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MicroRNAs (miRNAs), around 22 nucleotides (nt) in length, are a class of endogenous and noncoding RNA molecule that play an
essential role in plant development, either by suppressing the transcription of target genes at a transcriptional level or inhibiting
translation at a posttranscriptional level. To understand the roles of miRNAs and their target genes in chrysanthemum
polyploidy breeding, three sSRNA libraries of normal and abnormal embryos after hybridization were performed by RNA-Seq.
As a result, a total of 170 miRNAs were identified and there are 41 special miRNAs in cross of paternal chromosome doubling,
such as miR169b, miR440, and miR528-5p. miR164c and miR159a were highly expressed in a normal embryo at 18 days after
pollination, suggesting the regulatory role at the late stage of embryonic development. miR172c was only detected in the normal
embryo at 18 days after pollination, which means that miR172c¢ mainly mediates gene expression in postembryonic
development and these genes may promote embryo maturation. Other miRNAs, including miR414, miR2661, and miR5021,
may regulate the genes participated in pathways of auxin response and energy metabolism; then they regulate the complex

embryonic development together.

1. Introduction

In plants, microRNAs (miRNAs) are a major class of small
noncoding RNAs (sRNAs) with 20-22 nt. sSRNAs have been
identified to control the developmental processes in plants
by regulating gene expression [1]. They have the potential
to regulate a gene by two ways: (1) posttranscriptional gene
silencing (PTGS) by binding to 3’ untranslated region
(UTR) of messenger RNAs (mRNAs) and repressing the
translation of target mRNAs; (2) transcriptional gene silenc-
ing (TGS) by epigenetic modifications [2, 3]. PTGS is the
main strategy used by miRNAs to regulate gene expression
in plant development. Plant mature miRNAs are generated
from miRNA precursors that are processed by a ribonuclease
DICER-LIKE1, which negatively regulates specific target
mRNAs [2].

A number of studies have investigated the key regulatory
role of miRNAs in a wide range of growth and development
processes in plants, including the regulation of embryonic

development [4, 5]. Plant embryo development includes
two stages, embryo morphogenesis and seed maturation. In
the model plant Arabidopsis thaliana, embryonic pattern
formation has been mainly concerned and studied [5]. Based
on the embryo shape, the cell division goes through several
stages from preglobular to mature embryo, tightly regulated
by multiple genes [6]. As a class of small regulatory RNA,
the function of miRNAs during plant embryo development
has been considerably reported recently [7]. 28,645 mature
miRNAs have been discovered and deposited in the pub-
lic miRNA database miRBase (Release 21, http://www.
mirbase.org/) and hundreds of miRNA target in plant
embryo. A large number of Arabidopsis mutants of miRNA
biogenesis genes have revealed the crucial roles of miRNA
during seed morphogenesis and maturation. Willmann
et al. reported the earlier timing of embryo maturation in
Arabidopsis mutant for strong alleles of DCLI (DICER-
LIKET]) that are required for miRNA biogenesis and demon-
strated the negative regulatory role of specific miRNAs
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during early embryogenesis and later in embryonic develop-
ment and that miRNAs are key regulators during seed
maturation program [8].

Embryonic miRNAs mediate plant embryo development
by regulating transcription factors located in special spatial
organization and other key developmental regulators [5]. In
plants, miR165/166 is one of the best characterized miRNA
families, which regulates five class III homeodomain leucine
zipper genes (HD-ZIP IIIs) (PHB, PHV, REV, CNA, and
ATHBS) [9, 10]. The HD-Zip III gene family regulates apical
embryo patterning and organ polarity as well as controls
shoot and root apical meristem (SAM and RAM) formation
in embryogenesis [11-13]. The family of miR160/miR167
regulates the target mRNAs of auxin response factors (ARFs)
associated with auxin homeostasis [14, 15]. Auxin response is
an important signaling pathway during embryonic pattern
formation, embryo development, and seed maturation [16].

Chrysanthemum (Chrysanthemum morifolium) is an
economically important flower around the world, with the
increase of chrysanthemum consumption, breeders are
driven to improve the cultivars’ traits, such as color, size,
shape, and tolerance [17]. Artificial distant hybridization is
one of the most effective methods to improve and create
new cultivars. However, embryo abortion commonly hap-
pens during hybridization [18, 19]. Although previous
studies analyzed many different reasons leading to plant
embryo abortion, including maternal genotypes [20], parent
ploidy [21, 22], and gene regulation [6, 23], the molecular
mechanisms regulating embryo development are poorly
understood. Zhang et al. revealed the gene, protein, and
miRNA change in the stage of chrysanthemum embryo
development [19, 24] and provided numerous information
of embryo abortion in chrysanthemum hybridization breed-
ing. Evidence supporting a major role for chromosome
doubling in overcoming chrysanthemum embryo abortion
has been obtained from some studies [22, 25], but the
functions of miRNA remain largely uncharacterized.

Next generation sequencing (NGS) approaches have
been employed to identify individual miRNAs in various
samples, and bioinformatics analyses have offered the
technical support to predict the miRNA targets [26]. In
the present study, we sequenced three small RNA libraries
from chrysanthemum embryo in cross C. morifolium
“Yuhualuoying” x tetraploid C. nankingense and identified
the key miRNAs and targets that may facilitate embryo
development in cross of paternal chromosome doubling.

2. Materials and Methods

2.1. Plant Materials and Artificial Hybridization. Artificial
hybridization was performed in cross C. morifolium “Yuhua-
luoying” (@, 2n=6X=54) x tetraploid C. nankingense (3,
2n=4X=36). Here, the male is an autopolyploid generated
by colchicine doubling of the diploid C. nankingense
(2n=2X=18) [19]. After pollination, three samples were
collected, corresponding to the normal embryo at 12 days
after pollination (DAP) (NE12), normal embryo at 18 DAP
(NE18), and abnormal embryo at 18 DAP (AE18). For each
sample, we collected 0.2 g independent biological replicates
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for verification and mixed the rest of triplicate samples
(~0.5g) for RNA-Seq. All of the samples were immediately
frozen in liquid nitrogen and stored at —80°C.

2.2. RNA Extraction, Small RNA Library Preparation, and
Illumina Sequencing. Total RNA was extracted with TRIzol
reagent (Takara Bio Inc., Otsu, Japan) according to the
manufacturer’s protocol. Small RNAs with 18-30nt frag-
ments were enriched by 15% denaturing polyacrylamide gel
electrophoresis. After purification, they were ligated to 5'
and 3’ adaptors and reversed transcribed into cDNA by
reverse transcription-PCR (RT-PCR). Three small RNA
libraries were constructed and sequenced using the Illumina
HiSeq™ 2000 by the Beijing Genomics Institute (BGI)
(Shenzhen, Guangdong Province, China).

2.3. Conserved and Novel miRNA Prediction. Firstly, the data
cleaning analysis was performed by getting rid of low-quality
reads, reads with 5' primer contaminants and poly A, reads
without 3’ primer and the insert tag, and reads shorter than
18nt. The small RNA tags with miRNA, rRNA, snRNA,
snoRNA, and tRNA were annotated by aligning to GenBank
(http://www.ncbi.nlm.nih.gov/genbank/) and Rfam database
(http://rfam xfam.org/) using all clean reads of 18~30 nt. The
number and proportion of each type of sRNAs were
calculated in three libraries. Then, to identify the miRNAs
in chrysanthemum embryo, miRBase 19.0 (http://www.
mirbase.org/) was used to search the conserved miRNAs by
BlantN. Only 90% matched sequences were considered to
be conserved miRNAs. To allow the unambiguous mapping
of small RNAs to annotations, the priority rule was followed:
rRNA (in which GenBank >Rfam)>known miRNA >
repeat > exon > intron. Finally, the novel miRNAs were pre-
dicted using the Mireap software (https://sourceforge.net/
projects/mireap/); here, the chrysanthemum embryo tran-
scriptome library obtained from the same sample with the
present study (the NCBI accession number PRINA315793)
was used as the reference database. In the chrysanthemum
embryo, a total of 99,119 unigenes were assembled with a
mean length of 550-580 nt, which were used for prediction
in the present study.

2.4. Target Prediction and Functional Annotation for
miRNAs. The potential target genes of the known miRNAs
were predicted by the web tool psRNATarget (http://
plantgrn.noble.org/psRNATarget/) with parameters sug-
gested by Allen et al. [27]. The target genes were identified
in chrysanthemum embryo transcriptome dataset [22], and
the function of these potential target genes was anno-
tated using the two protein databases, Gene Ontology
(GO) (http://geneontology.org/) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) (http://www.genome.jp/kegg/).

2.5. Differential Expression of Known miRNA and Their
Targets. To find out the differentially expressed miRNAs in
three samples, we normalized the expression of miRNA in
three samples and obtained the expression of transcript
per million (TPM). Normalized expression =actual miRNA
count/total count of clean reads*1000000. If the miRNA
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count was zero, it was revised to 0.01 for analysis of differen-
tial expression. The fold-change of log, (sample 1/sample 2)
and p value from the normalized counts were calculated to
determine significant expression changes. Finally, those miR-
NAs with fold-change > 1 and p value <0.05 were considered
to be differentially expressed in the two samples. Heatmap is
a visual tool reflecting the expression of differential miRNAs.
In the present study, the OmicShare tool, a free online plat-
form for data analysis (http://www.omicshare.com/tools),
was plotted. Based on the transcriptome library, we searched
the expression pattern of these target genes regulated by the
differentially expressed miRNAs.

2.6. Real-Time Quantitative PCR (qRT-PCR) Validation of
miRNAs and Target Genes. We randomly selected 12
miRNAs and 9 target genes to validate the reliability of
sRNA sequencing by qRT-PCR. RNA samples used for
sequencing were reverse transcribed using PrimeScript
miRNA qPCR starter kit ver 2.0 (Takara Bio, Dalian,
China). qRT-PCR was performed using the SYBR Premix
EX Taq Kit (Takara, Dalian, China), and the PCR ampli-
fication was done as described by Zhang et al. [24].
Three biological replicates were performed for each sam-
ple, and relative expression levels were calculated by the
2722CT method. The chrysanthemum gene EFla (elonga-
tion factor la) (GenBank accession number KF305681)
was used as a reference, which is stably expressed in
chrysanthemum [19]. Special primers were designed using
PRIMER3 RELEASE 2.3.4. All of the primers were shown
in Table S1.

3. Results

3.1. Sequencing Analysis of sSRNA. To explore the regulation
of miRNAs in chrysanthemum embryo development when
paternal chromosomes were doubled, three cDNA libraries
of small RNAs were constructed, which were named NE12,
NE18, and AE18. All clean reads were obtained by filtering
the low-quality sequences, adapter sequences, and poly-A
sequences shorter than 18 nt, which altogether resulted in
more than 99.79% of raw reads. When these small RNA tags
were mapped to genome, about 20% of reads in each sample
were matched. The unique sSRNAs matched to genome in the
three libraries were 3,864,037, 3,780,667, and 3,734,164,
accounting for 9.62%, 10.04%, and 10.29% of all unique
sRNAs (Table 1).

When these unique sSRNAs were aligned to the GenBank
and miRBase, many types of sSRNAs were identified, includ-
ing miRNA, rRNA, snRNA, snoRNA, and tRNA, but the vast
majority of sequences were unannotated. The length of
different types of sSRNAs was discrepant; since in chrysanthe-
mum embryo, the most abundant classes of sSRNA showed
the length of 24nt (dominant siRNA), then 21 nt (mainly
miRNAs), and 22nt (Figure 1). In the present study, the
unique miRNAs in each library were taken into consider-
ation for subsequent analysis, and the proportion of miRNAs
was 0.26%, 0.24%, and 0.26% in libraries of NE12, NE18, and
AE18 (Table 1).

3.2. miRNAs and Target Genes Identified in Three Libraries.
In all samples, a total of 170 conversed miRNAs were
identified in miRBase, and 130, 131, and 132 miRNAs
were expressed in NE12, NE18, and AE18, respectively.
100 miRNAs (accounting for 58.8%) were detected in three
samples; however, some were in two different samples, such
as 10 miRNAs in NE12 and NE18, 7 miRNAs in NE18 and
AEFE18, and 6 miRNAs in NE12 and AE18. Venn diagram
(Figure 2) presented the quantity distribution of conserved
miRNAs in chrysanthemum embryo.

Expression level is an important feature to explain the
regulation function of miRNAs, and they commonly varied
greatly in different samples. Here, the expression of 170
miRNAs with sequences was normalized and analyzed. The
most abundant miRNAs in three samples were miR156a,
miR157a, and miR166a, with the expression more than a
thousand (Table S2). However, some miRNAs highly
expressed in a particular sample, such as the expression of
miR398b-5p, are 3524 in AEI18 but neither in NE12 nor
NE18, miR5721 only expressed in NE18, and miR5662 only
in NE12.

To study the biological function of miRNA in chrysan-
themum embryo development, the sequences of target
mRNA were paid attention. A total of 770 target genes were
identified and regulated by 88 miRNAs (51.76% of all miR-
NAs), and miRNA414 had the most targets (347 unigenes),
followed were miR5293 (61 targets) and miR5021 (44
targets) (Table S3). 34 target genes were regulated by two
miRNAs, such as CL1999. Contig2 was targeted by miR165a
and miR166a; unigenel0412 was the target of miR156a and
miR157a (Table S3).

3.3. Functional Annotation of Target Genes. Gene Ontology
(GO) is a standardized classification system of gene used to
describe the characteristics of genes and gene products in
organisms. The result showed that 517 target genes were
classified into three gene ontology categories: biological
processes, cellular components, and molecular functions
(Figure 3). Of the 40 functional categories, the number of
genes in each sample is different, but in most of categories,
NEI12 had the largest number but least in AE18. In the third
ontology of molecular function, some target genes were
expressed in a specific sample, such as the genes related to
“electron carrier activity” only expressed in NE12, two genes
in the category of “enzyme regulator activity” expressed in
NE18, but there was no gene regulated “molecular transducer
activity” in NE18 (Figure 3).

To understand the biological function of target genes,
KEGG analysis, as with GO, was also used to analyze
candidate targets. In NE12, a total of 337 target genes had
the biological function on 207 KEGG pathways, but there
were less target genes and pathways in NE18 and AFEIS.
211 target genes with 118 pathway annotation in NE18 and
179 annotated target genes with 113 pathways in AE18
(Table S4). Some target genes were annotated in dozens
of pathways that are only in library of NEI12, including
some energy metabolism pathways, such as ko00280
(valine, leucine, and isoleucine degradation), ko00310 (lysine
degradation), and ko00410 (beta-alanine metabolism).
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F1GURE 1: Length distribution of sRNAs in chrysanthemum embryo.
x-axis is the length of sRNA distribution, and y-axis is the
proportion of the sRNAs of different lengths. NE12, NEI8, and
AE18 mean the normal embryo at 12 DAP (days after
pollination), normal embryo at 18 DAP, and abnormal embryo at
18 DAP, respectively.
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FIGURE 2: Venn diagram presented the quantity distribution of
conserved miRNAs in chrysanthemum embryos. There were 130,
131, and 132 miRNAs expressed in NE12, NEI8, and AEIS,
respectively. In the middle, 100 means that the number of
miRNAs was detected in three samples. NE12, NE18, and AE18
mean the normal embryo at 12 DAP, normal embryo at 18 DAP,
and abnormal embryo at 18 DAP, respectively.

3.4. Differentially Expressed miRNAs in Chrysanthemum
Embryo. The aim of this study is to analyze the different miR-
NAs possibly involved in chrysanthemum embryo develop-
ment, so we identified 112 differentially expressed miRNAs

with at least 1.5-fold after standardized expression. The
heatmap showed the expression pattern of these miRNAs
(Figure 4). They were assembled in three groups depending
on the expression trend. In group NE18/AE18, the number
of upregulated miRNAs was almost the same as downregu-
lated, and similar quantity distribution occurred in NE12/
NE18. However, the difference is in NE12/AE18, in which
only 1/3 of the miRNAs were upregulated in NE12 and
means more negative genes in AE18.

3.5. Characteristics of Target Genes in Chrysanthemum
Embryo Development. miRNAs regulate the plant develop-
ment by mediating the expression of target genes. Apart from
those redundancy regulated by several miRNAs, a total of
770 target genes were identified and annotated by chrysan-
themum transcriptome dataset. The expression level and
annotation were presented in Table S5. Most of them were
regulated by one miRNA, and some were negatively regu-
lated by miRNAs, such as the transcription factor MYBI1
(Unigene2183) highly expressed in NE12, but the targeted
miR858b was the lowest expression level in it. Another tran-
scription factor WRKY48 (Unigene25838) was expressed to
be the highest in AE18 and lowest in NE12, showing the
negative regulation by miR414 (Figure 5, Tables S2 and S5).
Several targets were regulated by two miRNAs, and there
was no difference in the level of expression among samples.
For example, unigene21756 was the target of miR5215 and
miR5373, and its FPKM is near the three samples, without
negative regulation by these two miRNAs.

In order to study the target genes that regulate the
embryo development, some differentially expressed target
genes (the fold of FPKM > 1.5) were selected according to
their Nr/Nt annotation, which may be involve in chrysanthe-
mum embryo development (Table 2). They contained some
transcription factor, genes related to energy metabolism
and protein synthesis, and some uncharacterized protein.
The expression of transcription factor was various; WRKY
and NAC were highest in AE18, but MYB was lowest. Some
of the genes associated with auxin and ATP synthesis were
downregulated in AE18 (Table 2 and Figure 5).

3.6. Validation of qRT-PCR. qRT-PCR is an efficient and
accurate way to examine the result of RNA-Seq. In the
present study, a total of 12 miRNAs were double tested by
qRT-PCR, suggesting the high compatibility of the expres-
sion pattern between the two methods (Figure 6). Seven of
them had the highest expression in AE18, such as miR169b,
miR159a, and miR858b. miR167¢-3p was verified with the
highest expression in NEI18 by two methods. miR414 that
regulated the most target genes with various expression levels
was expressed dominantly in NE12 (Figure 6).

4. Discussion

4.1. Identified miRNAs in Chrysanthemum Embryo. miRNAs
can regulate the plant embryonic development, which impor-
tant and diverse roles have been studied in various species;
however, the specific function of individual miRNA is
still uncharacterized for stage-specific embryo [5]. Next-
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generation sequencing makes it easier to identify individual
miRNA families from different organs or treated plants. In
Pinus taeda [15] and Brassica napus [28], miRNAs were
identified from zygotic embryos at late developmental stages.
More and more researchers have provided abundant evi-
dences that miRNAs are required for the majority of
embryonic cell differentiation and development in Arabidop-
sis [29, 30]. In chrysanthemum cross breeding, embryonic
development is a crucial stage for seed formation, but embryo
abortion is prevalent in chrysanthemum distant hybridiza-
tion [31, 32]. Previous studies explored this barrier at the
level of cell structure, gene expression, and miRNA regula-
tion [19, 24], in which 227 miRNAs were identified in hybrid
embryos from cross C. morifolium and diploid C. nankin-
gense. Because of the importance of chromosome doubling
in cross breeding, in the present study, we performed the
hybridization using C. morifolium and tetraploid C. nankin-
gense; 179 miRNAs were identified in three embryo samples
(Table S2). Compared with two crosses, less miRNAs were
identified after paternal chromosome doubling; as a result,
135 miRNAs were identified simultaneously in two crosses,
44 new miRNAs in the present cross, such as miR169b,
miR440, and miR528-5p, but 92 miRNAs expressed in the
previous cross were not detected here, such as miR172a,

miR172b, and miR391 [24]. These similarities and differ-
ences suggest that most of the identified miRNAs in two
crosses are the main factor regulating embryonic develop-
ment in chrysanthemum and those expressed in specific
cross may regulate the development depending on whether
the male chromosome doubled. To some extent, it implicated
that chromosome doubling has an effect on embryo develop-
ment in distant hybridization by regulation of miRNAs.

4.2. The Role of miRNA Chrysanthemum Embryo. In plant
embryo, miRNAs can mediate their downstream targets
and regulate the expression of some transcription factors or
other key developmental regulators [5]. The overexpression
of miRNAs and their target genes have allowed assignment
of developmental roles in embryonic, vegetative, and floral
organ boundary formation [33, 34], such as miR159,
miR164, miR165/166, miR172, and miR319 families. It has
demonstrated that miR164 directly regulates NAC domain
genes for making the function of normal plant morphogene-
sis and normal embryonic [34]. In the present study, there
was no miR164 detected, but miR164c was expressed in three
samples and higher expression level in abnormal embryo
(Table S2). Previous study showed the highest expression of
miR164c in normal embryo at 18 DAP when the male was
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expression pattern of each miRNA in three samples. Red rectangle means upregulation, and green means downregulation. All information
for each miRNA list can be found in Table S2. NE12, NE18, and AE18 mean the normal embryo at 12 DAP, normal embryo at 18 DAP,
and abnormal embryo at 18 DAP, respectively.
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F1GURE 5: Validation of target genes in chrysanthemum embryos by qQRT-PCR. The orange histogram represented the qRT-PCR validation,
and the value of relative expression was shown on the left of y-axis. The blue slope lines represented the FPKM of each unigene obtained using
RNA-Seq [19], and the value of FPKM was shown on the right of y-axis. NE12, NE18, and AE18 mean the normal embryo at 12 DAP, normal

embryo at 18 DAP, and abnormal embryo at 18 DAP, respectively.

diploid C. nankingense [24], suggesting that miR164c may
have the important regulatory role at the late stage of embry-
onic development, and the lower expression level of miR164c
in normal embryo at 18 DAP may be beneficial to chrysan-
themum embryo development normally. Similar situation
happened in miR159a; there was no miR159 detected in
chrysanthemum embryo, but the miR159a was differentially
expressed in normal and abnormal embryo at 18 DAP,
suggesting the connected function with miR164a during
chrysanthemum embryonic development.

miR172 showed the regulatory function for early
flowering and floral organ identity defects by regulating
AP2 and TOE [35]. miR172c was detected in this study, and
the expression was zero in samples of NE12 and AE18, which
means that miR172c mainly mediates gene expression in
postembryonic development and these genes may promote
embryo maturation. DCLI was a key gene for embryo
development by embryo lethality, which was regulated by
miR163 [36, 37]. However, there was no miR163 identified
in chrysanthemum embryo whether the cross has paternal

chromosome doubling or not. This result exhibits that
DCL1 was not regulated by miR163 and participated in
embryonic lethality in chrysanthemum.

4.3. miRNA-Mediated Target Genes in Chrysanthemum
Embryo. Research in the last decade has demonstrated that
miRNAs make the crucial roles during plant embryogenesis
by regulating various genes and pathways [38]. It contains
the process of spatial control of differentiation, regulation
of auxin responses, and temporal control of differentiation
[5]. A study on miR160-resistant ARF17 transgenes showed
the defected cotyledons, suggesting that miR160 negatively
regulated genes involved in auxin signaling that is critical
for proper development of the embryo and cotyledons [39].
Auxin response is a critical biological pathway for embryonic
development, and it has also been reported in chrysanthe-
mum [22]. In the present study, miR160 was identified in
NEI12 and NE18, highly expressed in NE18 (Table S2). The
result of target gene prediction showed that the targets
of miR160 were auxin response factor with differential
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FIGURE 6: Validation of miRNAs in chrysanthemum embryos by qRT-PCR. The orange histogram represented the qRT-PCR validation, and
the left of y-axis was the value of relative expression in three samples. The blue slope lines represented the expression level (on the right of
y-axis) detected by RNA-Seq. NE12, NE18, and AE18 mean the normal embryo at 12 DAP, normal embryo at 18 DAP, and abnormal

embryo at 18 DAP, respectively.

expression among samples (Table 2). In the late embryonic
development (18 DAP), the target genes (unigene9514) of
auxin response factor downregulated compared with NE12.
Besides, there are a portion of target genes involved in
energy metabolism according to Nr/Nt annotation, and their
expression was downregulated in an abnormal embryo
(Table 2). Transcriptome provided the evidence of impor-
tance of energy synthesis for normal embryo development
[22]; here, these identified target genes were regulated by

miRNAs, such as miR414, miR2661, and miR5021, also sup-
port the significance of energy metabolism for chrysanthe-
mum embryo development.

5. Conclusion

Polyploid breeding will pay more attention from genomic
research in the future as rapid advances in the next genera-
tion sequencing technology, which makes unprecedented
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opportunities to explore and understand the regulatory of
genomic or transcriptomic changes. As a critical regulatory
factor, the function of miRNAs has attracted a lot of
attention during plant growth and development. In chry-
santhemum distant hybridization, breeders always faced
the barriers existed in embryo development. The present
study provided some explanation about the embryo abor-
tion and the miRNAs related to embryo development even
their target genes. We propose that late embryonic miR-
NAs, especially miR164a, regulate NAC transcription factor
and thereby affect the embryonic development. miR160
mediated the auxin response, and miR414, miR2661, and
miR5021 regulate the genes involved in energy metabolism;
together, they regulate the embryo development in chry-
santhemum hybridization.
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