report
the work as follows: Section 2 describes the method, study area, and data; Section 3 presents the results;
Section 4 discusses reasons for the observed effects in different situations; and Section 5 concludes.
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2. Method and Materials

2.1. Propensity Score Matching Method

Remote sensing and geographical information system analysis are often adopted to examine
the effect of human activities on water resources or landscape change [47,48]. Although combined
with post-classification comparison, sudden change caused by immediate factors like extension of
roads and infrastructure or critical political events can be clearly explored [48], impacts of other
simultaneous factors should be further considered. Our goal in this study is to estimate the effect
of urban water-saving society policy on water consumption. The effect of an implemented policy
is usually called the treatment effect in economics. For each city i, i = 1, 2, 3, . . . , N, there will be
two potential water consumption outcomes {Yi0, Yi1}. Yi0 represents the water consumption of the
city without implementing the water-saving society policy; Yi1 represents the water consumption
of the city which implements the water-saving society policy. Accordingly, cities implementing the
water-saving society policy are classified as a treated group (Di = 1), and cities without implementing
the policy are classified as the control group (Di = 0). To evaluate the effect of a city’s water-saving
society policy, the best situation is to be able to simultaneously obtain the water consumption data
of a city implementing and without implementing a water-saving society policy during the study
period, where the treatment effect of the water-saving society policy is Yi1 − Yi0. For the full sample,
the average treatment effect (ATE) can be defined as

ATE = E(Yi1 −Yi0) =
1
M

M∑
i=1

(Yi1 −Yi0), (1)

where M is the sample size. As water consumption is a value of water-use outcome, E (Yi1 − Yi0)
can be estimated by directly comparing water consumption outcomes and does not need to use a
functional form or impose any distribution. However, during a certain study period, only one state
of a city can be observed—that is, water consumption when the policy has been implemented or
not implemented—not the two states at the same time. This is called “counterfactual missing data”.
Following the counterfactual framework of Rosenbaum and Rubin (1983) [49], the average treatment
effect of cities implementing the water-saving society policy, namely the average treatment effect on
the treated (ATT), can be defined as:

ATT = E(Yi1 −Yi0
∣∣∣Di = 1) = E(Yi1|Di = 1) − E(Yi0|Di = 1) (2)

where ATT indicates the difference in water consumption between the cities implementing a
water-saving society policy under the assumption that they have not yet. Obviously, E(Yi0|Di = 1)
cannot be observed. In addition, whether a city implements a water-saving society policy or not is
related to the city’s economic, social, and water resource conditions; it is not implemented randomly.
Therefore, the calculation method based on the assumption of random samples will lead to biased
results. To solve these problems, this study adopts the propensity score matching (PSM) method,
which solves the problem of selective bias in non-random sample data by constructing a counterfactual
framework [49,50], to evaluate the ATT.

Following Rosenbaum and Rubin (1983) [49], we need to match the cities of the control group and
the treated group according to their propensity scores; that is, we must find city j in the control group
which matches the characteristic variables (X) of city i in the treated group as similarly as possible,
namely Xi ≈ Xj. Then, the water consumption E(Yi0|Di = 0) of the control group can be regarded as
the water consumption E(Yi0|Di = 1) of the cities in the matched treated group, which is equivalent
to “simultaneously” observing the water consumption of implementing and not implementing the
water-saving society policy. Specifically, the propensity score for this study is the city’s probability
of implementing the water-saving society policy, conditional upon covariates. As Di = 1 indicates
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that the city implements the water-saving society policy and 0 otherwise, the propensity score can be
expressed as [51],

P(X) = Logit(Di = 1|X) (3)

where P(X) is the propensity score and X is multiple characteristic variables of cities that affect
the probability of implementing the water-saving society policy. As the implementation of urban
water-saving projects is mainly related to the urban population, water resources, and economic
development, we selected population density (X1, person/km2), GDP per capita (X2, CNY per capita),
ratio of the secondary industry output to the tertiary industry output (X3, dimensionless unit),
centralized treatment rate of urban sewage (X4, %), and water supply per capita (X5, m3 per capita) as
characteristic variables.

Please note that before propensity score matching, some assumptions such as common support,
balancing assumption, ignorability and so on should be considered [49]. We first considered the
assumption of common support, which guarantees the overlap of the propensity scores between the
treated group and the control group (that is, the two groups have similar characteristics) and the
balancing assumption, which means the X characteristics of the treated group and the control group
are similar. If the two assumptions hold, E(Yi0|Di = 1) can be replaced by E(Yi0|Di = 0) approximately
in formula (2), and ATT can be further estimated as follows:

ATT = E(Yi1|Di = 1) − E(Yi0|Di = 0) = E(Yi1
∣∣∣Di = 1, P(X)) − E(Yi0

∣∣∣Di = 0, P(X)) (4)

In Formula (4), the methods used to match samples between the treated and control groups
included nearest neighbor matching (NNM), radius matching (RM), kernel matching (KM), local linear
regression matching (LLRM), and others. In this study, various matching methods were adopted, and
the results were compared. If the ATTs of different methods were similar, the effect of water-saving
society policy on water consumption was considered to be robust. As the PSM is a nonparametric
estimator, once a matched sample has been formed, the ATT would be estimated by directly comparing
water consumptions between the treated and control groups.

Finally, the PSM analysis can be realized through the “psmatch2” order of Stata 16.0 (StataCorp,
College Station, TX, USA), and the basic format is psmatch2 D X1 X2 X3 X4 X5 outcome(Y) ties logit
common. The balancing assumption test and common support assumption test can also be made by
the “pstest” and the “sum _pscore” order of Stata 16.0, respectively.

2.2. Study Area

Due to rapid urbanization and administrative adjustment in China, the number of cities frequently
changed in the past several decades [52]. To obtain a representative and fixed sample, we selected 285
cities at the prefecture level and above as the study area (Figure 1). In accordance with Riad et al. [48],
cities differing in water endowment, economy, and size were included.

A city was marked as 1 (D = 1, treated group) after implementing the water-saving society policy,
or 0 (D = 0, control group) otherwise. Considering the vast territory of China, not only all sampled cities
but also parts of cities with the similar characteristics of water resource endowment, urban economic
development, and city scale should be examined. That is, the full sampled cities were classified into
several groups as follows:

(1) City classification based on the annual precipitation in the area where the city is located, namely,
cities in arid areas, where the annual precipitation was less than 200 mm and the amount of water
that can be stored and used is small; cities in humid areas, where the annual precipitation was
greater than 800 mm and the available water resources are sufficient; and cities in semi-humid or
semi-arid areas, where the annual precipitation was between 200 mm and 800 mm.

(2) City classification based on the per capita GDP of each city, namely, high economic development
cities (with per capita GDP higher than the national average urban per capita GDP) and low
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economic development cities (with per capita GDP lower than or equal to the national average
urban per capita GDP).

(3) City classification based on the Chinese city scale classification standard during the study period,
namely, small cities (with a resident population of less than 500,000); medium cities (with a
resident population of more than 500,000 and less than 1 million); and big cities (cities with a
resident population of more than 1 million).Int. J. Environ. Res. Public Health 2020, 17, x 5 of 15 
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2.3. Data

Considering data availability and policy implementation, the starting point of the evaluation was
2005, and mixed cross-sectional data of 285 cities in China from 2005 to 2017 were constructed. The GDP,
total water consumption, total water supply, GDP per capita, population density, urban population,
the proportion of the secondary industry, the proportion of the tertiary industry, and the centralized
treatment rate of urban sewage of each city were obtained from the China City Statistical Yearbook [53]
and the China Urban Construction Statistical Yearbook [54]. However, the population densities in 2016
and 2017 were not given in the statistical yearbook, and, thus, the ratio of population to city area was
used for calculation instead. The per capita water supply was calculated by the ratio of total urban
water supply to urban population. GDP and per capita GDP were converted into constant prices of
2005 using GDP deflation and per capita GDP deflation, respectively; namely, constant-price GDPt

= nominal GDPt/GDP deflation, GDP deflation = GDPI2005 × GDPI2006 × . . . × GDPIt, GDPI is GDP
index/100, and GDPI2005 = 1, where t indicates the year. GDP indices were obtained from the China
Statistical Yearbook [55]. Constant-price per capita GDP was calculated by the same method. In addition,
because some cities lacked data for some years, we finally obtained 3412 records of the sampled cities
for the PSM analysis (see Supplementary Material Tables S1 and S2).

3. Results

3.1. Balancing Assumption and Common Support Test Results

In order to obtain a perfect matching effect, the balancing assumption was first tested based
on various matching methods of NNM, RM, KM, and LLRM that can be used to match samples.
From Table 1, most of the matched mean biases were less than 10% and reduced when compared to
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the unmatched equivalents. Although the p-values of X2 were all significant, most of the % biases
were not significantly different from zero after matching, and this means that there were no significant
differences between the treated group and control group after samples were matched. It can be inferred
that the distribution of the two groups is balanced in general.

Then, the common support assumption was examined. From Table 2, cities implementing
water-saving society policy have propensity scores ranging between 0.043 and 0.828, and ranging
between 0.039 and 0.999 otherwise. Hence, the region of common support lies within a propensity
score of 0.043 and 0.828, and only samples whose propensity scores lie within this region were used in
this study. Therefore, the PSM analysis and NNM, RM, KM, and LLRM are all proper.

3.2. The Effect of Water-Saving Society Policy on Water Consumption

3.2.1. Urban Water-Saving Society Policy Significantly Reduced Water Consumption of Cities in China
during the Study Period

From Table 3, under full-sample conditions, the AATs of the water-saving society policy on
water consumption per CNY 10,000 GDP were significantly negative at the level of 1% and were
between −9.17 and −8.28 (i.e., roughly the same) under the different matching methods. That is,
after the implementation of the urban water-saving society policy, the water consumption decreased
by 8.28~9.17 m3/(CNY 104) compared to without the policy. The results showed that the water-saving
society policy worked effectively in the study area and period.

Table 1. Variable balance between treated and control groups, before and after matching.

Variable U/M
NNM RM KM LLRM

%bias p-Value %Bias p-Value %Bias p-Value %Bias p-Value

X1
U 25.9 0.000 25.9 0.000 25.9 0.000 25.9 0.000
M −13.8 0.051 −6.9 0.215 −5.7 0.364 −13.8 0.051

X2
U 22.1 0.000 22.1 0.000 22.1 0.000 22.1 0.000
M 8.6 0.004 7.1 0.015 9.0 0.002 8.6 0.004

X3
U −5.6 0.171 −5.6 0.171 −5.6 0.171 −5.6 0.171
M −6.5 0.176 −1.7 0.721 −3.0 0.536 -6.5 0.176

X4
U 45.0 0.000 45.0 0.000 45.0 0.000 45.0 0.000
M 0.7 0.874 −0.3 0.944 1.1 0.796 0.7 0.874

X5
U 19.4 0.000 19.4 0.000 19.4 0.000 19.4 0.000
M −3.1 0.593 −2.2 0.696 −1.2 0.836 −3.1 0.593

Notes: U = unmatched and M = matched. X1 = population density, X2 = GDP per capita, X3 = ratio of the secondary
industry output to the tertiary industry output, X4 = centralized treatment rate of urban sewage, X5 = water supply
per capita. NNM = nearest neighbor matching, RM = radius matching, KM = kernel matching, LLRM = local
linear regression matching. %bias means standard mean %bias. The null hypothesis is that the %biases are not
significantly different for any variable in the treated and control groups.

Table 2. Propensity score distribution for treated and control cities.

Propensity Score for Cities Mean Min Max Std.Dev. Obs

Implementing water-saving society policy 0.278 0.043 0.828 0.103 800
Without implementing water-saving society policy 0.221 0.039 0.999 0.090 2612

Table 3. Average treatment effect on the treated (ATT) estimates under full-sample conditions.

Category Matching Method Treated Control ATT Std. T.

All cities

NNM 34.24 43.41 −9.17 *** 1.77 −5.16
RM 34.17 42.46 −8.28 *** 0.95 −8.71
KM 34.24 42.69 −8.44 *** 0.93 −9.08

LLRM 34.24 43.01 −8.77 *** 1.77 −4.93

Notes: *** Statistical significance at 1% level. Treated = treated group, namely cities implementing the water-saving
society policy; Control = control group, namely cities without implementing the policy. The meaning of headings of
Tables 4–6 is the same as Table 3.
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3.2.2. The Effect in Humid Areas, Semi-Humid and Semi-Arid Areas, and Arid Areas
Decreases Successively

From Table 4, the ATTs in cities in humid areas, as well as semi-arid or semi-humid areas, on
water consumption were generally significantly negative, indicating that the water consumption had
decreased significantly (p < 0.01) after the implementation of the water-saving society policy in these
areas. At the same time, the AATs of cities in humid regions (more than m3/(CNY 104)) were much
higher than that of cities in semi-arid and semi-humid areas (less than 5.05 m3/(CNY 104)). The AATs
in arid areas were not significant, which indicate that the water-saving society policy had not worked
effectively in these areas. It can be observed that there were differences in the effects of the urban
water-saving society policy in areas with different water resource endowments. Its effect in cities in
humid areas was the most significant (p < 0.01), followed by cities in semi-arid and semi-humid areas,
while its effect in cities in arid areas was not significant.

Table 4. ATT estimates in cities with different water resource endowments.

Category Match Method Treated Control ATT Std. T.

Cities in arid areas

NNM 33.33 34.39 −1.05 5.25 −0.20
RM 34.54 35.30 −0.75 4.62 −0.16
KM 33.33 35.24 −1.91 5.56 −0.34

LLRM 33.33 36.46 −3.13 5.25 −0.60

Cities in
semi-humid or
semi-arid areas

NNM 31.32 36.38 −5.05 *** 1.70 −2.96
RM 31.32 36.06 −4.74 *** 1.09 −4.33
KM 31.32 36.16 −4.83 *** 1.07 −4.52

LLRM 31.32 35.42 −4.09 ** 1.70 −2.40

Cities in humid areas

NNM 38.35 55.98 −17.63 *** 3.42 −5.15
RM 37.66 45.79 −8.12 *** 1.44 −5.61
KM 38.35 54.84 −16.49 *** 1.60 −10.26

LLRM 38.35 53.21 −14.85 *** 3.42 −4.34

Notes: ** Statistical significance at 5% level; *** statistical significance at 1% level.

3.2.3. The Effect in Low Economic Development Cities Is More Significant and More Stable than in
High Economic Development Cities

From Table 5, the water-saving society policy in cities with diverse economic development had a
negative average treatment effect on water consumption. According to the ATT values that passed
the significance test, after the implementation of the urban water-saving society policy, the water
consumption decreased by 1.87~3.13 m3/(CNY 104) in cities with high economic development, and it
is significant at the 10% level, while the water consumption decreased by 2.80~3.55 m3/(CNY 104)
with a significance at the 1% level in low economic development cities. It can be seen that the water
consumption reduction effect in low economic development cities was more significant, sizable, and
stable than that in high economic development cities.

Table 5. ATT estimates in cities with different economic development.

Category Match Method Treated Control ATT Std. T.

Cities with high economic development

NNM 31.15 34.29 −3.13 * 1.81 −1.73
RM 29.87 31.74 −1.87 * 1.01 −1.84
KM 31.00 33.20 −2.20 * 1.28 −1.71

LLRM 31.15 31.89 −0.73 1.81 −0.40

Cities with low economic development

NNM 35.87 37.65 −1.78 1.32 −1.34
RM 35.92 38.73 −2.80 *** 1.06 -2.63
KM 35.87 39.42 −3.55 *** 1.04 −3.39

LLRM 35.87 39.01 −3.14 *** 1.32 −2.36

Notes: * Statistical significance at 10% level; *** statistical significance at 1% level.
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3.2.4. The Effect in Big- and Medium-Sized Cities Is Significant, but Not in Small Cities

From Table 6, the effect in big cities was significantly negative (p < 0.01) and the results (decreased
3.54~4.34 m3/(CNY 104)) were relatively stable, while the effect in medium-sized cities was also negative
(decreased 5.33~6.95 m3/(CNY 104)), but the significance was lower and less stable than that of big
cities. The ATTs in small cities were negative, but the effect was smaller than that of both big- and
medium-sized cities, and it did not pass the significance test. Hence, the water-saving society policy
significantly reduced water consumption in big cities, while that of medium-sized cities decreased to a
certain extent, and, in small cities, it did not significantly decrease.

Table 6. ATT estimates in cities of different sizes.

Category Match Method Treated Control ATT Std. T.

Small cities

NNM 29.46 31.57 −2.11 3.35 −0.63
RM 30.75 33.01 −2.25 2.76 −0.82
KM 29.79 32.17 −2.38 2.76 −0.86

LLRM 29.46 32.02 −2.55 3.35 −0.76

Medium-sized cities

NNM 38.34 44.09 −5.74 * 3.20 −1.79
RM 38.18 43.52 −5.33 *** 1.84 −2.89
KM 38.18 45.14 −6.95 *** 1.78 −3.89

LLRM 38.34 43.32 −4.97 3.20 −1.55

Big cities

NNM 33.72 38.07 −4.34 *** 1.56 −2.77
RM 33.13 36.67 −3.54 *** 1.09 −3.25
KM 33.66 37.38 −3.71 *** 1.22 −3.03

LLRM 33.72 37.89 −4.17 *** 1.56 −2.66

Notes: * Statistical significance at 10% level; *** statistical significance at 1% level.

4. Discussion

There are two major ways to solve water resource problems: one is improving the water
resource infrastructure by hardware construction, and the other is improving systems, adopting
high-efficiency technologies, and protecting the environment through software construction [56].
To achieve the goal of urban water conservation, it is important to improve water production capacity
and reduce water loss in production and transportation through the construction of water resource-use
infrastructure [57,58], such as urban water source protection projects, water purification and storage
facilities and water transportation pipelines. As water scarcity variation has mainly been related to
the properties of water and its role in natural–human systems [59], attention should also be paid
to scientific incentive mechanisms for urban water-use through the innovation and promotion of
water-use technologies [60], rights transactions [61], pricing [62,63], and the cultivation of water-saving
awareness [9]. It is undoubted that the water-saving society policy in China can effectively reduce water
consumption per CNY 10,000 GDP, as mentioned above, by increasing water-saving investments and
developing water-saving behaviors. However, it should also be noted that the external environment for
implementing the water-saving society policy differed per city, which featured different water resource
endowments, economic development levels, and city scales. The reasons for the observed effects of the
water-saving society policy in different situations are further discussed in the following subsection.

4.1. Water Resource Endowment and the Effect of Water-Saving Society Policy

In the situation of a shortage of natural supply of urban water resources and water for production
and living, urban residents deeply understand the inconvenience caused by water shortages and the
importance and urgency of water-saving hardware and software construction. Previous research has
found that the attitudes of stakeholders towards water-saving policies have positive and significant
effects on water-saving behaviors [64,65]. Water-saving policies are also generally implemented first in
water shortage areas. As a result, the urban water resource endowments in arid areas are insufficient,
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the concept of water-saving has already been deeply rooted in the hearts of people, the construction of
water-saving hardware and software has been promoted earlier, and the space for the water-saving
policy to play a role is relatively limited, such that it is difficult to reduce water consumption by a large
amount. In contrast, cities in humid regions have sufficient natural endowments of water resources,
and, thus, water conservation is not considered urgent. In these cities, water consumption has been
large for a long time, and there is ample room for the water-saving society policy to play a vital role
in reducing water consumption. This explains why the aforementioned urban water-saving society
policy had significant effects in humid areas, while its effect in arid areas was not significant.

4.2. Economic Development and the Effect of Water-Saving Society Policy

Economic development determines the capital, technology, and other resources that can be used
in urban water conservation. When a city’s economic development is low, there is no corresponding
capital or technical capacity to invest in water-saving hardware and software, making it impossible
to achieve the goal of alleviating water scarcity. When urban economic development reaches a
high level, the demand of urban water resources tends to be stable, and the improvement in urban
economy, technology, and external environmental conditions can strongly support the construction
of water-saving infrastructure and software. Accordingly, although the implementation of the
water-saving society policy will improve the capital, technological, and systematic conditions of these
cities, the water-saving effect on cities differed along with their economic development. For cities
with low economic development, there is more water-saving space due to formerly poor water-saving
practices, such that the policy will work well; otherwise, cities with high economic development
have less water-saving space, and the policy effect is limited. This explains the observed difference
of the average treatment effect of the water-saving society policy in cities with different economic
development conditions.

4.3. City Scale and the Effect of Water-Saving Society Policy

As scales become arenas for power performing and policy making [66,67], and institutional
arrangements would be framed by a main scale [68], the city scale should thus be considered to
understand the effect of urban water-saving policy. In general, big cities in China have a good
industrial foundation, human capital, technology promotion, and water-saving systems. Water-saving
society policy implementation can speed up infrastructure construction (e.g., water purification and
storage facilities, transportation pipelines, etc.), eliminate industries with high water consumption,
change water-use behaviors of residents and enterprises, reduce water waste, improve water-use
efficiency, and, finally, achieve water-saving effects. However, small cities are not attractive to new
industries and technology upgrade on one hand, and with poor water-saving practices and systems
on the other. The traditional industries in small cities are difficult to be replaced, and small cities
may even undertake high water-consuming industries transferred from big cities. Taken population,
material and institutional conditions of cities at different scales into consideration, the water-saving
society policy cannot change the traditional water-use situation and cannot lead to a scale effect of
water-saving in small cities. To a certain extent, this reveals the reasons for the differences in the effect
of the water-saving society policy in cities of different sizes.

5. Conclusions

Propensity score matching analysis is a useful tool to eliminate simultaneous factors’ impacts in
evaluating the effect of an implemented policy. Based on this method, the study demonstrates the
positive effect of the water-saving society policy on the reduction of water consumption from 2005
to 2017 in Chinese cities. However, differences existed between cities with different water resource
endowment, economic development level, and urban scale. In general, the effect was significant in
humid areas, cities with low economic development, and big cities, while not in arid areas, cities with
high economic development, and small cities. The effect was also closely related to the water-saving
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capacity, institutional arrangements and external environment for the water-saving society policy
implementation. It can thus be inferred that in order to realize sustainable water use of cities and
to achieve the goal of water consumption reduction, water-saving policy should be designed and
implemented suiting local conditions.

In addition, although demand-side water management policies may be substantially more effective
than supply-side approaches [69], this study also showed that, for areas where the natural supply of
water resources is absolutely insufficient, water shortages cannot be solved by relying on water-saving
measures alone. It is important to reallocate water resources across different areas in the future.
An alternative approach is to transfer the water saved in water-rich areas to water-scarce areas;
otherwise, the effect of the water-saving policy will be difficult to transform into the water-saving
effectiveness of the whole society. The problem faced by this approach is that it not only costs a lot
of money and involves a long construction period, but may also lead to serious social and ecological
consequences [56]. Cross-regional allocation of water resources must be adapted with an operational
arrangement for water cooperation [70,71] and overcoming barriers related to institutional environment
and path dependencies [72], social-environmental justice [73] and political challenges [67,68,74].
Another option is to reduce the reverse flow of water from water-scarce areas to water-rich areas
caused by virtual water transfer, mainly occurring through internal trade [75]. To achieve this objective,
incentive mechanisms for promoting water-saving technologies in industry [75], technical cooperation
and technology transfer [23], and optimizing urban industries distribution between water-scarce and
water-rich areas are available measures.

Furthermore, the construction of urban water conservation infrastructure must be carried out as
soon as possible and unremittingly for a long time. With economic and social development and the
associated increasing water demands, cities will eventually face the production and living difficulties
caused by water shortages. If the water-saving society policy is regarded as a tool to solve the demand
side of water resources, then exploring more available water sources is an important way to solve the
problem of water on the supply side. Only by adjusting both the supply side and demand side of
urban water resources at the same time can the problem of urban water resources be better solved.
The results and recommendations are meaningful and contribute to the development of a water-saving
society in China and other countries’ cities.
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