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Acute aortic dissection (AAD) is one of the most common fatal diseases noted in vascular surgery. Human monocytes circulate in
dynamic equilibrium and display a considerable heterogeneity. However, the role of monocytes in AAD remains elusive. In our
recent study, we firstly obtained blood samples from 22 patients with Stanford type B AAD and 44 age-, sex-, and comorbidity-
matched control subjects. And the monocyte proportions were evaluated by flow cytometry. Results showed that the percentage
of total CD14" monocytes in the blood samples of Stanford AAD patients was increased significantly compared with that of
normal volunteers (P < 0.0005), and the absolute numbers of CD14°™8"CD16" and CD14""#"'CD16" monocytes both increased
significantly regardless of the percentage of PBMC or CD14" cells, while CD14%™CD16" monocytes displayed the opposite
tendency. However, the percentage of CD14" cells and its three subsets demonstrated no correlation with D-dimer (DD) and C-
reactive protein (CRP). Then, blood mononuclear cell (PBMC) samples were collected by Ficoll density gradient centrifugation,
followed with CD14" magnetic bead sorting. After the purity of CD14" cells was validated over 90%, AAD-related genes were
concentrated in CD14" monocytes. There were no significant differences observed with regard to the mRNA expression
levels of MMPI (P =0.0946), MMP2 (P =0.3941), MMP9 (P =0.2919), IL-6 (P =0.4223), and IL-10 (P =0.3375) of the
CD14" monocytes in Stanford type B AAD patients compared with those of normal volunteers. The expression levels of IL-17
(P <0.05) was higher in Stanford type B AAD patients, while the expression levels of TIMP1(P<0.05), TIMP2(P<0.01), TGF-f31
(P<0.01), SMAD3 (P <0.01), ACTA2 (P <0.001), and ADAMTS-1 (P <0.001) decreased. The data suggested that monocytes
might play an important role in the development of Stanford type B AAD. Understanding of the production, differentiation,
and function of monocyte subsets might dictate future therapeutic avenues for Stanford type B AAD treatment and can aid the
identification of novel biomarkers or potential therapeutic targets for decreasing inflammation in AAD.

1. Introduction

Acute aortic dissection (AAD) is one of the most common
emergencies of vascular surgery. A recent study demon-
strated that the incidence of AAD was increased during the
past decades [1, 2]. During the development of AAD, blood
transfuses aorta through the ruptured aortic or blood vessels

and separates the normal structure of the aorta, spreading
into the media. This process results in the gradual expansion
of the axial ends to form the true and false two-chamber state
of the aorta, which is one of the most typical characteristics of
AAD [3, 4]. In a recent study, AAD was divided into two
types according to whether the ascending aorta was involved
(type A) or not (type B) according to the Stanford system,
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which is a widely accepted classification system for AAD [5,
6]. Patients with Stanford type B AAD account for 25% to
40% of all aortic dissections and remain more likely to pres-
ent with hypertension than those with Stanford type A AAD
[7]. Furthermore, the majority of patients presenting with
Stanford type A AAD are managed surgically (86% overall),
while Stanford type B AAD is treated medically (63%), which
makes our preclinical research of Stanford type B AAD more
meaningful [8]. It has been also suggested that inflammation
plays an important role in the development of AAD, which is
receiving attention gradually [9, 10]. Several studies demon-
strated that local inflammation was enhanced following the
development of AAD, which was mainly reflected by the
infiltration of large numbers of mononuclear macrophages,
multinuclei leukocytes, and T/B lymphocytes [11, 12]. These
inflammatory cells aggregate in the aorta and secrete inflam-
matory mediators to degrade the extracellular matrix, result-
ing in weakening of the aortic wall and reduced ability for
gradual stress resistance [13]. In addition to the degradation
of the extracellular matrix, local inflammation further causes
ischemia, degeneration, and necrosis of aortic smooth muscle
cells [14]. Flow dynamics (usually hypertension) eventually
lead to rupture or dilation of the aortic intima, which in turn
induces AAD [15]. Although several studies have been
reported on the pathogenesis of AAD, it is well established
that inflammation plays an important role in the develop-
ment of this disease [16]. However, little is known with
regard to the specific way by which inflammation participates
in the development of Stanford type B AAD, especially the
role of monocytes.

Monocytes are important cells of the innate immunity
that are present in the circulation system. Based on the
expression of the surface markers CD14 and CD16, a new
nomenclature for dividing monocytes into three subgroups
has been approved by the International Society of Immunol-
ogy’s Nomenclature Committee. This classification is the
following: CD14*¢™CD16  monocytes, CD14""CD16"
monocytes, and CD14%™CD16" monocytes [17]. The afore-
mentioned cells circulate in dynamic equilibrium, and the
kinetics underlying their production, differentiation, and dis-
appearance are critical to understanding both homeostasis
and inflammatory responses. Different monocyte subsets
have different biological functions. CD14°"$"CD16  mono-
cytes are also known as classical monocytes, having superior
phagocytosis activities. CD14™"CD16" monocytes are also
known as inflammatory monocytes, which are the inflamma-
tory effector cells that stimulate the proliferation of T cells,
the production of excessive reactive oxygen species (ROS),
and the promotion of angiogenesis. CD14™CD16" mono-
cytes are also known as nonclassical monocytes, used mainly
for patrol of exogenous pathogens, as well as for antiviral
defense [18, 19]. It was reported that monocytes recruited
to areas of inflammation could differentiate into macro-
phages, which were involved in local aortic inflammatory
responses in a mouse atherosclerosis model [20]. The inhibi-
tion of the differentiation of monocytes and the recruitment
of mononuclear-macrophages to the aorta significantly
improved the progression of atherosclerosis [21]. In addition,
in abdominal aortic aneurysm (AAA), the accumulation of
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macrophages and the expression levels of the monocyte che-
moattractant protein-1 (MCP-1) were both increased in the
AAA wall [22, 23]. However, a limited number of studies
have been performed with regard to the characteristics of
monocytes in AAD. The specific mechanism of monocyte
subsets with regard to the pathogenesis of AAD remains
unclear. The purpose of the present study was to investigate
the monocytic population and mediators on blood samples
from patients with AAD.

2. Materials and Methods

2.1. Patient Eligibility Criteria. In the present study, 22
patients with AAD (Stanford type B) and 44 healthy volun-
teers were included. The acute Stanford type B aortic dissec-
tions are aortic dissections that arise when the entry tear is
distal to the subclavian artery. The included criteria include
the Acute Stanford type B aortic dissections which are one
of the aortic dissections, which happened in 2 weeks and arise
when the entry tear is distal to the subclavian artery. Acute
Stanford B-type aortic dissection exclusion criteria are as fol-
lows: (1) Stanford B-type aortic dissection over 2 weeks, (2)
aorta dissection involving the start of the left subclavian
artery above the aorta, (3) the combination of immune dis-
eases of Stanford type B aortic dissection, (4) Stanford type
B aortic dissection patients with genetic diseases (such as
Marfan syndrome), and (5) Stanford B-type aortic dissection
after thoracic endovascular aortic repair (TEVAR) operation.
In the parameters, gender, age, and history of hyperlipidemia
did not exhibit a significant difference (P > 0.05) between the
two groups, while significant differences were noted with
regard to the variable history of diabetes (P < 0.05), smoking
(P <0.01), and hypertension (P < 0.001). All samples were
collected from Nanjing Drum Tower Hospital, the Affiliated
Hospital of Nanjing University Medical School. All volun-
teers provided written informed consent, and all studies were
conducted according to the principles of the Declaration of
Helsinki following approval by the relevant institutional
review boards.

2.2. Flow Cytometry Analysis. All blood samples were trans-
ferred to the EDTA collecting tubes (Becton Dickinson). A
total of 50 pl blood was obtained and transferred into the cor-
responding flow tubes. The blood samples were treated with
FC blocker (Miltenyi Biotec, Germany) at room temperature
for 15min and subsequently stained with Alexa Fluor 488-
labeled anti-human CD14 (Miltenyi Biotec, Germany) and
APC-labeled anti-human CD16 (Miltenyi Biotec, Germany).
The aforementioned antibodies were incubated at 4°C for
30min in the dark. Subsequently, the blood samples were
treated with 1x FACS™ lysis solution for approximately
10 min, and FACS buffer was added. The samples were finally
centrifuged at 300 g for 5min at 4°C, rinsed again with FACS
buffer, and finally resuspended in 150 ul FACS buffer for
subsequent testing by flow cytometry (BD Accuri™ C6, BD
Biosciences, USA). All the antibodies were used according
to the manufacturer’s instructions. Classical monocyte cells
were defined as CD14°""CD16°, whereas inflammatory
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monocyte cells were defined as CD14""¢"CD16* and non-
classical monocyte cells as CD14%™CD16".

2.3. Magnetic Bead Sorting. Blood samples were collected
from 8 patients with AAD (Stanford type B) and 8 healthy
volunteers. Total blood was isolated by a Ficoll density gradi-
ent centrifugation step in order to obtain peripheral blood
mononuclear cells (PBMCs). The cell number was deter-
mined, and the cell suspension was centrifuged at 300 g for
10 min. The supernatant was aspirated completely, and the
pellet was resuspended in 80 ul buffer per 10” of total cells.
Subsequently, 20l CD14 Microbeads (Miltenyi Biotec,
Germany) was added per 10 total cells, mixed, and incu-
bated for 15 min at 2-8°C. The cells were washed by addition
of 1-2 ml buffer per 10” total cells and centrifuged at 300 g for
10 min. The supernatant was removed completely, and the
cell pellet (107 cells) was resuspended in 500 yl buffer and
further processed for magnetic separation. An appropriate
MACS column and a MACS separator were selected accord-
ing to the number of total cells and the number of CD14"
cells. LS columns (Miltenyi Biotec, Germany) were used for
separation. Initially, the column was placed in the magnetic
field of a suitable MACS separator (Miltenyi Biotec,
Germany) and prepared by rinsing with 3 ml FACS bufter.
The cell suspension was applied onto the column, and new
FACS buffer was added when the column reservoir was
empty. Subsequent washing steps were performed by adding
3 ml FACS buffer three times, and the column was removed
from the separator following removal of the content in the
column reservoir. The cell suspension was transferred to a
suitable collection tube, and 5ml FACS buffer was pipetted
onto the column. The magnetically labeled cells were imme-
diately removed by pushing the plunger into the column, and
the collected cells were CD14" cells. A minor fraction of the
CD14" cells was centrifuged at 300 g for 5min at 4°C and
resuspended in 100 ul FACS buffer. The cells were stained
with Alexa Fluor 488-labeled anti-human CD14 antibody
(Alexa Fluor 488-CD14, Miltenyi Biotec, Germany) and
incubated at 4°C for 30 min in the dark. The cells were further
centrifuged at 300 g for 5min at 4°C, resuspended in 150 ul
FACS buffer, and subsequently detected by flow cytometry
(BD Accuri™ C6, BD Biosciences, USA). The remaining
CD14" cells were centrifuged at 300 g for 5 min, and following
aspiration of the supernatant, they were subsequently tested.

2.4. Quantitative Polymerase Chain Reaction (RT-qPCR).
Total RNA from CD14" cells were extracted by the TRIzol
reagent (Invitrogen, USA) and reverse-transcribed by a
reverse transcription kit (HiScript® II Q RT SuperMix for
qPCR, Vazyme Biotech, Nanjing, China). Subsequently, the
cDNAs were used as templates for RT-qPCR analysis per-
formed on the BIOER Line Gene 9640 detection system
(Hangzhou, China). The Ct value and the relative expression
levels of each gene were calculated according to the 274!
formula. The relative amount of the target gene and that of
the reference gene GAPDH were obtained. All the reactions
were repeated three times. All RNA samples exhibited a
260/280 ratio of =2.0. The primer sequences used are shown
in Table 1.

2.5. Statistical Analysis. The data were expressed as the
mean + SEM. Statistical analyses were performed by Graph-
Pad Prism 5 (San Diego, CA, USA). Multigroup comparisons
were analyzed by Student’s -test or the one-way ANOVA
test. A P value less than 0.05 (P < 0.05) was considered for
significant differences. The experiments were repeated at
least three times.

3. Results

3.1. Clinical Characteristics of the Patients with AAA. The D-
dimer values and the CRP values in Stanford type B AAD
patients were higher than those noted in healthy control
subjects (P <0.001), while there was significant difference
in history of diabetes (P < 0.05), smoking (P <0.01), and
hypertension (P <0.001). In addition, apparent differences
were noted in the percentage of neutrophils (P <0.01),
lymphocytes (P <0.001), WBC count, and monocytes
(P <0.001) between these two groups (Table 2).

3.2. The Behaviors of Monocyte Subsets in Stanford Type B
AAD. Currently, numerous studies have demonstrated that
aortic inflammation is inseparable for the development of
aortic disease and that monocytes play an important role in
inflammation. Following the induction of inflammation in
local tissues, monocytes are recruited to the tissues and dif-
ferentiate into macrophages, which secrete inflammatory
mediators and participate in local inflammatory reactions
[24-26]. In order to demonstrate the population of mono-
cytes in Stanford type B AAD patients, we performed flow
cytometry analysis with human blood samples. The results
indicated that the percentage of CD14" cells in AAD patients
was significantly higher than that of normal volunteers
(Figures 1(a) and 1(b)). To further confirm the biological
features of the three monocyte subsets, we analyzed their per-
centages in PBMCs. The gating strategy is shown in
Figure 1(c) [27]. The results indicated that CD14"™CD16"
monocytes exhibited a significant decrease in the proportion
of PBMCs (P < 0.05), while the percentages of the two other
monocyte subsets (CD14*8"CD167, CD14°#"CD16™) were
increased significantly (P < 0.001) (Figure 1(d)). Due to the
significant increase caused in the percentage of CD14" cells
in PBMC (P <0.001), we analyzed the percentages of the
three monocyte subsets in CD14" cells.

3.3. Correlation Analysis between Monocyte and D-Dimer
and C-Reactive Protein. DD and CRP were viewed as diagnos-
tic and prognostic tools for AAD. D-dimer is a fibrin degrada-
tion product, generated following fibrinolysis of a thrombus
[28-30]. C-reactive protein (CRP) is an acute phase reactant,
which is a sensitive and a nonspecific inflammatory marker
[30-33]. The serum levels of DD and CRP are usually used
to assess the overall severity of acute diseases or to predict
adverse events [34, 35]. The correlation analysis indicated
no significant correlation between DD and the percentages
of monocyte subsets in PBMCs (all R* < 0.5 and P > 0.05)
(Figure 2(a)). Similar results were observed with regard to
the correlation between DD and the percentages of mono-
cyte subsets in CD14" cells (all R*<0.5 and P >0.05)
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TaBLE 1: Primer sequences for quantitative real-time polymerase chain reaction.
Gene name Forward primer Reverse primer
MMP9 GGACGATGCCTGCAACGT CAAATACAGCTGGTTCCCAATCT
MMP1 CATGAAAGGTGGACCAACAATTT CCAAGAGAATGGCCGAGTTC
MMP2 TACACCAAGAACTTCCGTCTGT AATGTCAGGAGAGGCCCCATA
TGF-1 CTAATGGTGGAAACCCACAACG TATCGCCAGGAATTGTTGCTG
SMAD3 ACCATCCCCAGGTCCCTGGATGGCC AACTCGGCCGGGATCTCTGTGTGGCGT
ACTA2 TCAATGTCCCAGCCATGTAT CAGCACGATGCCAGTTGT
TIMP1 CTTCTGCAATTCCGACCTCGT ACGCTGGTATAAGGTGGTCTG
TIMP2 AAGCGGTCAGTGAGAAGGAAG GGGGCCGTGTAGATAAACTCTAT
IL-6 ACTCACCTCTTCAGAACGAATTG CCATCTTTGGAAGGTTCAGGTTG
IL-10 TCAAGGCGCATGTGAACTCC GATGTCAAACTCACTCATGGCT
IL-17 TCCCACGAAATCCAGGATGC GGATGTTCAGGTTGACCATCAC
ADAMTS-1 CAGAGCACTATGACACAGCAA AGCCATCCCAAGAGTATCACA
GAPDH AGAAGGCTGGGGCTCATTTG AGGGGCCATCCACAGTCTTC
TaBLE 2: Clinical data of patients.
Characteristics Healthy control (n = 44) AAD patient (n =22) xlort P value
Mean age 52.89+15.24 55.33£13.32 0.744 0.459
Gender (M/F) 25/19 15/7 2.652 0.103
Smoking history 10 (22.73%) 12 (54.55%) 6.682 0.009**
Hypertension (%) 9 (20.45%) 14 (63.64%) 12.05 <0.001***
Hyperlipidemia (%) 12 (27.27%) 9 (40.91%) 1.257 0.262
Diabetes (%) 2 (4.54%) 6 (27.27%) 4.991 0.026*
DD (mg/l) 0.26 £0.15 3.73+2.54 8.875 <0.0017**
CRP (mg/l) 2.18+1.27 30.57 £24.76 7.478 <0.001***
WBC (10°/1) 6.38 +1.42 10.48 £2.02 9.368 <0.0017**
NE (%) 59.92 £6.81 67.21 £10.63 3.319 0.002**
LY (%) 33.12+£6.93 24.25+6.83 4.853 <0.001***
MO (%) 5.64+1.12 9.21+2.32 8.276 <0.001***

DD: D-dimer; CRP: C-reactive protein; NE (%): neutrophil percentage; LY (%): lymphocyte percentage; MO (%): monocyte percentage. Values were expressed
as the mean + SD or as indicated. The data of D-dimer was detected by an automatic blood coagulation analyzer (CA7000, Sysmex, Inc., Japan), and the data of
CRP was analyzed by an automatic biochemical analyzer (C8000, Abbott, Inc., USA). The data were means + SEM. *P < 0.05, **P < 0.01, and ***P < 0.005 vs.

healthy control.

(Figure 2(b)), while a weaker correlation between CRP and
the percentages of monocyte subsets was noted in the present
study (all R* < 0.5 and P > 0.05) (Figures 2(c) and 2(d)).

3.4. CD14" Monocyte Gene Detection. To further explore the
characteristics of monocytes in Stanford type B AAD
patients, we attempted to obtain human CD14" monocytes
by magnetic bead sorting. The percentage of CD14" mono-
cytes was approximately 5% of the total cells (Figure 3(a)).
Following gradient density centrifugation, the percentage of
CD14" monocytes in PBMCs increased to approximately
30% (Figure 3(b)). Finally, the purity of CD14" monocytes
was higher than 90% following magnetic bead sorting
(Figure 3(c)). On this basis, we detected several genes by
RT-qPCR, which were important for the development of
AAD in CD14" monocytes. The results indicated that the
expression levels of the matrix metalloproteinase family

genes (MMPI1, MMP2, and MMP9) were not significantly
different between Stanford type B AAD patients and normal
volunteers (Figure 4(a)). The expression levels of the tissue
inhibitor matrix metalloproteinase genes (TIMPI and
TIMP2) were decreased (P < 0.05) (Figure 4(b)). Similarly,
the levels of transforming growth factor-f1 (TGF-f1),
SMAD3, alpha-actin (ACTA2), and a disinterring and metal-
loproteinase with thrombospondin motifs 1 (ADAMTS-1)
were decreased (Figure 4(c)). The mRNA expression levels
of IL-6 and IL-10 indicated no significant difference between
Stanford type B AAD patients and normal volunteers, while
IL-17 levels were apparently increased (Figure 4(d)).

4. Discussion

Acute aortic dissection (AAD) is the most serious clinical
emergency in aortic disease. It exhibits an acute onset, rapid
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FiGure 1: (a) Flow cytometry analysis of CD14" monocytes in blood of normal control and Stanford type B AAD patients; (b) the statistical
graph of (a); (c) gating strategy of monocyte subsets via flow cytometry: CD14”8"CD16  (classic monocytes), CD14™8"'CD16"
(intermediate), and CD14%™CD16" (nonclassical); (d) the statistical graph in the percentage of three monocyte subsets in PBMC; (e) the
statistical graph in the percentage of three monocyte subsets in CD14" monocytes; data were shown as the mean + SEM (standard
error of the mean). Stanford type B AAD patient: n =22; normal control n=44. The data were means + SEM. *P <0.05, **P <0.01,

and ***P <0.005 vs. normal group.

development, morbidity complications, a high mortality rate,
and an increased misdiagnosis rate [4, 5, 36]. Additional
studies have contributed significantly to the prevention, diag-
nosis, and treatment of AAD diseases. In the present study,
we demonstrated that the percentages of total monocytes
and the subsets in the blood samples of Stanford type B
AAD patients were markedly altered, although no apparent
correlation with DD and CRP was noted. However, several
genes associated with AAD (TIMP1, TIMP2, TGF-fI,
SMAD3, ACTA2, ADAMTS-1, and IL-17) demonstrated sig-
nificant changes in their levels in Stanford type B AAD
patients. The investigation of the number of CD14" mono-
cytes is required to further understand the characteristics of
monocytes in AAD.

It is well known that the aorta is composed of a large
number of extracellular matrix components for the mainte-
nance of the arterial blood flow and the blood pressure. Fol-
lowing degradation of these structures, the arterial wall is
dilated and ruptures [3, 37]. Recent studies have demon-
strated that multiple inflammatory cells are involved in the
remodeling of aortic vascular tissues, such as activated T
and B cells and mononuclear-macrophages [38-40], indicat-
ing that inflammation participates in the development of
AAD by regulating the number, location, and functional bal-
ance of the inflammatory cells. As one of the most important
inflammatory cells, monocytes can participate in the vascular
remodeling process via different mechanisms of action. How-
ever, a limited number of studies have explored these path-
ways. Previous studies have reported that the percentage of
monocytes in blood of Stanford A AAD patients was
increased [41], while there were no related reports in patients
with Stanford type B AAD. The results of the present study
indicated by flow cytometry that the percentage of CD14"
cells in the blood of Stanford type B AAD patients was higher
than that of normal volunteers. The findings indicated that
monocytes were multiplied and recruited to areas of inflam-
mation where they differentiated and acted as effector cells to
respond to various biological changes [42].

From 2010, a new nomenclature for classifying mono-
cytes into three subgroups has been approved by the Interna-

tional Society of Immunology’s Nomenclature Committee.
This classification is based on the expression levels of the sur-
face markers CDI14 and CDI16 and is the following:
CD14"#"CD16, CD14*"#"CD16", and CD14*™CD16"
[16]. CD14*8"CD16" monocytes comprise 80-90% of the
monocyte pool with the remaining 10-20% being shared by
CD14"¢MCD16" and CD14%™CD16" monocytes [43]. The
features of these three types of monocytes were examined
in Stanford type B AAD patients. The monocytes were gated
according to their CD14 and CD16 expression, and the
results demonstrated that the percentages of CD14"™CD16*
monocytes in PBMC and in CD14" cells were significantly
decreased in AAD patients, while the percentages of the
other two subsets (CD14™#"CD16™ and CD14°"#"CD16")
were markedly increased. Similar results were observed in
other tyges of diseases. For example, the number of
CD14™8"CD16" monocytes in patients with coronary
heart disease was higher and exhibited a positive correla-
tion with atherogenic plaque formation [44]. A higher
increase of CD14""8"CD16" monocytes and lower levels
of CD14""8"CD16™ monocytes in patients with acute takot-
subo cardiomyopathy has been previously shown [45].
Tsujioka et al. demonstrated that the peak levels of
CD14¢™CD16™ monocytes exhibited a negative associa-
tion with the recovery of left ventricular function following
acute myocardial infarction [46]. CD14%#"CD16™ and
CD14""CD16" monocytes are inflammatory effectors
recruited in inflammatory sites in response to inflammatory
stimuli. It has been shown that the CD14*"¢™CD16  mono-
cytes mature via a continuum to CD14°""CD16" mono-
cytes and subsequently to CD14%™CD16" monocytes [47].
We proposed that the decrease of CD14™CD16" mono-
cytes might be due to the reduced maturation of
CD14"#"CD16 monocytes [18]. Furthermore, we consid-
ered that the infiltration of the macrophages detected in
the aorta might result from the migration of circulating
monocytes, rather than the localization of the resident aorta
macrophages. They are involved in the remodeling of aortic
blood vessels. Therefore, the increase in the percentages of
these two monocytes was cognitively compatible. It was



Journal of Immunology Research

40
30 v v
g °
<20 4
£
Q
©)]
10 -
0 1
0 15
-o- CD14" (P = 0.0890, R? = 0.2220)
& CD14%"CD16" of PBMC (%) (P = 0.3640, R* = 0.06907)
~A- CD14"™#"CD16" of PBMC (%) (P = 0.6570, R* = 0.01699)
¥ CD14™#"'CD16™ of PBMC (%) (P =0.5166, R’ = 0.03589)
()
40 —
3094 vy v
g [ J
S 20 - v v
[ S A L
S v v
°
10 - :#"\o
[}
PY A ° ® l
4 [] . mg ¥8 "
0 T T T T 1
0 20 40 60 80 100
CRP
-e- CD14" (P =0.8017, R* = 0.005465)
& CD14%™CD16" of PBMC (%) (P = 0.2340, R> = 0.1157)
—&- CD14%™CD16" of PBMC (%) (P = 0.7654, R* = 0.007706)
¥ CD14CD16™ of PBMC (%) (P = 0.8945, R> = 0.001528)

(©

7
100
A
A A
£ 601 AL
= L
5
S 40 + °
Y | |
R Ly g
a i )
0 T T 1
0 5 10 15
DD
& CD14YMCDI6" of CD14* (%) (P =0.0453, R* = 0.2937)
B CDI14™8™CD16" of CD14" (%) (P =0.7462, R* = 0.009061)
-~ CD14™#CD16™ of CD14" (%) (P = 0.2692, R* = 0.1006)
(b)
100
A
80 - A A
A*,L_,_,ff/"
A
g 60 - A A
=
5
S 401 .
Y | |
20 - ! 2 . [
[ ]
a [ | o ¥ .
0 T T T T 1
0 20 40 60 80 100
CRP

(P =0.4474, R* = 0.04891)
CD16" of CD14" (%) (P =0.9691, R* = 0.0001306)
—A CD14™™CD16 of CD14" (%) (P =0.5212, R = 0.03512)

-@- CD14%™CD16" of CD14" (%)

-m CD14%eM

(d)

FIGURE 2: (a) Correlation analysis between the serum levels of DD and the percentage of monocyte subsets (CD14"™CD16",
CD14"8"CD16*, and CD14"8"CD167) in PBMC. P > 0.05. (b) Correlation analysis between the serum levels of DD and the percentage
of monocyte subsets (CD14%™CD16", CD14™#"CD16", and CD14%#"CD16°) in CD14" cells. P > 0.05. (c) Correlation analysis between
the serum levels of CRP and the percentage of monocytes subsets (CD14dimCD16+, CD14*¢MCD16*, CD14brightCD16’) in PBMC.
P>0.05. (d) Correlation analysis between the serum levels of CRP and the percentage of monocyte subsets (CD14*™CD16",
CD14*™CD16%, and CD14"8"'CD16) in CD14"* cells. P>0.05; n=14. The data were means+SEM. *P<0.05, **P <0.01, and

***P <0.005 vs. normal group.

hypothesized that the reduction in the number of nonca-
nonical monocytes was mediated by the decreased matura-
tion of classical monocytes. The maturation pathway of
monocytes involves the maturation of CD14*¢™CD16°
monocytes to CD14°#™CD16" [17, 27]. In summary, the
results indicated that these three monocyte subsets might
play different roles in the development of Stanford type
B AAD.

D-dimer (DD) is a specific protein fiber degradation
product that is formed by plasmin hydrolysis. DD is released
in large quantities following thrombosis, resulting in elevated

levels of this biomarker in the serum [48, 49]. Therefore, the
serum levels of DD are considered an optimal diagnostic tool
for deep vein thrombosis, pulmonary embolism, and AAD
[50-52]. This assessment was well recognized in the diagno-
sis of acute aortic syndrome (including AAD) [1, 52-54].Ina
previous study conducted in 2006, D-dimer testing (DT) was
performed in 113 consecutive AAD patients within 24h of
symptom onset in the Osaka Mishima Emergency and Criti-
cal Care Center [55]. The results indicated that 104 (92%)
AAD patients were positive for DT [55]. In the same year,
the University Hospital of Strasbourg in France performed
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DT in 94 consecutive patients admitted to their institution
with confirmed AAD, and the results indicated that 93
patients  (99%) with AAD exhibited elevated DD
(>400 ng/ml) [55]. It has been shown that the serum levels
of DD are positively correlated with AAD. However, the
present study indicated no significant correlation between
DD and the percentages of monocyte subsets. It is possible
that the two are independent factors affecting the disease pro-
cess. In addition, it may be related to the sampling time point.
A previous study demonstrated that the positive rate of DT
detection was considerably low in patients aged less than 70
years and in patients exhibiting a 120 min time interval from
symptom onset to admission [56]. The mean age of the
patients of the present study was lower than 70 years, and
the time interval from symptom onset to blood sample acqui-
sition and detection was approximately 120 h, suggesting that
this may be an important cause of negative results. In addi-
tion, we hypothesized that the time point required for the
change in the monocyte number in Stanford type B AAD
was different from that noted for the increase in the DD levels
in other inflammatory diseases. The number of monocytes
was increased in response to the changes in the microenvi-
ronment occurring during the disease progression. However,
the large quantities of DD were released following induction
of thrombosis. In addition to DD, C-reactive protein (CRP) is
usually used to analyze the prognosis of AAD patients. The
results indicated no significant correlation between CRP
levels and monocyte subsets. CRP is a nonspecific acute
inflammatory response protein produced by hepatocytes
and is usually used to assess the overall severity of an acute
disease or to predict adverse events [57]. However, it cannot
be used as a clinical indicator for the prediction of AAD [57].

Furthermore, the time point required for the monocyte
changes to take place may also differ from that noted for
the CRP increase in the Stanford type B AAD patients, which
remained to be confirmed by further research.

As we can see, diabetes (P <0.05), smoking history
(P <0.01), and hypertension (P < 0.001) in Stanford type B
AAD patients were higher than those noted in healthy con-
trol subjects. These might be related to the abnormal expres-
sion of monocytes and the occurrence of Stanford type B
AAD. Actually, studies have been reported that the occur-
rence of male abdominal aortic aneurysms is closely related
to the lifestyle-related factors, including cigarette smoking,
obesity (body mass index (BMI) and waist circumference
(WQ)), and history of comorbidities (diabetes mellitus,
hypercholesterolemia, and hypertension) [58]. What is the
relationship between these lifestyle-related factors and the
abnormal expression of monocytes? Studies have shown that
the number of monocytes was increased in the blood of
smokers [59]. Similarly, an increase in circulating monocyte
counts has been found in patients with diabetes [60]. It has
been reported that humans with hypertension have increas-
ing intermediate and nonclassical monocytes, and increased
endothelial stretch enhanced monocyte conversion to
CD14¢™CD16" monocytes [61]. Thus, we can speculate
that the above lifestyle-related factors may result in high
expression of monocytes and induce Stanford type B AAD,
which remains to be confirmed further.

To determine the biological changes caused on mono-
cytes other than their percentages and phenotype, we
obtained CD14" monocytes by magnetic bead sorting and
analyzed the expression levels of several genes of CD14" cells.
It has been shown that the expression levels of several genes
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FIGURE 4: (a) The mRNA expression levels of MMP1, MMP2, and MMP9; (b) the mRNA expression levels of TIMP1, TIMP2; (c) the mRNA
expression levels of TGF-f1, SMAD3, ACTA2, and ADAMTS-1; (d) the mRNA expression levels of IL-6, IL-10, and IL-17; Stanford type B
AAD patient: n = 8; normal control: n = 8. The data were means + SEM. *P < 0.05, **P < 0.01, and ***P < 0.005 vs. normal group.

are associated with the induction of aortic diseases induced
by ANG II, such as TGF-§ [62, 63], SMAD3 [64-66],
MMP1 [66-69], MMP2 [70-72], MMP9 [72, 73], and
TIMPI1/TIMP?2 [74, 75]. Previous reports have clearly dem-
onstrated that MMP1, MMP2, and MMP9 are activated in
the aortic disease [66-72]. However, the present study dem-

onstrated that the expression levels of MMP1, MMP2, and
MMP9 indicated no significant differences between CD14"
cells in Stanford type B AAD patients and normal volunteers,
while TIMP1 and TIMP2 (inhibitor of MMPs) levels were
decreased [73-75]. It has been reported that the balance
between MMPs/TIMPs regulates ECM conversion and
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remodeling, and an imbalance in this proportion may result
in an abnormal amount of ECM degradation, leading to the
development of severe vascular disease [76]. We speculated
that monocytes may exhibit altered levels of TIMPs, but not
of MMPs during the development of Stanford type B AAD.

Approximately 10 years ago, a hypothesis was proposed
suggesting that aortic lesions were caused by excess TGF-f1
production in the aortic medium [77]. Subsequent studies
confirmed this hypothesis and revealed that the downstream
pathway of TGF-f1 was mediated by SMAD3. This sug-
gested that excessive TGF-B/SMAD3 signaling stimulated
smooth muscle cell uncontrolled and excessive proliferation,
resulting in arterial lumen changes and the trigger of a series
of aortic diseases [78, 79]. However, the present results indi-
cated that the mRNA expression levels of TGF-1 and
SMAD3 were significantly decreased in Stanford type B
AAD compared with those of normal volunteers, which
was inconsistent with previous reports. Considering that
the detection of CD14" monocytes was obtained from the
patient blood, these two genes involved in CD14" monocyte
function may play additional undiscovered roles, which
require further investigation.

Alpha-actin (ACTA2) is the most common mutated gene
in aortic disease, mainly affecting vascular smooth muscle
cell (SMC) function. The major function of these cells is to
contract in response to the stretch, a process that depends
on the cyclic interaction between thin filaments, which are
encoded by ACTA2 [80, 81]. The heterozygous mutations
in ACTA2 lead to an inherited predisposition for thoracic
aortic aneurysms and dissections (TAAD) [80-82]. The
recent results of the present study indicated that the expres-
sion levels of ACTA2 in CD14" monocyte were lower in
Stanford type B AAD patients, suggesting that ACTA2 may
be mutated in CD14" monocytes.

The recently discovered extracellular metalloproteinase
named ADAMTS-1 is disinterring with a thrombospondin
motif and metalloproteinase [83]. It has been reported that
ADAMTS-1 inhibits ECM remodeling and participates in
vascular disease by inhibiting cell proliferation [84-86]. Its
mechanism of action is mediated by the combination of the
vascular endothelial growth factor and the fibroblast growth
factor [84-86]. Previous studies have demonstrated that the
expression levels of ADAMTS-1 are increased significantly
in aortic tissues of AAD patients [87, 88]. ADAMTS-1 was
also introduced as a major mediator of vascular homeostasis,
and ADAMTS-1"" mice were more susceptible to the AAA
phenotype [89]. The results of the present study indicated
that the expression levels of ADAMTS-1 in CD14" cells were
lower in Stanford type B AAD patients compared with those
of the normal volunteers.

Interleukin-6 (IL-6) is an important stimulator of athero-
sclerotic lesions, which can aggravate atherosclerosis [90, 91].
However, the results of the current study indicated that the
mRNA levels of IL-6 in Stanford type B AAD patient
CD14" cells exhibited no significant difference compared
with those of the normal volunteers. In addition to IL-6, IL-
10 also played an important role in promoting the develop-
ment of aortic aneurysm. It has been reported that high levels
of IL-10 are detected in the serum of patients with aneurysms

11

and that IL-107" counteracts Ang Il-induced vascular dys-
function in APOE”" mice [92]. The results of the present
study indicated that in CD14* monocytes, the mRNA expres-
sion levels of IL-10 demonstrated no significant difference
between Stanford type B AAD patients and normal volun-
teers, while interleukin-17 (IL-17) exhibited a significant
increase. It has been reported that IL-17 is involved in various
autoimmune diseases, including multiple sclerosis, rheuma-
toid arthritis, and systemic lupus erythematosus [[93-95],
and previous studies have also indicated that high expression
of IL-17 induces vascular inflammation, endothelial dysfunc-
tion, arterial hypertension, hypertension, and aortic aneu-
rysm [96, 97]. In addition, IL-17 affects the basic function
of the mononuclear/macrophage lineage and participates in
the development of advanced atherosclerosis, promoting
the increase of monocyte adhesion and the recruitment of
circulating monocytes [98, 99]. We have demonstrated that
the expression levels of IL-17 in CD14" monocytes were
increased in Stanford type B AAD patients and that this effect
may be inextricably linked to the changes of the monocyte
biological characteristics. This requires further investigation
in further study.

Although the present study contains several limitations,
the results reported that the numbers and phenotypes of
monocytes were significantly altered in the blood of Stanford
type B AAD patients, suggesting that monocytes may play an
important role in promoting the development of Stanford
type B AAD. The specific mechanism of this process remains
undiscovered. The mRNA expression levels of CD14" mono-
cytes can aid in identification and prognosis of the disease.
Understanding the characteristics of monocyte subset gener-
ation, differentiation, and function can dictate the develop-
ment of future therapeutic avenues for Stanford type B AAD.
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