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Abstract

A driving hypothesis of evolutionary developmental biology is that animal morphological diversity is shaped both by
adaptation and by developmental constraints. Here, we have tested Darwin’s “selection opportunity” hypothesis, accord-
ing to which high evolutionary divergence in late development is due to strong positive selection. We contrasted it to a
“developmental constraint” hypothesis, according to which late development is under relaxed negative selection. Indeed,
the highest divergence between species, both at the morphological and molecular levels, is observed late in embryogen-
esis and postembryonically. To distinguish between adaptation and relaxation hypotheses, we investigated the evidence
of positive selection on protein-coding genes in relation to their expression over development, in fly Drosophila mela-
nogaster, zebrafish Danio rerio, and mouse Mus musculus. First, we found that genes specifically expressed in late
development have stronger signals of positive selection. Second, over the full transcriptome, genes with evidence for
positive selection trend to be expressed in late development. Finally, genes involved in pathways with cumulative
evidence of positive selection have higher expression in late development. Overall, there is a consistent signal that
positive selection mainly affects genes and pathways expressed in late embryonic development and in adult. Our results
imply that the evolution of embryogenesis is mostly conservative, with most adaptive evolution affecting some stages of
postembryonic gene expression, and thus postembryonic phenotypes. This is consistent with the diversity of environ-
mental challenges to which juveniles and adults are exposed.
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Introduction
There are two main models to explain the relationship of
development and evolutionary divergence. The early conser-
vation model suggests that embryonic morphology between
different species within the same group progressively diverges
across development (Von-Baer 1828); such groups are usually
understood to be phyla in a modern context. In contrast, the
hourglass model proposes that middle development (the
morphological “phylotypic” period) has the highest morpho-
logical similarity (Duboule 1994; Raff 1996). On the basis of
recent genomic studies, both models have some level of mo-
lecular support. Some studies support the early conservation
model (Roux and Robinson-Rechavi 2008; Artieri et al. 2009),
while most recent ones support the hourglass model (Kalinka
et al. 2010; Irie and Kuratani 2011; Levin et al. 2012; Quint et al.
2012; Drost et al. 2015; Hu et al. 2017; Zalts and Yanai 2017).
And in fact the two models may not be mutually exclusive
(Piasecka et al. 2013; Liu and Robinson-Rechavi 2018).

Both the early conservation and hourglass models predict
that late development has high evolutionary divergence. This
high divergence of late development has been interpreted as
a consequence of relaxed developmental constraints, that is,

weaker negative selection. For example, Garstang (1922) and
Riedl (1978) suggested that the development of later stages is
dependent on earlier stages, so higher divergence should be
found in the later stages of development (cited in Irie and
Kuratani 2014). Indeed, many studies have found evidence for
relaxed purifying selection in late development (Castillo-Davis
and Hartl 2002; Roux and Robinson-Rechavi 2008; Artieri et al.
2009; Kalinka et al. 2010; Liu and Robinson-Rechavi 2018). An
alternative explanation, however, known as Darwin’s
“selection opportunity” hypothesis (Darwin 1871) (cited in
Artieri et al. 2009), proposed that highly divergent late devel-
opment could also be driven by adaptive evolution (positive
selection), at least in part. This could be due to the greater
diversity of challenges to which natural selection needs to
respond in juvenile and adult life than in early and mid-
development. Notably, weaker negative and stronger positive
selections are not mutually exclusive. For example, Cai and
Petrov (2010) found the accelerated sequence evolution rate
of primate lineage specific genes driven by both relaxed pu-
rifying selection and enhanced positive selection. Necsulea
and Kaessmann (2014) suggested that the high evolution
rate of testis transcriptome could be caused by both
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sex-related positive selection and reduced constraint on
transcription.

As far as we know, few studies have tried to distinguish the
roles of adaptation versus relaxation of constraints in late
development (Artieri et al. 2009), and no evidence has shown
stronger adaptive evolution in late development. Yet there is
an intuitive case for adaptation to act on phenotypes estab-
lished in late development, because they will be present in the
juvenile and adult, and interact with a changing environment.

In the case of detecting individual gene adaptation, one of
the best established methods is using the ratio x of non-
synonymous (dN) to synonymous (dS) substitutions (Yang
and Nielsen 1998; Hurst 2002). Because synonymous changes
are assumed to be functionally neutral, x> 1 indicates evi-
dence of positive selection. As adaptive changes probably
affect only a few codon sites and at a few phylogenetic line-
ages, branch-site models allow the x ratio to vary both
among codon sites and among lineages (Yang and Nielsen
2002; Zhang et al. 2005). Polymorphism-based methods such
as frequency spectrum, linkage disequilibrium and population
differentiation can also be used to identify changes due to
recent positive selection (Vitti et al. 2013).

As several genes with slight effect mutations can act to-
gether to have a strong effect, adaptive evolution can act on
the pathway level as well (Daub et al. 2013; Berg and Coop
2014). In the case of polygenic adaptation, a gene set enrich-
ment test has successfully been applied to detect gene sets
with polygenic adaptive signals (Daub et al. 2013; Daub et al.
2017). This gene set enrichment analysis allows to detect
weak but consistent adaptive signals from whole genome
scale, unlike traditional enrichment tests which only consider
top scoring genes with an arbitrary significance threshold.

In order to estimate the contribution of positive selection
to the evolution of highly divergent late development, we
have adopted three approaches. First, we used modularity
analysis to obtain distinct sets of genes (modules) which
are specifically expressed in different meta developmental
stages (Piasecka et al. 2013; Levin et al. 2016), and compared
the signal of positive selection across modules. Second, we
applied a modified “transcriptome index” (Domazet-Loso
and Tautz 2010) to measure evolutionary adaptation on
the whole transcriptome level. Finally, we used a gene set
enrichment approach to detect polygenic selection on
pathways and studied the expression of these gene sets
over development. Each approach was applied to develop-
mental transcriptomes from Danio rerio, Mus musculus, and
Drosophila melanogaster and to results of the branch-site test
for positive selection in lineages leading to these species. All
the analyses found a higher rate of adaptation in late and in
some stages of postembryonic development, including adult.

Results
In order to characterize the signal of positive selection, we
used the log-likelihood ratio test statistic (DlnL) of H1 to H0

models with or without positive selection, from the branch-
site model (Zhang et al. 2005) as precomputed in Selectome
on filtered alignments (Moretti et al. 2014) and as used in

Roux et al. (2014) and Daub et al. (2017). Briefly, DlnL repre-
sents the evidence for positive selection, thus a branch in a
gene tree with a higher value indicates higher evidence for
positive selection for this gene over this branch.

Modularity Analysis
For the modularity analysis, we focused on different sets of
specifically expressed genes (modules) in each developmental
period. Our expectation is that genes in each module have
specific involvement during embryonic development
(Piasecka et al. 2013), so different adaptation rates of these
genes should reflect a stage-specific impact of natural selec-
tion. In addition, as the modules decompose the genes into
different meta development stages, they allow to avoid the
potential bias caused by imbalanced time points in each meta
development stage from our transcriptome data sets; for ex-
ample, many more “late development” samples in fly than in
the other two species studied. For D. rerio, we obtained seven
modules from our previous study (Piasecka et al. 2013) (sup-
plementary fig. S1, Supplementary Material online). For M.
musculus and D. melanogaster, we identified three and six
modules, respectively (see Materials and Methods; supple-
mentary fig. S1, Supplementary Material online).

Because not all genes have any evidence for positive selec-
tion, we first compared the proportion of genes either with
strong evidence (q-value < 0.2) or with weak evidence (no
threshold for q-value; DlnL > 0) of positive selection across
modules. For strong evidence, the proportion is not signifi-
cantly different across modules in M. musculus and D. mela-
nogaster (supplementary fig. S2, Supplementary Material
online). In D. rerio, however, there is a higher proportion in
the juvenile and adult modules. For the weak evidence, D.
melanogaster has a higher proportion in pupae and adult
modules, but there is no significant difference in D. rerio
and M. musculus (supplementary fig. S3, Supplementary
Material online).

We then compared the values of DlnL for genes with weak
evidence of positive selection (fig. 1). In order to improve the
normality of nonzero DlnL, we transformed DlnL with fourth
root (Hawkins and Wixley 1986; Roux et al. 2014; Daub et al.
2017).

In D. rerio, we detected an hourglass pattern of DlnL, at its
highest in late modules. Specifically, in the juvenile module,
the mean DlnL is significantly higher than the mean DlnL for
all genes (P-values reported in table 1). We note that the adult
module also has higher mean DlnL, even though it is not
significant. In the pharyngula module, the mean DlnL is sig-
nificantly lower than the mean DlnL for all genes, as expected
under the hourglass model. In the other modules, the mean
DlnL is not significantly different from the mean for all genes.

In M. musculus, similarly, we found an hourglass pattern of
DlnL. The late embryo module has a higher mean DlnL than
all genes, while the middle embryo module has a lower mean
DlnL than all genes.

In D. melanogaster, however, we observed an early conser-
vation pattern of DlnL. Specifically, in the early embryo mod-
ule, the mean DlnL is lower than the mean DlnL for all genes.
In the adult module, the mean DlnL is higher than the mean
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DlnL for all genes. There is no significant difference for the
other modules.

It should be noted that the patterns reported in this mod-
ularity analysis are relatively weak, especially in D. mela-
nogaster. After multiple test correction, some of the
reported differences are not significant anymore (supplemen-
tary table S1, Supplementary Material online).

Overall, these findings suggest that positive selection is
stronger on genes expressed in late development or in adult
than in early and middle development. It also indicates that
DlnL on gene modules in different phyla supports different
evolutionary developmental biology (Evo-Devo) models
(hourglass vs. early conservation).

Transcriptome Index Analysis
Although modularity analysis guarantees independence be-
tween the sets of genes which are compared, it only considers
a subset of genes. This leaves open whether the higher adap-
tive evolution in late development and adult holds true for
the whole transcriptome as well, or just for these modular
genes. Additionally, while trends were detected, significance is
weak. To consider the composition of the whole transcrip-
tome and to increase our power to detect a signal of positive
selection in development, we used a modified “Transcriptome
Age Index” (Domazet-Loso and Tautz 2010) to calculate the
weighted mean of DlnL for the transcriptome. Notably, all
expression levels were log-transformed before use, unlike in
Domazet-Loso and Tautz (2010). See discussion in Piasecka
et al. (2013) and Liu and Robinson-Rechavi (2018), but briefly
log-transformation provides insight on the overall transcrip-
tome rather than a small number of highly expressed genes.
We named this modified index “Transcriptome Likelihood
Index” (TLI). A higher index indicates that the transcriptome

has higher expression of transcripts from genes with high DlnL
between models with and without positive selection.

In D. rerio, generally, the pattern resembles an hourglass-
like pattern (fig. 2). The TLI first decreases and reaches a
minimum in the late stage of gastrula (8 h), and then pro-
gressively increases until adult (ninth month), with finally a
slight decline. In addition, in the adult stage, female has higher
TLI than male, although the difference is weak. To test
whether TLIs are different between developmental periods,
we compared the mean TLI of all stages within a period,
between each pair of periods (see Materials and Methods).
We found that middle development has low TLI, early devel-
opment has medium TLI, late development and maternal
stage have very similar high TLI, and adult has the highest
TLI. Except late development and maternal stage (P¼ 0.24),
all pairwise comparisons are significant: P< 5.7e-07.

In M. musculus, we observed a clear hourglass-like pattern
of TLI. For the mean TLI comparison, we found low TLI in
middle development, medium TLI in early development, high
TLI in late development, and the highest TLI in maternal stage
(all pairwise comparisons are significant: P< 2e-16). Of note,
unlike in D. rerio, the “late development” here only contains
late embryo stages, but no postembryo stages. This may ex-
plain why late development has lower TLI than the maternal
stage in this data set.

In D. melanogaster, we found the TLI progressively increas-
ing over development, suggesting an early conservation
model. Unlike in D. rerio, we found that male has higher
TLI than female in the adult stage. For the mean TLI com-
parison, early development has low TLI, middle development
has medium TLI, late development has high TLI, and adult has
the highest TLI (all pairwise comparisons are significant:
P< 2e-16).

FIG. 1. Variation of DlnL in different modules. For each module, dots are values of DlnL for individual genes and the black line is the mean of DlnL.
Red (respectively blue) dots indicate modules for which the mean of DlnL is significantly (P< 0.05) higher (respectively lower) than the mean of
DlnL from all modules. The green dashed line denotes the mean value of DlnL from all modular genes.

Table 1. P-Values of Randomization Test for Modular Analysis.

Drosophila melanogaster Early Embryo Middle Embryo Late Embryo Larva Pupae Adult
P-value 0.014 0.484 0.263 0.435 0.213 0.018

Danio rerio Cleavage/blastula Gastrula Segmentation Pharyngula Larva Juvenile Adult
P-value 0.166 0.238 0.448 0.005 0.273 0.003 0.066

Mus musculus Early embryo Middle embryo Late embryo
P-value 0.094 0.043 0.001
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As in the modularity analysis, but with much stronger
signal, both D. rerio and M. musculus support the hourglass
model, while D. melanogaster follows an early conservation
model. Again, from whole transcriptome level, these results
indicate that genes with evidence for positive selection are
more highly expressed in late development and adult.
Interestingly, the maternal stage has a comparable high TLI
to late development. This could be related to the maternal
stage being dominated by adult transcripts (Tadros and
Lipshitz 2009). In this respect (transcriptome evolution), the
maternal stage should maybe be regarded as a special adult
stage rather than as an early embryonic stage.

Polygenic Selection Analysis
Positive selection can be detected at the biological pathway
level, even when individual genes within the pathway only fix
small effect mutations (Daub et al. 2013, 2017; Berg and Coop
2014). Thus, we searched for such signals of positive selection
on pathways. Briefly, we calculated the sum of DlnL
(SUMSTAT statistic) for a pathway and inferred the signifi-
cance of this SUMSTAT with an empirical null distribution
(Tintle et al. 2009; Daub et al. 2013, 2017). In total, we iden-
tified 10, 4, and 9 pathways with a significant signal of positive
selection, respectively, in lineages leading to D. rerio, M. mus-
culus, and D. melanogaster (q-value< 0.2, table 2).

The function of these pathways, while not our primary
focus, is consistent with adaptive evolution of juvenile or
adult phenotypes. First, we found metabolism-related path-
ways in all three species, suggesting pervasive adaptation,

possibly related to diet; this is consistent with previous results
in primates (Daub et al. 2017). Second, in D. rerio and D.
melanogaster, several pathways are involved in morphogen-
esis and remodeling of organs (e.g., laminin interactions, ex-
tracellular matrix [ECM], and ECM-receptor interaction),
suggesting potential adaptive evolution of morphological de-
velopment. Third, there are several pathways involved in ag-
ing in D. melanogaster and M. musculus (e.g., reactive oxygen
detoxification, longevity regulation, and mitochondrial trans-
lation), suggesting potential role of natural selection on mod-
ulating lifespan or on metabolic activity. Forth, in D. rerio, we
detected one pathway related to environmental adaptation:
Visual phototransduction; adaptations in vision are expected
for aquatic species which under a wide variety of visual envi-
ronments (Sabbah et al. 2010).

If late development and adult are under stronger positive
selection at the pathway level as well, we expect genes in-
volved in pathways with a signal of positive selection to be
more highly expressed at these periods. Thus, we computed
the ratio of median expression between positively selected
pathway genes and genes included in pathways not positively
selected. As the median expression in the first time point of
M. musculus is 0, we removed it from our analysis.

In D. rerio, the ratio of median expression keeps increasing
until the juvenile stage. Then, it slightly decreases (fig. 3). In M.
musculus, except the first time point, the ratio of median
expression also progressively increases. In D. melanogaster,
there is a small peak in the first time point, but it quickly
decreases to minimum within the same developmental

A

D E F
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FIG. 2. Transcriptome index of DlnL (TLI) across development. (A–C) Orange, blue, red, green and purple time points represent stages within the
developmental periods of maternal stage, early development, middle development, late development, and adult, respectively. For the adult stage,
the black solid circle represents TLI from average expression between male and female; the purple solid triangle and square represent TLI from only
males or females, respectively. (D–F) Comparison of the TLI (mean TLI of all stages within a period) between any two different periods. Each period
has 10,000 pseudo-TLIs which come from random resampling with replacement.
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period. Then, it keeps increasing until the middle of the larval
stage. Finally, for the last development stages, it resembles a
wave pattern: Decrease, increase, and decrease again. Again,
we also tested the difference between male and female in
adult stages for D. rerio and D. melanogaster. Unlike the ob-
servation in the transcriptome index analysis, here we found
that male has higher ratio of median expression than female
in both species.

Overall, consistent with previous results, we found that
late development and adult tend to express genes involved
in pathways enriched for signal of positive selection, indicat-
ing that adaptive evolution at the pathway level mainly
affects these stages. While there is some signal of early devel-
opment adaptive evolution on single genes, the later devel-
opmental signal is more consistent at the pathway level.
Because pathways link genes to phenotypes (Müller 2007;

Table 2. Candidate Pathways Enriched with Signal of Positive Selection.

Species Rank Pathway Pathway
Size Before/

After Pruning

P-Value
Before

Pruning

q-Value
Before

Pruning

P-Value
After

Pruning

q-Value
After

Pruning

Danio rerio 1 Laminin interactions 12/12 2.00E-06 1.32E-03 2.00E-06 0.00E100
2 Phenylalanine metabolism 10/10 7.70E-05 1.51E-02 7.80E-05 8.78E-03
3 Visual phototransduction 33/33 9.10E-05 1.51E-02 8.30E-05 8.78E-03
4 Metabolism of carbohydrates 119/118 2.02E-04 2.23E-02 2.37E-04 2.97E-02
5 Gamma carboxylation, hypusine

formation, and arylsulfatase
activation

18/18 1.46E-03 8.05E-02 1.24E-03 1.16E-01

6 ECM organization 75/61 2.00E-05 6.62E-03 1.50E-03 1.16E-01
7 Acyl chain remodeling of PE 10/10 5.12E-03 1.79E-01 3.79E-03 1.66E-01
8 Base excision repair 24/24 4.94E-03 1.79E-01 3.82E-03 1.66E-01
9 Aminoacyl-tRNA biosynthesis 30/30 6.23E-03 1.97E-01 3.93E-03 1.66E-01

10 Phase II conjugation 37/30 1.08E-03 6.92E-02 4.00E-03 1.66E-01
Drosophila

melanogaster
1 Triglyceride biosynthesis 59/59 7.60E-05 1.57E-02 7.60E-05 3.32E-02
2 Glycosaminoglycan degradation 16/16 6.99E-04 4.70E-02 6.37E-04 9.44E-02
3 Metabolism of porphyrins 12/12 1.57E-03 7.31E-02 1.47E-03 9.62E-02
4 Detoxification of reactive

oxygen species
17/17 1.45E-03 7.31E-02 1.48E-03 9.62E-02

5 Longevity regulating pathway 43/28 2.83E-02 3.12E-01 3.37E-03 1.54E-01
6 ECM-receptor interaction 10/10 4.54E-03 1.66E-01 4.10E-03 1.54E-01
7 Lysine degradation 25/15 1.84E-02 2.86E-01 5.15E-03 1.54E-01
8 Metabolic pathways 813/767 3.04E-04 3.11E-02 5.23E-03 1.54E-01
9 Glutathione metabolism 55/32 2.59E-02 3.12E-01 5.66E-03 1.54E-01

Mus musculus 1 Pantothenate and CoA biosynthesis 16/16 9.10E-05 7.20E-02 9.10E-05 5.01E-02
2 Mineralocorticoid biosynthesis 10/10 1.52E-04 7.20E-02 1.40E-04 5.01E-02
3 Mitochondrial translation 72/72 2.91E-04 7.86E-02 2.73E-04 5.25E-02
4 Cytokine–cytokine receptor interaction 100/100 3.41E-04 7.86E-02 2.78E-04 5.25E-02

NOTE.—We reported all pathways with q-value <0.2 after removing overlapping genes (pruning) for D. rerio, D. melanogaster, and M. musculus.

FIG. 3. Expression in development for genes involved in pathways enriched with signal of positive selection. Each solid circle represents the ratio of
the median expression for genes involved in pathways enriched with signal of positive selection to the median expression for genes involved in
pathways without signal of positive selection. Orange, blue, red, green, and purple time points represent stages within the developmental periods
maternal stage, early development, middle development, late development, and adult, respectively. In adult samples, black solid circles represent
ratios generated from average expression of males and females; purple solid triangles and squares represent ratios generated from only males or
only females, respectively.
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Wray 2007; Tickle and Urrutia 2017), this suggests stronger
phenotypic adaptation in late development and adult.

Discussion

Correcting Confounding Factors
As some nonadaptive factors (such as gene length, tree size
[number of branches], and branch length) can be correlated
with DlnL and affect our results (Daub et al. 2017), we inves-
tigated the correlation between DlnL and these potential
confounding factors. Generally, we found a small correlation
between DlnL and tree size, but a larger correlation between
DlnL and gene length or branch length (supplementary fig. S4,
Supplementary Material online). One explanation for this
high correlation between DlnL and gene length is that long
genes could accumulate more mutations than short genes, so
we have more power to detect positive selection with higher
number of mutations (Fletcher and Yang 2010; Gharib and
Robinson-Rechavi 2013). So, we checked the influence of gene
length on our results. Because branch length is inferred from
the number of mutations, and higher branch length can be
driven by higher evolutionary rate due to positive selection,
we did not check further the correlation between DlnL and
branch length.

In order to investigate whether gene length might have
affected our results, for modularity and TLI analysis, we tested
whether patterns purely based on gene length are similar to
those based on DlnL or not. Surprisingly, we found an oppo-
site pattern of gene length, relative to DlnL. For modularity
analysis, the modules with higher DlnL have significantly
lower mean gene length than all genes (supplementary fig.
S5, Supplementary Material online). For transcriptome index
analysis, the stages with higher TLI trend to have lower tran-
scriptome index for gene length (supplementary fig. S6,
Supplementary Material online), suggesting that these stages
trend to express shorter genes. These findings imply that the
detection of higher positive selection in late development is
not driven by gene length.

Immune system genes can bias positive selection analyses,
as they evolve under pervasive positive selection (Flajnik and
Kasahara 2010). To control for this, we also confirmed our
findings after removing immune genes from our analysis (sup-
plementary fig. S7, Supplementary Material online).

Developmental Constraint Hypothesis and Darwin’s
Selection Opportunity Hypothesis
Despite the repeated observation that late development is
highly divergent for diverse genomic properties (sequence
evolution, duplication, gene age, and expression divergence)
in diverse animal species (Roux and Robinson-Rechavi 2008;
Domazet-Loso and Tautz 2010; Kalinka et al. 2010; Irie and
Kuratani 2011; Levin et al. 2012; Piasecka et al. 2013; Drost
et al. 2015; Liu and Robinson-Rechavi 2018), the underlying
evolutionary forces driving such a pattern remain obscure.
The “developmental constraint” hypothesis (Raff 2000;
Brakefield 2006) suggests that this high divergence is due to
relaxed purifying selection, whereas Darwin’s “selection
opportunity” hypothesis proposes stronger positive selection

(as discussed in Artieri et al. 2009; Kalinka and Tomancak
2012).

Several studies have found evidence, direct or indirect, to
support the importance of developmental constraints
(Castillo-Davis and Hartl 2002; Roux and Robinson-Rechavi
2008; Artieri et al. 2009; Kalinka et al. 2010). For example, we
(Roux and Robinson-Rechavi 2008) found that genes
expressed earlier in development contain a higher proportion
of essential genes, and Uchida et al. (2018) found strong em-
bryonic lethality from random mutations in early develop-
ment. Weaker purifying selection in late development would
imply that genes expressed in this period have less fitness
impact, which is consistent with the paucity of essential
genes. Here and in Liu and Robinson-Rechavi (2018), the
branch-site codon model allows us to isolate the contribution
of purifying selection to coding sequence (CDS) evolution.
We found indeed that genes under weaker purifying selection
on the protein sequence trend to be expressed in late devel-
opment (Liu and Robinson-Rechavi 2018). This provides
direct evidence of relaxed purifying selection in late
development.

To the best of our knowledge, there has been no direct test
of Darwin’s “selection opportunity” hypothesis. One such
study, in D. melanogaster, was proposed by Artieri et al.
(2009). Unfortunately, they only had relatively poor expres-
sion data (expressed sequence tags) and limited time points
(embryonic, larval/pupal, and adult), and they did not find
any direct evidence of higher positive selection in late devel-
opment. As they noticed that the accelerated sequence evo-
lution of genes expressed at adult stage was confounded by
male-biased genes, they argued that the rapid evolution ob-
served in late development could be due to specific selective
pressures such as sexual selection. A recent study, in D. mel-
anogaster, provides indirect evidence: Using in situ expression
data and population genomic data to map positive selection
to different embryonic anatomical structures, Salvador-
Mart�ınez et al. (2018) found larva stage enriched with signal
of positive selection. Our results clearly provide a quantitative
test which supports a role of positive selection in the high
divergence of late development. While our sampling is very
far from covering the diversity of developmental modes of
animals, we show consistent patterns in a placental mammal,
a direct development ray-finned fish, and a holometabolous
insect. While it is possible that other patterns will be found in
species with different development, this shows that adapta-
tion in late development is not limited to one model. We
show that this is not due to testis-expressed genes (supple-
mentary fig. S8, Supplementary Material online). In addition,
in vertebrates, we also found some evidence of adaptive evo-
lution in early development on single genes. This indicates
that some changes in early development might be adaptive
consequences to diverse ecological niches, as proposed by
Kalinka and Tomancak (2012). It should be noted that our
results also provide counter evidence to the adaptive pene-
trance hypothesis, which argues that adaptive evolution
mainly occurs in the middle development (Richardson 1999).
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Reunification of Structuralist and Functionalist
Comparative Biology
There have been two major approaches to comparative biol-
ogy since the late 18th century: The structuralist approach
(which gave rise to Evo-Devo) emphasizes the role of con-
straints and often focuses on investigating spatial and timing
variations of conserved structures in distantly related species. In
a modern context, the focus is often on comparing develop-
mental genes’ expression between species. The functionalist or
adaptationist approach (which gave rise to the Modern
Synthesis and most of evolutionary biology) emphasizes the
role of natural selection. In a modern context, the focus is often
on investigating adaptive mutations. It has been suggested that
these two approaches could not be reconciled (Amundson
2007), as the former underscores how mutations generate
morphological diversity, while the later underscores whether
mutations are fixed by positive selection or not. A good exam-
ple of the differences between structuralist and adaptationist
comes from the debate between Hoekstra and Coyne (2007)
and Carroll (2008). As a structuralist, Carroll suggested that
mutations affecting morphology largely occur in the cis-regu-
latory regions. However, as adaptationists, Hoekstra and Coyne
argued that this statement is at best premature. Their main
argument was that they did not find that adaptive evolution
was more likely to occur in cis-regulatory elements, but rather
in protein-coding genes, from both genome-wide surveys and
single-locus studies. It is important to note that Carroll’s theory
is specific to morphological evolution, but not directly related
to evolutionary adaptation. Basically, both sides could be cor-
rect and were mostly discussing different things.

As both adaptation and structure are part of biology, we
should be able to explain both in a consistent manner. Here,
we try to bridge positive selection and morphological evolu-
tion by combining developmental time-series transcriptomes,
positive selection inference on protein-coding genes, modu-
larity analysis, transcriptome index analysis, and gene set anal-
ysis. From both modularity analysis and transcriptome index
analysis, we found that genes highly expressed in late devel-
opment and adult have higher evidence for positive selection.
From polygenic analysis, we found that the expression of pos-
itively selected pathways is higher in late development and
adult. Overall, these results suggest that higher morphological
variation in late development could be at least in part driven
by adaptive evolution. In addition, CDS evolution might also
make a significant contribution to the evolution of morphol-
ogy, as suggested by Hoekstra and Coyne (2007) and Burga
et al. (2017). This is also supported by the observation of
tissue-specific positive selection in D. melanogaster develop-
ment (Salvador-Mart�ınez et al. 2018). It should be noted that
we do not test here whether regulatory sequence evolution
plays a similar or greater role, as we do not have equivalent
methods to test for positive selection in regulatory regions.

Materials and Methods
Data files and analysis scripts are available on our GitHub
repository: https://github.com/ljljolinq1010/Adaptive-evolu-
tion-in-late-development-and-adult.

Expression Data Sets
For D. rerio, the log-transformed and normalized microarray
data were downloaded from our previous study (Piasecka
et al. 2013). These data include 60 stages from egg to adult,
which originally come from Domazet-Loso and Tautz (2010).

For M. musculus, the processed RNA-seq (normalized but
nontransformed) data were retrieved from Hu et al. (2017).
These data include 17 stages from 2 cells to E18.5. We further
transformed it with log2.

For D. melanogaster, we obtained processed (normalized
but nontransformed) RNA-seq data from http://jsb.ucla.edu/
software-and-data, accessed July 2016 (Li et al. 2014), which
originally come from Graveley et al. (2011). These data have
27 stages from embryo to adult. For the last three stages, as
data were available for male and female, we took the mean.
We further transformed it with log2.

Branch-Site Likelihood Test Data
The log-likelihood ratio (DlnL) values of a test for positive
selection were retrieved from Selectome (Moretti et al. 2014),
a database of positive selection based on the branch-site like-
lihood test (Zhang et al. 2005). One major advantage of this
test is allowing positive selection to vary both among codon
sites and among phylogenetic branches. The branch-site test
contrasts two hypotheses: The null hypothesis is that no pos-
itive selection occurred (H0) in the phylogenetic branch of
interest, and the alternative hypothesis is that at least some
codons experienced positive selection (H1). The log-likeli-
hood ratio statistic (DlnL) is computed as 2*(lnLH1 �
lnLH0). Importantly, in order to mitigate false positives due
to poor sequence alignments, Selectome integrates filtering
and realignment steps to exclude ambiguously aligned
regions.

We used DlnL from the Clupeocephala branch, the
Murinae branch, and the Melanogaster group branch for D.
rerio, M. musculus, and D. melanogaster, respectively. One
gene could have two DlnL values in the focal branch because
of duplication events. In this case, we keep the value of the
branch following the duplication and exclude the value of the
branch preceding the duplication.

Pathways
We downloaded lists of 1,683 D. rerio gene sets, 2,269 M. mus-
culus gene sets, and 1,365 D. melanogaster gene sets of type
“pathway” from the NCBI Biosystems Database (Geer et al.
2010). This is a repository of gene sets collected from manu-
ally curated pathway databases, such as BioCyc (Caspi et al.
2014), KEGG (Kanehisa et al. 2014), Reactome (Croft et al.
2014), The National Cancer Institute Pathway Interaction
Database (Schaefer et al. 2009), and Wikipathways (Kelder
et al. 2012).

CDS Length
We extracted CDS length from Ensembl version 84 (Yates
et al. 2016) using BioMart (Kinsella et al. 2011). For genes
with several transcripts, we used the transcript with the max-
imal CDS length.
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Testis-Specific Genes
Testis-specific genes for M. musculus and D. melanogaster
were obtained from a parallel study (Liu and Robinson-
Rechavi 2018). The testis-specific genes were defined as genes
with highest expression in testis and with tissue specificity
value �0.8.

Immune Genes
To control for the impact of immune system genes, we down-
loaded all genes involved in the “immune response” term
(GO:0006955) from AmiGO (Carbon et al. 2009) (accessed
on April 25, 2018), and repeated analyses with these genes
excluded.

Phylotypic Period
The definition of phylotypic period is based on previous mor-
phological and genomic studies. For D. melanogaster, the
phylotypic period defined as extended germband stage
(Sander 1983; Kalinka et al. 2010); for D. rerio, the phylotypic
period defined as segmentation and pharyngula stages
(Ballard 1981; Wolpert 1991; Slack et al. 1993; Domazet-
Loso and Tautz 2010); for M. musculus, the phylotypic period
defined as Theiler Stage 13–20 (Ballard 1981; Wolpert 1991;
Slack et al. 1993; Irie and Kuratani 2011).

Module Detection
For D. rerio, we obtained seven modules from our previous
study (Piasecka et al. 2013). This is based on the Iterative
Signature Algorithm, which identifies modules by an iterative
procedure (Bergmann et al. 2003). Specifically, it was initial-
ized with seven artificial expression profiles, similar to pre-
sented in supplementary figure S11, Supplementary Material
online. Each profile corresponds to one of the zebrafish meta
developmental stages. Next, the algorithm will try to find
genes with similar expression profiles to these artificial ones
through iterations until the processes converges. This method
has proven to be very specific, but lacks power with medium
or small data sets (<30 time points). For M. musculus and D.
melanogaster, the sample size is not enough, so we used the
method introduced by Levin et al. (2016). Firstly, we gener-
ated standardized gene expression for each gene by subtract-
ing its mean (across all stages) and dividing by its standard
deviation. Next, we calculated the first two principal compo-
nents of each gene based on the standardized expression
across development. As the expression was standardized,
the genes form a circle with scatter plot (supplementary fig.
S9, Supplementary Material online). Then, we computed the
four-quadrant inverse tangent for each gene based on its
principal components and sorted these values to get gene
expression order from early to late (supplementary fig. S10,
Supplementary Material online). Next, we performed Pearson
correlation of the standardized expression and idealized ex-
pression profile of each module (supplementary fig. S11,
Supplementary Material online). Finally, for each module,
we defined genes with correlation coefficient rank in top
10% as modular genes. Clearly, the genes in earlier modules
have higher gene orders (supplementary fig. S9,
Supplementary Material online).

Randomization Test of Modularity Analysis
For each module, we randomly chose the same number of
DlnL from all modular genes (genes attributed to any module
in that species) without replacement and calculated the
mean value. We repeated this 10,000 times and approximated
a normal distribution for the mean value of DlnL. The P-value
that the mean value of interested module is higher (or lower)
than the mean value from all modular genes is the probability
that the randomly sampled mean value of DlnL is higher (or
lower) than the original mean value of DlnL. In the same way,
we also estimated the P-value of the median DlnL value.

Transcriptome Index of Log-Likelihood Ratio (TLI)
The TLI is calculated as:

TLIs ¼

Pn
i¼1

ffiffiffiffiffiffiffiffiffiffi
DlnLi

4
p

eis

Pn
i¼1

eis

;

where s is the developmental stage, DlnLi is the value of log-
likelihood ratio for gene i, n is the total number of genes, and
eis is the log-transformed expression level of gene i in devel-
opmental stage s. Here, we used all DlnL values without ap-
plying any cut-off on DlnL or the associated P-value. For genes
with DlnL< 0, we replaced it with 0. For M. musculus, we
calculated the TLI from a merged data set, instead of com-
puting it on two data sets separately.

Polynomial Regression
For polynomial regression analysis, we keep increasing the
degree of polynomial model until no further significant im-
provement (tested with ANOVA, P< 0.05 as a significant
improvement). For M. musculus, as the development time
points in transcriptome data set are close to uniformly sam-
pled, we used the natural scale of development time for re-
gression. For Caenorhabditis elegans, D. melanogaster, and D.
rerio, however, we used the logarithmic scale to limit the
effect of postembryonic time points.

Bootstrap Approach for Transcriptome Index of DlnL
(TLI) Comparison between Developmental Periods
Firstly, we randomly sampled the same size of genes from
original gene set (with replacement) for 10,000 times. In each
time, we calculated the TLI of each development stage. Then, we
calculated the mean TLI (mean TLI of all stages within a period)
for each developmental period (maternal stage, early develop-
ment, middle development, late development, and adult). Thus,
eachdevelopmentalperiodcontains10,000meanTLI.Finally,we
performedpairwiseWilcoxontesttotestthedifferencesofmean
TLI between developmental periods.

Detection of Polygenic Selection
We performed a gene set enrichment approach to detect
polygenic signals of positive selection on pathways
(Ackermann and Strimmer 2009; Daub et al. 2013, 2017).
For each pathway, we calculated its SUMSTAT score, which
is the sum of DlnL of all genes within this pathway. The DlnL
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values were fourth-root transformed. This approach makes
the distribution of nonzero DlnL approximate normal distri-
bution (Canal 2005; Roux et al. 2014; Daub et al. 2017). So,
with fourth-root transformation, we limit the risk that the
significant pathways we found be due to a few outlier genes
with extremely high DlnL. The SUMSTAT score of a pathway
is calculated as:

SUMSTATp ¼
X

i�p

ffiffiffiffiffiffiffiffiffiffi
DlnLi

4
p

;

where p represents a pathway, and DlnLi represents the value
of log-likelihood ratio for gene i within pathway p. Pathways
<10 DlnL values were excluded from our analysis. Like in TLI
analysis, we used all DlnL values and replaced<0 values with 0.

Empirical Null Distribution of SUMSTAT
We used a randomization test to infer the significance of the
SUSMTAT score of a pathway. To correct for the potential
bias caused by gene length, we firstly created bins with genes
that have similar length (supplementary fig. S12,
Supplementary Material online). Secondly, we randomly sam-
pled (without replacement) the same number of genes from
each bin, to make the total number of genes equal to the
pathway being tested. Thirdly, we computed the SUMSTAT
score of the randomly sampled DlnL values. We repeated the
second and third processes 1 million times. Fourthly, we ap-
proximated a normal distribution for SUMSTAT score of the
interested pathway. Finally, the P-value was calculated as the
probability that the expected SUMSTAT score is higher than
the observed SUMSTAT score.

Removing Redundancy in Overlapping Pathways
(Pruning)
Because some pathways share high DlnL value genes, the
identified significant pathways might be partially redundant.
In other words, shared genes among several pathways can
drive all these pathways to score significant. We therefore
removed the overlap between pathways with a “pruning”
method (Daub et al. 2013, 2017). Firstly, we inferred the P-
value of each pathway with the randomization test. Secondly,
we removed the genes of the most significant pathway from
all the other pathways. Thirdly, we ran the randomization test
on these updated gene sets. Finally, we repeated the second
and third procedures until no pathways were left to be tested.
With this pruning method, the randomization tests are not
independent and only the high-scoring pathways will remain,
so we need to estimate the false discovery rate (FDR) empir-
ically. To achieve this, we applied the pruning method to
pathways with permuted DlnL scores and repeated it for
300 times. So, for each pathway, we obtained one observed
P-value (P*) and 300 empirical P-values. The FDR was calcu-
lated as follows:

FbDR P�ð Þ ¼ p0bV P�ð Þ
R P�ð Þ ;

where p0 represents the proportion of true null hypotheses,
V̂(P*) represents the estimated number of rejected true null

hypotheses, and R(P*) represents the total number of rejected
hypotheses. For p0, we conservatively set it equal to 1 as in
Daub et al. (2017). For V̂(P*), in each permutation analysis, we
firstly calculated the proportion of P-value (from permutation
analysis) �P*. Then, the value of V̂(P*) was estimated by the
mean proportion of P-value (from permutation analysis)�P*
for the 300 permutation tests. For R(P*), we defined it as the
number of P-value (from original analysis) � P*. For q-value,
we determined it from the lowest estimated FDR among all P-
values (from original analysis) � P*.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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