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Background: This study aimed to explore the prognostic value of angiogenesis-related
genes (ARGs) and their association with immune cell infiltration (ICI) in breast cancer (BC).

Methods: Transcriptome data of BC were obtained from the TCGA and GEO databases.
Differentially expressed ARGs were identified by the limma package. The identification of
key genes and construction of the risk score model were performed by univariate and
multivariate Cox regression algorithms. The prognostic value of the risk score was
assessed by ROC curves and nomogram. GO, KEGG pathway, and GSEA were used
to investigate the biological functions of differentially expressed genes (DEGs), and
CIBERSORT, ssGSEA, and xCell algorithms were performed to estimate the ICI in
high-risk and low-risk groups. The correlations between prognostic biomarkers and
differentially distributed immune cells were assessed. Moreover, a ceRNA regulatory
network based on prognostic biomarkers was constructed and visualized by
Cytoscape software.

Results: A total of 18 differentially expressed ARGs were identified between tumor and
adjacent normal tissue samples. TNFSF12, SCG2, COL4A3, and TNNI3 were identified as
key prognostic genes by univariate and multivariate Cox regression analyses. The risk
score model was further constructed based on the four-gene signature and validated in
GSE7390 and GSE88770 datasets. ROC curves and nomogram indicated that the risk
score had good accuracy for determining BC patient survival. Biological function analysis
showed that DEGs in high- and low-risk groups had a high enrichment in immune-related
biological processes and signaling pathways. Moreover, significantly different ICIs were
found between high- and low-risk groups, such as memory B cells, CD8+ T cells, resting
memory CD4+ T cells, follicular helper T cells, regulatory T cells, monocytes, M2
macrophages, and neutrophils, and each prognostic biomarker was significantly
correlated with one or more immune cell types.

Conclusion: The current study identified novel prognostic ARGs and developed a
prognostic model for predicting survival in patients with BC. Furthermore, this study
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indicated that ICI may act as a bond between angiogenesis and BC. These findings
enhance our understanding of angiogenesis in BC and provide novel guidance on
developing therapeutic targets for BC patients.

Keywords: breast cancer, angiogenesis, prognosis, risk model, immune cell infiltration

INTRODUCTION

The incidence of breast cancer is increasing over the world and
has become the most common type of cancer in women (Siegel
et al., 2021). Owing to the early diagnosis and advanced medical
treatment, the 5-year relative survival rate for women with
invasive breast cancer has improved from 75 to 90% over the
past 25 years (Cheng, 2014), and the mortality rate of breast
cancer has decreased by nearly 40% in the past 30 years (Desantis
et al., 2019). However, the pace of the decline in breast cancer
death rate has slowed year by year (Desantis et al., 2019), and
almost all patients are at risk of treatment failure, resulting in
recurrence, metastasis, and death (Riggio et al., 2021). Therefore,
clarifying the interactions of key molecules during the occurrence
and development of breast cancer is very essential in preventing
breast cancer and finding new therapeutic targets.

Angiogenesis is a complex process of the formation of new blood
vessels from preexisting vessels (Adair and Montani, 2010). When the
balance between pro and antiangiogenic factors is disrupted,
pathological angiogenesis develops rapidly to help cancer cells adapt
cellular metabolism to cope with their high proliferation rate, making
the tumor more aggressive (Viallard and Larrivee, 2017; Redfern et al.,
2019). In addition, vascular networks can transport nutrients into and
excrete metabolic waste from cancer cells (Hanahan and Weinberg,
2011). Tumors are incapable of growing over 1–2mm when blood
supply is deficient (Carmeliet and Jain, 2000; Li et al., 2018). In addition
to vascular endothelial growth factor (VEGF)–related genes, it has been
reported that other gene pathways are associatedwith angiogenesis and
prognosis of breast cancer (Ramanathan et al., 2017; Yamada et al.,
2018;Madu et al., 2020).However, a single factormay be insufficient to
fully grasp the comprehensive picture of angiogenesis. Thus, greater
insightmay be obtained by studyingmultiple angiogenic factors, which
would better allow dissection of these complex networks and the
potential identification of hitherto unrecognized key factors for
therapeutic targeting.

The mechanisms of angiogenesis in regulating tumorigenesis
are very complex and not fully elucidated. Increasing evidence has
shown that angiogenesis may be involved in the progression of
cancer via interaction with the tumor immune microenvironment
(TIME) (Albini et al., 2018; Chandler et al., 2019; Chen et al., 2020).
It is well known that the immune surveillance system plays an
important role in the clearance of abnormal cells and prevents the
development of cancer (Finn, 2018). Immune checkpoint
inhibitors can activate antitumor responses by blocking negative
regulatory immune signals (Yi et al., 2019) and can be highly
effective, particularly in the presence of significant infiltrating
cytotoxic leucocytes (Yi et al., 2019). However, the response rate
of immune checkpoint inhibitors in breast cancer remains lower
than that inmelanoma to the extent that it has only thus far found a
modest role in triple-negative breast cancer (TNBC) (Longo et al.,

2019). It has been reported that antiangiogenesis therapy not only
prunes blood vessels which are essential to cancer growth and
metastasis but also reprograms the TIME bymultiple steps (Melero
et al., 2014; Lanitis et al., 2015). Immune checkpoint inhibitors
have been increasingly studied alongside angiogenesis in a wide
variety of cancer types, including hepatocellular carcinoma (HCC),
non–small cell lung cancer (NSCLC), melanoma, and breast cancer
(Longo et al., 2019; Yi et al., 2019; Li et al., 2020). It is worth
specifically mentioning the notable success of antiangiogenic and
immunotherapy in HCC as this is now the first-line therapy and
essentially constitutes one of the core rationales for this study.
However, the relationship between ARGs and immune cell
infiltrates (ICIs) remains unclear in breast cancer. MiRNAs are
an endogenous small non-coding RNA, which play a critical role in
cancer progression and are potential biomarkers and therapeutic
targets. A previous study demonstrated that the competitive
endogenous RNA (ceRNA) can regulate mRNA expression as
“miRNA sponges”, which has crucial roles in oncogenic
pathways involved in the prognosis of many types of malignant
tumors (Zhang D.-D. et al., 2021). Therefore, the construction of a
ceRNA network could provide new perspectives for breast cancer
regulatory networks. In the present study, we aim to explore the
prognostic value of ARGs in breast cancer and investigate the ICI-
related mechanisms of ARGs in regulating breast cancer.
Meanwhile, a ceRNA regulatory network based on the
prognostic ARGs was developed. We hope our findings could
provide new insights for antiangiogenic therapy and/or
combination with immunotherapy for breast cancer patients.

MATERIALS AND METHODS

Data SourceRNA-Seq gene expression data of 1,049 primary
breast cancer and 111 adjacent normal tissue samples were
downloaded from the TCGA database (https://www.cancer.
gov/about-nci/organization/ccg/research/structural-genomics/
tcga). Gene expression data of 198 primary tumor samples from
the GSE7390 dataset and 117 primary tumor samples from the
GSE88770 dataset were downloaded from the GEO database
(http://www.ncbi.nlm.nih.gov/geo). All samples were bulk
tumors incorporating malignant cells and stroma. ARG sets
were obtained from the Molecular Signatures Database
(MSigDB) (http://www.gsea-msigdb.org/gsea/msigdb/).

Identification of Differentially Expressed
ARGs
Using the criteria of |log2 (Fold change)|> 1 and p-value < 0.05,
differentially expressed genes (DEGs) between 1,049 bulk breast
cancer tissues and 111 adjacent normal tissues in the

Frontiers in Cell and Developmental Biology | www.frontiersin.org May 2022 | Volume 10 | Article 8533242

Tao et al. Angiogenesis-Related Prognostic Biomarkers

https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga
http://www.ncbi.nlm.nih.gov/geo
http://www.gsea-msigdb.org/gsea/msigdb/
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


TCGA–BRCA dataset were identified by the limma package.
After overlapping with ARGs downloaded from the MSigDB
database, differentially expressed ARGs were identified and used
for further analysis.

Identification of Key Prognostic ARGs in
Breast Cancer
To identify differentially expressed ARGs significantly correlated
with prognosis (p < 0.2), univariate Cox proportional hazards
regression analysis was first performed. Thereafter, four key
prognostic ARGs (TNFSF12, TNNI3, SCG2, and COL4A3) in
breast cancer were identified by multivariate Cox regression
analysis. Moreover, 1,218 samples from the TCGA database
were randomly assigned to the training cohort (n = 975) and
validation cohort (n = 243). Then, based on the four key
prognostic ARGs, a logistic regression (LR) diagnostic model
was constructed. To assess the performance of the LR model in
both training and validation sets, the receiver operating
characteristic (ROC) curves were plotted.

Construction of the Risk Score Model and
Nomogram
The risk score was calculated for each patient according to the
following formula: ExpTNFSF12*Coef1 + ExpTNNI3*Coef2 +
ExpSCG2*Coef3+ ExpCOL4A3*Coef4, where Exp represents the
normalized expression values of each signature gene and Coef
represents the regression coefficients of genes. The risk score
model was initially developed on the TCGA–BRCA training set
and evaluated in the GSE7390 and GSE88770 validation sets. The
breast cancer patients were separated into high-risk and low-risk
groups according to the median value of the risk score. Kaplan–Meier
analysis (K–M)was performed to evaluate the overall survival (OS) of
patients in high-risk and low-risk groups. ROC curves were plotted
both in the training and validation sets to evaluate the accuracy of the
risk score model. A nomogram was constructed using multivariate
Cox regression analysis for clinical use. To evaluate the agreement of
nomogram-predicted probability and the actual observation for OS of
breast cancer patients, calibration curves were created.

Biological Function Analysis
The clusterProfiler R package was used to analyze Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment of DEGs between high- and low-risk groups.
In addition, to examine the immune-related molecular mechanisms
of prognostic gene signatures, gene set enrichment analysis (GSEA)
was performed. The MSigDB database (http://www.gsea-msigdb.org/
gsea/msigdb/) was deployed to retrieve immune-related GO gene sets.

The Correlations Between Prognostic
Signatures and Immune Cell Infiltration
First, CIBERSORT, xCell, and single-sample GSEA (ssGSEA) were
carried out to quantify the immune cell infiltration in low- and high-
risk groups. Specifically, the immune cell types involved in the
CIBERSORT analysis were naive CD4+ T cells, CD8+ T cells,

activated memory CD4+ T cells, resting memory CD4+ T cells,
regulatory T cells, follicular helper T cells, gamma delta T cells,
memory B cells, naive B cells, plasma cells, activated NK cells,
resting NK cells, monocytes, M0 macrophages, M1 macrophages,
M2 macrophages, activated dendritic cells, resting dendritic cells,
activated mast cells, resting mast cells, eosinophils, and neutrophils.
The immune cell types involved in the xCell analysis were B cells,
memoryB cells, naiveB cells, plasma cells, CD8+T cells,memoryCD4+

T cells, naive CD4+ T cells, Tregs, Tgd cells, macrophages, M1
macrophages, M2 macrophages, NK cells, NKT cells, monocytes,
DC, mast cells, eosinophils, and neutrophils. The immune cell types
involved in the ssGSEA analysis were B cells, CD8+ T cells, aDCs, DCs,
cytotoxic cells, iDCs, macrophages, mast cells, eosinophils, neutrophils,
NK cells, CD56 dim NK cells, CD56 bright NK cells, pDCs, T cells, T
helper cells, Tfh, Tgd, Tcm, Tem, Th1 cells, Th2 cells, Th17 cells, and
Treg. Finally, Pearson’s correlations among significantly differential
enriched immune cell types and prognostic ARGs were calculated.

Construction of the ceRNA network
First, differentially expressedmiRNAs and lncRNAs between the low-
and the high-risk group were identified (adjusted p-value < 0.05).
Then, the correlations among the expressions of differentially
expressed miRNAs and the expressions of the four prognostic
biomarkers were calculated and the negatively correlated
miRNA–mRNA pairs (cor <0 and p-value < 0.05) were selected
for further analysis. Second, the miRanda database (http://www.
miranda.org) was used to predict the miRNAs targeting the four
prognostic biomarkers. Then, we obtained miRNA–mRNA pairs by
overlapping correlation results and miRanda predicting results.
Likewise, differentially expressed lncRNAs, the expressions of
which were positively correlated with the expressions of prognostic
biomarkers and negatively correlated with the expressions of
differentially expressed miRNAs, were used to construct the
lncRNA–miRNA relationships and further overlapped with the
predicted lncRNA–miRNA results by miRanda. Finally, the
lncRNA–miRNA and miRNA–mRNA regulatory relationships
were integrated to construct the ceRNA network by using Cytoscape.

RESULTS

Identification of 18 Differentially Expressed
ARGs in Breast Cancer
A total of 4,003 DEGs including 1,241 upregulated and 2,762
downregulated genes were identified between tumor and adjacent
normal tissue samples (Supplementary Table S1). Eighteen
differentially expressed ARGs were identified, including three
upregulated and 15 downregulated ARGs in tumor samples
relative to adjacent normal tissue samples (Figure 1A).

Identification of Key Prognostic ARGs in
Breast Cancer
Thereafter, the prognostic value of 18 ARGs identified in BC was
explored by univariate Cox regression analysis. In this stage analysis,
clinicopathological factors (such as grade, lymph node status, and
tumor size, etc.) were not included. The results showed that
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TNFSF12, TNNI3, SCG2, and COL4A3were significantly associated
with prognosis (p < 0.2), among which TNFSF12, TNNI3, and
COL4A3 played a protective role (HR < 1) and SCG2 acted as a risk
factor (HR > 1, Figure 1B). Multivariate Cox regression analysis was
performed using these four genes to obtain more robust signature
genes. TNFSF12, TNNI3, SCG2, and COL4A3 were still strongly
correlated with prognosis and identified as key prognostic genes
(Figure 1C). The coefficients of each gene are displayed in
Supplementary Table S2. Furthermore, we constructed a
diagnostic LR model based on the four gene signatures and

found that the LR model had a good performance in classifying
breast cancer patients both in the training set (area under the ROC
curve = 0.973, Figure 1D) and in the validation set (area under the
ROC curve = 0.976, Figure 1E).

Construction and Validation of the
ARG-Based Prognostic Risk Score Model
The risk score of individual patients was calculated based on the
coefficients of TNFSF12, TNNI3, SCG2, and COL4A3 in

FIGURE 1 | Identification of the ARGs with prognostic and diagnostic value in breast cancer patients. (A) Volcano plot for differentially expressed ARGs; (B)
Univariate Cox regression analysis for differentially expressed ARGs in the TCGA database; (C) Multivariate Cox regression analysis for differentially expressed ARGs in
TCGA datasets; (D) Receiver operating characteristic curve (ROC) for the diagnostic logistic regression model based on the 4-gene signatures in the training set. (E)
ROC for the diagnostic logistic regression model based on the 4-gene signatures in the validation set.
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Supplementary Table S2. According to the median of the risk scores
of the patients in the TCGA training set, high- and low-risk groups
were divided (Figure 2A). A significant difference in the 5-year overall
survival was observed between these two groups (p = 0.00072)
(Figure 2B). The expressions of TNFSF12, TNNI3, SCG2, and
COL4A3 and clinical characteristics in high- and low-risk groups
are displayed in the heatmap (Figure 2C). The ROC curves revealed
that the risk score model proved to be significantly powerful in
predicting the survival of BC patients. The areas under the ROC
curves (AUC) were 0.643 for 3-years and 0.609 for 5-years overall
survival (Figure 2D). The consensus results were also obtained in the
GSE7390 (Supplementary Figures S1A–D) and GSE88770
(Supplementary Figures S2A–D) validation sets.

Then, we investigated the association between risk score and
clinical features, including age, staging, estrogen receptor (ER),
progesterone receptor (PR), and human epidermal growth factor
receptor 2 (HER2) status. We found that breast cancer patients
with advanced T stage and HER2-positive status had higher risk
scores (Figures 3A, B), while no significant difference in risk scores
was observed in other groups (Supplementary Figures S3A–F).
Moreover, we further investigate whether this ARG-based scoring
model would work in different molecular subtypes, including
hormone receptor (HR) positive/HER2 negative, HER2 positive,

and TNBC. The results showed that in all subtypes, patients with
low risk had significantly longer survival (Figures 3C–E).

Construction and Analysis of the
Nomogram
Furthermore, we performed multivariate analysis using the
abovementioned clinical characteristics and risk score as factors
to construct a nomogram (Figure 4A). ROC analysis was performed
to evaluate the prognostic value of our model. The area under the
curve (AUC) for our model was 0.865 at 1 year, 0.818 at 3 years,
0.820 at 5 years, and 0.767 at 7 years (Figure 4B). The calibration
curves for the probability of 1-, 3-, 5-, and 7-year OS revealed good
concordance between nomogram prediction and actual observations
(Figures 4C–F), indicating the clinical use of the nomogram.

Biological Function Analysis of the Four
Prognostic ARGs and DEGs in the Low- and
High-Risk Groups
First, we performed function enrichment of these four prognostic
ARGs. The results indicated that COL4A3, SCG2, and TNFSF12
were involved in the pathway of regulation of endothelial cell

FIGURE 2 | Development of the risk score model based on the four ARG signature in patients with breast cancer from TCGA datasets. (A) Risk score distribution
and survival status of patients; (B) Kaplan–Meier analysis of the prognostic model; (C)Heatmap of the four ARG expression and clinical parameter profiles between high-
and low-risk groups; (D) Time-dependent ROC analysis of the risk score model.
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proliferation and regulation of epithelial cell proliferation.
TNNI3, SCG2, and TNFSF12 were involved in the pathway of
blood vessel morphogenesis, blood vessel development,
vasculature development, and tube morphogenesis
(Supplementary Figure S4; Supplementary Table S3).
Furthermore, 57 DEGs including nine upregulated and 48
downregulated genes were identified between the low- and
high-risk groups (Figure 5A). To explore the molecular
mechanisms underlined, GO analysis and KEGG pathway
enrichment analysis of DEGs were performed. The top 20 GO
terms and top 20 KEGG pathways (Figure 5B), including
biological processes (Figure 5C), cellular components
(Figure 5D), and molecular functions (Figure 5E), are
displayed in the bar plot. Moreover, GSEA analysis revealed
that DEGs were involved in many immune-related biological
processes (Supplementary Table S4), including T cell activation
(Figure 6A), activation of immune response (Figure 6B),
leukocyte migration (Figure 6C), and regulation of
lymphocyte activation (Figure 6D).

The Correlations Among Immune Cell
Infiltration and Prognostic Biomarkers
Previous studies revealed that immune cells in the tumor
microenvironment (TME) can regulate angiogenesis (Albini

et al., 2018). Therefore, we explored the correlations among
immune cells and the four prognostic biomarkers in breast
cancer. To obtain more comprehensive results, we used
different methods to evaluate immune cell infiltration in low-
and high-risk groups. As for CIBERSORT, memory B cells, CD8+

T cells, follicular helper T cells, regulatory T (Tregs) cells, and
monocytes were significantly higher in low-risk groups, while the
infiltration of resting memory CD4+ T cells, M2 macrophages,
and neutrophils was markedly elevated in high-risk groups
(Figure 7A). TNFSF12 was significantly positively correlated
with memory B cells, monocytes, M2 macrophages, and CD8+

T cells. TNNI3 was significantly negatively correlated with resting
memory CD4+ T cells. SCG2 was significantly positively
associated with resting memory CD4+ T cells and M2
macrophages and significantly negatively associated with
follicular helper T cells. COL4A3 was significantly positively
correlated with follicular helper T cells, CD8+ T cells, and
memory B cells and significantly negatively correlated with
neutrophils and M2 macrophages (Figure 7B). As for xCell
and ssGSEA analysis, we found that 12 and 15 immune cell
types were significantly differentially distributed between low-
and high-risk groups (Figures 7C,E), respectively. Meanwhile,
the relationship between the prognostic biomarkers and
differentially distributed immune cells is displayed in the
heatmaps (Figures 7D,F).

FIGURE 3 | Association of clinicopathological features with ARG-based risk score and overall survival analysis in different breast cancer subtypes based on ARG-
based risk score. The ARG-based risk score was associated with T stage (A) and HER2 status (B). Kaplan–Meier curves of overall survival for HR + HER2- (C), HER2+
(D), and TNBC (E) subtypes based on ARG-based risk score. p-values were calculated using the log-rank test.
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Construction of ceRNA Network Based on
Prognostic Biomarkers
Last, we constructed a ceRNA regulatory network based on the four
prognostic biomarkers. 158 differentially expressed miRNAs were
identified between the low- and high-risk groups (Figure 8A).
Then, the correlations between the expressions of differentially
expressed miRNAs and the expressions of the four prognostic
biomarkers were calculated (Supplementary Table S5), and a total
of 294 negatively correlated miRNA–mRNA pairs were obtained.
After overlapping with the predicting miRNA–mRNA pairs by
miRanda, a total of 111 miRNA–mRNA pairs were identified for
further use. Meanwhile, 3,718 differentially expressed lncRNAs
were identified between the low- and high-risk groups (Figure 8B).
The expressions of 3,454 lncRNAs were positively correlated with
at least one prognostic biomarker (Supplementary Table S6), and
713 negatively correlated lncRNA–miRNA pairs were obtained
(Supplementary Table S7). After overlapping with the predicting
lncRNA–miRNA pairs by miRanda, a total of 518
lncRNA–miRNA pairs were identified for further use. Then, we
constructed and visualized the ceRNA network by using Cytoscape
software by filtering out the degrees of nodes <5 (Figure 8C).

DISCUSSION

Angiogenesis plays an essential role in promoting tumor growth
and metastasis (Madu et al., 2020). Tumor angiogenesis involves

not only cancer cells but also immune infiltrating cells, which are
the important components of the TME (Albini et al., 2018;
Larionova et al., 2021). There is accumulating evidence that
angiogenesis and immune cells are interconnected and
facilitated by shared regulators in cancer (Motz and Coukos,
2011). In this study, a breast cancer risk model based on ARGs
was developed and validated. We found that genes in high- and
low-risk groups were significantly enriched into immune-related
biological processes and signaling pathways. Moreover, between
high- and low-risk groups, significantly different immune cell
infiltration was observed and strongly associated with
prognostic ARGs.

TNFSF12, TNNI3, SCG2, and COL4A3 were identified as
prognostic biomarkers in breast cancer by univariate and
multivariate Cox regression algorithms. Meanwhile, functional
enrichment analysis revealed that these four genes were involved
in multiple pathways of angiogenesis. TNFSF12, also known as
TWEAK or CD255, belongs to the tumor necrosis factor (TNF)
superfamily, which is expressed in various types of cancer and has
been reported to stimulate tumor growth and angiogenesis (Ho
et al., 2004; Kawakita et al., 2004; Shimada et al., 2012).
Meanwhile, previous studies also indicated that TNFSF12
might play a pro-tumorigenic role in human breast cancer
(Michaelson et al., 2005). However, TNFSF12 could also
induce multiple pathways of cell death, including caspase-
dependent apoptosis, cathepsin B–dependent necrosis, and
endogenous TNF-alpha–mediated cell death, in a cell

FIGURE 4 | Nomogram for predicting the overall survival probability of breast cancer patients. (A) Nomogram was built to quantify survival probability for individual
breast cancer patients based on the risk score and clinical variables. Survival time is measured in months; (B) ROC analysis of the nomogram for predicting the 1-, 3-, 5-
and 7- year OS; (C–F) calibration curves of the nomogram for predicting the 1-year, 3-years, 5- year, and 7-year survival probability.
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type–specific manner (Nakayama et al., 2003; Ikner and
Ashkenazi, 2011), and studies have shown that TNFSF12
could promote cell death in human peripheral blood
mononuclear cells (Kaplan et al., 2002), human colonic
adenocarcinoma cells (Kawakita et al., 2005), and human
breast adenocarcinoma cells (Marsters et al., 1998). In the
current study, we found that TNFSF12 acts as a protective
factor in breast cancer and that poor survival of breast cancer
patients was related to decreased expression of TNFSF12. All
these indicate that further studies are needed to elucidate the
specific role and mechanism of TNFSF12 in breast cancer.

TNNI3 belongs to the sarcomere gene and is well-
acknowledged to play a critical role in the development of
ventricular hypertrophy and is a causative factor for
hypertrophic cardiomyopathy (Lopes et al., 2013; Phan et al.,
2014). TNNI3 overexpression was commonly observed in various
solid tumors and involved in the progression and metastasis of
ovarian cancer (Salvesen and Trovik, 2011; Chen et al., 2014;
Yang et al., 2017; Yin et al., 2021). Previous studies indicated that

TNNI3 was predicted as a target of hsamiR-375 in various stages
of laryngeal squamous cell carcinoma (LSCC) (Yu et al., 2018).
Some studies suggested the potential use of TNNI3 as a marker or
targeted therapy for cancer. But on the other hand, in patients
with TNNI3 elevation, careful attention must be paid to the
cardiotoxicity of anticancer therapy (Chen et al., 2014). In this
study, we first reported that TNNI3 was downregulated in breast
cancer and was a beneficial prognostic marker. However, the role
in tumor angiogenesis and the function in breast cancer of TNNI3
is still unknown, which requires further investigations.

SCG2, a member of the chromogranin/secretogranin family of
neuroendocrine secretory proteins, is essential for endothelial
angiogenesis and new blood vessel formation (Luo et al., 2020).
SCG2 had been reportedly upregulated in many tumors,
including olfactory neuroblastomas (Topcagic et al., 2018),
pancreatic cancer (Alrawashdeh et al., 2019), prostatic small-
cell neuroendocrine carcinoma (Clegg et al., 2003), small
intestinal neuroendocrine neoplasia, kidney renal clear cell
carcinoma (KIRC) (Yang et al., 2020), NSCLC (Cury et al.,

FIGURE 5 | Functional annotation of differentially expressed genes (DEGs) between the low- and high-risk groups. (A) Volcano plot for DEGs between low- and
high-risk groups; (B) top 20 KEGG pathways; (C–E) top 20 GO terms, including biological processes (C), cellular components (D), and molecular functions (E).
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2019; Wang and Chen, 2020), and colorectal cancer (CRC) (Sun
et al., 2019; Liu et al., 2020), and the increased expression of SCG2
was correlated with good survival outcomes for KIRC patients
(Yang et al., 2020) but associated with decreased survival in
Group 3 medulloblastoma (Thompson et al., 2017) and
NSCLC (Cury et al., 2019; Wang and Chen, 2020) and CRC
patients (Sun et al., 2019; Liu et al., 2020). However, Fang et al.
recently reported that in malignant CRC tissues, SCG2 was
significantly downregulated and patients with higher
expression of SCG2 had longer disease-free survival and OS.
In addition, higher expression of SCG2 impaired tumor growth
and angiogenesis by promoting the degradation of hypoxia-
inducible factor-1α in CRC (Fang et al., 2021). For the first
time, the current study reported that SCG2 had a higher
expression level and acted as an unfavorable prognostic
marker in breast cancer. However, the detailed function of
SCG2 in breast cancer has not been well-defined.

COL4A3, an adhesion molecule, is involved in basement
membrane development (Siamakpour-Reihani et al., 2015). A
previous study demonstrated that the α3 (IV) chain encoded by
COL4A3 could produce tumstatin, which can impede blood
vessel formation in vivo and prevent tumor proliferation and

metastasis (Hamano et al., 2003), and a significant association
was observed between the abnormal expression of COL4A3 and
tumor size, tumor grade, metastasis, invasion, and prognosis in
several malignancies (Nie et al., 2013; Yang et al., 2021). However,
the role of COL4A3 in prognosis is inconsistent in different
tumors. For example, COL4A3 was downregulated and positively
correlated with better prognosis in lung, colon, bladder, salivary
gland, and nasopharyngeal carcinoma cancers (Orth et al., 1977;
Alampi et al., 1989; Karja et al., 1995; Metodieva et al., 2011; Deng
et al., 2014; Liang et al., 2020), while other studies reported that
patients with higher expression of COL4A3 had a significantly
worse OS in high-grade serous ovarian cancer (HGSC)
(Siamakpour-Reihani et al., 2015) and gastric carcinoma (Nie
et al., 2013). In the current study, a significant positive association
was found between higher COL4A3 expression and a favorable
prognosis in breast cancer, but the exact mechanisms need
further study.

There is one noteworthy point that should not be overlooked
in the current study. Based on the four key prognostic ARGs, a
logistic regression diagnostic model was constructed, and the
results indicated that the AUC of the diagnostic model was higher
than that of the risk score model. This result seems confusing, but

FIGURE 6 | Gene set enrichment analysis (GSEA) analysis for biological processes enriched in low- and high-risk groups. GSEA plots with normalized enrichment
score (NES) and p-value are shown here for immune-related genes sets, where significant enrichment was observed. Negative NES refers to enrichment in the low-risk
group. (A) T cell activation; (B) activation of immune response; (C) leukocyte migration; (D) regulation of lymphocyte activation.
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it is reasonable. It is well known that the purposes of diagnostic
and prognostic models are different. The main purpose of the
diagnostic model is for classification, while prognostic models

incorporate the dimension of time, adding a stochastic element.
The ROC curve is typically used to evaluate clinical utility for
both diagnostic and prognostic models. The ROC curve is very

FIGURE 7 | CIBERSORT, ssGSEA, and xCell were used to estimate the immune cell infiltration in high- and low-risk groups, respectively (A,C,E). The correlations
among immune cell infiltration and the four prognostic ARGs are displayed in the heatmaps (B,D,F).
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useful for classification in the diagnostic model. However, the
ROC curve is not the only evaluation metric for prognostic
models. The evaluation of prognostic models should combine
the ROC curve with discrimination and calibration (Cook, 2008),
while our prognostic models demonstrated good calibration and
discriminatory abilities. In summary, the AUC of diagnostic and
prognostic models should be interpreted separately rather than
comparably. Moreover, in the current study, the ARG-based risk
scores were associated with HER2 status, which is consistent with
the fact that HER2 breast cancer is associated with a more
aggressive pattern. However, the survival of patients with high
risks was worse, no matter what kind of molecular subtype. All
these results indicated that our angiogenesis risk model had
universal applicability for breast cancer and suggested that the

angiogenesis-related prognostic genes might be involved in the
occurrence and development of breast cancer, but the specific
molecular mechanism needs further experiments in vivo and
in vitro.

To understand the potential molecular mechanism of ARGs
involved in breast cancer, we performed KEGG and GO analyses
and found that DEGs between low- and high-risk groups were
significantly enriched in many immune-related pathways,
including primary immunodeficiency, B cell receptor signaling
pathway, and adaptive immune response. Furthermore, GSEA
also revealed the involvement of immune-related signaling in the
low-risk group, such as T cell activation, activation of the immune
response, leukocyte migration, and regulation of lymphocyte
activation. These findings implied that prognostic ARGs have

FIGURE 8 |Construction of the ceRNA regulatory network based on the four prognostic biomarkers. (A) Volcano plot for differentially expressed miRNAs between
low- and high-risk groups; (B) volcano plot for differentially expressed lncRNAs between low- and high-risk groups; (C) ceRNA regulatory network among miRNAs,
lncRNAs, and mRNA of the four prognostic ARGs.
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a close relationship with immune function in breast cancer. Thus,
we further analyzed the difference in immune cell infiltration
between high- and low-risk groups using CIBERSORT, xCell, and
ssGSEA analysis. All these analyses indicated that
immunoreactive cells (such as CD8+ T cells, NKT cells, and
DC cells) were decreased and immunosuppressive cells (such as
macrophages M2) were increased in the high-risk group, which
resulted in a state of immunosuppression and might lead to
adverse prognosis of these patients. In addition, we also found
that the expression of these four ARGs individually was closely
related to the infiltration of immune cells. All of these results
further demonstrated the interaction between ARGs and immune
infiltrates in breast cancer. Notably, in the current study, we
noticed that patients in the high-risk group had reduced T cell
infiltration, and T cell activation was significantly enriched in the
low-risk group. To date, in both preclinical and clinical studies,
T cell activation, in particular, has been used to evaluate the
efficacy of immune checkpoint blockade (Zheng et al., 2018).
Moreover, there are signs that the tumor vasculature itself
constitutes a substantial barrier to T cells (Lanitis et al., 2015).
However, whether a different immune population impacts ARGs
or vice versa is unclear, and whether a particular immune cell type
is more involved in the breast cancer tumorigenic process and
affects the therapeutic effect of antiangiogenesis and/or
immunotherapy is unknown. Thus, further research on the
mechanism is warranted to clarify these questions.

Given the essential factors required for angiogenesis in tumor
development, growth, and metastatic spread, antiangiogenic
therapy has been widely studied for a long time. However,
antiangiogenic treatment is not currently the standard of care in
breast cancer as the lead agent, bevacizumab, did not show survival
advantage (Zhang M. et al., 2021). Antiangiogenic agents can
enhance effector immune cell infiltration by inducing vascular
normalization and reducing immunosuppression (Chen et al.,
2021). Emerging evidence has shown that antiangiogenic agents
could enhance the effect of immunotherapy with the continuous
development of immunotherapy drugs and antiangiogenic agents
(Esteva et al., 2019; Anderson et al., 2022). Currently, in breast
cancer, especially in TNBC, multiple clinical trials of the
application of combined immune checkpoint inhibitors with
antiangiogenic drugs, such as multitarget receptor tyrosine
kinase inhibitor anlotinib and small-molecule tyrosine kinase
inhibitor apatinib (VEGFR2 inhibitor), which are manufactured
in China, are being carried out (NCT03855358, NCT04914390,
NCT04877821, NCT04405505, NCT04722718, NCT04303741,
NCT03945604, and NCT03394287, et al.). Under such
circumstances, how antiangiogenic treatment interacts with the
ARGs and immune cell infiltration in terms of benefit would be
interesting and meaningful to provide new insights into tumor
angiogenesis and their clinical implications.

The advantages of this study are that TCGA data sets with
pairs of breast cancer and adjacent normal tissues were used,
which avoids cancer heterogeneity and ensures reliable DEG
results. Meanwhile, we identified significant DEGs related to
breast cancer survival and then constructed a gene signature
with prognostic value. Moreover, to prove the robustness of our
four-gene signature, two independent GEO cohorts were used as

validation data sets. However, our study has several limitations
worth noting. First, the treatment schemes of the breast cancer
patients were unknown, that is, adjuvant chemotherapy,
trastuzumab of targeted therapy, or hormone therapy, which
are associated with breast cancer outcomes. Second, we did not
validate prognostic gene expression at the protein level in breast
tumor specimens. This is the main limitation of this study.
Further studies to explore the expression and functions of
these four genes in breast cancer are warranted. Third,
immune population assessments are surrogates from the
transcriptome data of the database. Confirming the most
notable differences in immune cell subtypes by direct
pathological visualization would be good. Direct immune cell
population assessments are required in further studies. Fourth,
the direction of effect is unknown, that is, whether the ARGs
affect the composition of immune cell infiltrates or whether
immune infiltrates influence the levels of or even directly
express ARGs. Further functional manipulation experiments
are required to elucidate the nature of these interrelationships.

Taken together, the current study aimed to explore the prognostic
value of ARGs and their connections with immune cell infiltration in
patients with breast cancer. We identified four prognostic ARG
biomarkers in breast cancer and established an accurate risk model
and nomogram for predicting survival in patients with breast cancer.
Moreover, we also found that immune cell infiltration may act as a
bond between angiogenesis and breast cancer. Further in vivo and
in vitro experiments will be carried out to unveil the molecular
mechanisms of those ARGs in regulating breast cancer. These
findings may enhance our understanding of angiogenesis in breast
cancer andprovide extensive andnew insights onbreast cancer therapy.
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