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Abstract: Coronavirus (COVID-19) has created an unprecedented global crisis because of its detri-
mental effect on the global economy and health. COVID-19 cases have been rapidly increasing,
with no sign of stopping. As a result, test kits and accurate detection models are in short supply.
Early identification of COVID-19 patients will help decrease the infection rate. Thus, developing an
automatic algorithm that enables the early detection of COVID-19 is essential. Moreover, patient data
are sensitive, and they must be protected to prevent malicious attackers from revealing information
through model updates and reconstruction. In this study, we presented a higher privacy-preserving
federated learning system for COVID-19 detection without sharing data among data owners. First,
we constructed a federated learning system using chest X-ray images and symptom information. The
purpose is to develop a decentralized model across multiple hospitals without sharing data. We found
that adding the spatial pyramid pooling to a 2D convolutional neural network improves the accuracy
of chest X-ray images. Second, we explored that the accuracy of federated learning for COVID-19
identification reduces significantly for non-independent and identically distributed (Non-IID) data.
We then proposed a strategy to improve the model’s accuracy on Non-IID data by increasing the total
number of clients, parallelism (client-fraction), and computation per client. Finally, for our federated
learning model, we applied a differential privacy stochastic gradient descent (DP-SGD) to improve
the privacy of patient data. We also proposed a strategy to maintain the robustness of federated
learning to ensure the security and accuracy of the model.

Keywords: COVID-19 detection; federated learning; convolutional neural network; differential privacy
stochastic gradient descent; spatial pyramid pooling layer; chest X-ray images; COVID-19 symptoms

1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus
disease 2019 (COVID-19). It has spread worldwide, resulting in the ongoing 2022 pan-
demic. With more than 400 million confirmed cases and five million deaths across nearly
223 countries, COVID-19 is continuing to spread around the world, and there is no sign
of it stopping. Thus, it has led to a problematic situation for humans in the world until
now. Although COVID-19 vaccines have provided an opportunity to slow the spread of
the virus and end the pandemic, not enough COVID-19 vaccines are available for everyone
in the world to be inoculated until the end of 2024 at the earliest, according to the chief
executive of the world’s largest vaccine manufacturer [1]. Moreover, the emergence of
COVID-19 virus variants may make the virus more infectious [2] or more capable of causing
severe disease [3]. The symptoms of COVID-19 often include fever, chills, dry cough, and
systemic pain [4,5]. However, many people are infected with the virus without noticeable
symptoms [6,7]. Thus, COVID-19 infection becomes difficult to diagnose. In addition, if
the patient is detected early, the disease will be cured more quickly, limiting the spread of
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the disease. Therefore, it is critical to find a method to assist hospitals in the early diagnosis
of COVID-19 patients.

Many researchers have applied artificial intelligence (AI) technology to develop
COVID-19 detection models to assist hospitals in detecting patients early. Some of them
identified COVID-19 cases based on longitudinal information on patient symptom pro-
files [8–10] and achieved promising results in COVID-19 early detection. Other researchers
focused on chest radiography images because most COVID-19 cases display common fea-
tures on chest radiographs, including early ground-glass opacity and late-stage pulmonary
consolidation. It can also be identified through a rounded morphology and a peripheral
lung distribution [11,12]. In 2020, research published in the Journal Radiology [13] demon-
strated that chest radiography outperformed laboratory testing in detecting coronavirus.
Therefore, using chest radiography image analysis can help to screen suspected COVID-19
cases at an early stage. In particular, patient’s symptoms and chest X-ray images have
various advantages including high accessibility, affordability, ease of operation, and rapidly
prioritizing COVID-19 suspected patients.

Most studies use symptom information [8–10], chest X-rays radiography (CXR) [14],
chest computed tomography (CT) [15], and lung ultrasound (LUS) [16] as screening meth-
ods. These methods heavily rely on shared datasets for the training process. However,
based on general data protection regulations [17], patient data privacy must be protected
to avoid an attack from malicious attackers because data privacy directly impacts human
politics, businesses, security, health, and finances, etc. Therefore, we must find a better
way so that machine learning can work collaboratively while maintaining data privacy.
One recent method that addresses this problem is federated learning (FL), proposed by
Google [18]. Its main idea is to develop a decentralized machine learning model based
on datasets from multiple data sources without sharing data. The model updates focus
more on the learning task than raw data, and the server only must hold individual updates
ephemerally. Therefore, FL offers significant privacy improvements compared to centraliz-
ing all training data. Several researchers have applied FL for COVID-19 detection tasks and
achieved promising results [19–21]. However, some studies have demonstrated that FL
may not always provide sufficient privacy guarantees. The sensitive information can still
be revealed through model updates [22,23]. For example, Phong [24] demonstrated that
the local data information can be revealed from a small portion of gradients, or a possible
scenario is that the malicious attacker can reconstruct the training data from gradient
information in a few iterations [25].

Unlike existing methods, we did not build a traditional FL system. In this study,
we proposed an FL model for COVID-19 detection with higher privacy by adding the
differential privacy stochastic gradient descent (DP-SGD) that are resilient to adaptive
attacks auxiliary information. We also evaluated the parameters to keep the robustness of
FL to ensure the model’s security and accuracy.

In summary, this study makes the following contributions:

• We proposed a higher privacy-preserving FL model for COVID-19 detection based
on symptom information and chest X-ray images collected from multiple sources
(that is, hospitals) without sharing data among data owners by adding the differ-
ential privacy stochastic gradient descent (DP-SGD) resilient to adaptive attacks
auxiliary information;

• We observed that adding the spatial pyramid pooling (SPP) layer in 2D convolutional
neural networks (CNNs) achieve better accuracy on chest X-ray images;

• We demonstrated that the accuracy of FL for COVID-19 detection reduces significantly
for Non-IID data owing to the varying size and distribution of local datasets among
different clients. We thoroughly analyzed several design choices (for example, the
total number of clients, amount of multi-client parallelism, and computations per
client) to improve the model’s accuracy with Non-IID data;
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• We provided a strategy to keep the robustness of our privacy-preserving FL model
to ensure the model’s security and accuracy by keeping the fraction of the model
constant, scaling up the total number of clients and noise proportionally.

In the remainder of this study, we first review related work in Section 2. We then
present our approach in Section 3. Section 4 presents the experimental results, and we
finally conclude the study in Section 5.

2. Related Works

Many researchers have developed various COVID-19 detection models to help hospi-
tals detect patients early. Most researchers have focused on identifying COVID-19 cases
based on chest X-ray and CT images. Horry [14] explored transfer learning for COVID-19
detection using three kinds of medical images (X-ray, ultrasound, and CT scan). Through
the comparative study of several popular CNN models, the VGG19 model performed
multiple levels of COVID-19 detection for all three lung image models. Afshar presented
a capsule framework (COVID-CAPS) to identify COVID-19 cases from chest X-ray im-
ages [26]. They demonstrated that the COVID-CAPS outperformed the traditional model.
Mukherjee proposed a CNN tailored Deep Neural Network (DNN) algorithm to identify
COVID-19 cases using chest X-ray and CXR images [27]. They demonstrated that their
model outperformed the other models such as InceptionV3, MobileNet, and ResNet.

Other researchers have used COVID-19 patients’ symptom data. Otoom [28] proposed
a real-time COVID-19 detection, treatment, and monitoring system. They used an Inter-
net of Things (IoT) framework to collect real-time symptom data from users, and then
identified suspected coronavirus cases and administered appropriate treatment during
quarantine. They evaluated the framework’s performance using eight algorithms(support
vector machine, neural network, Naïve Bayes, K-Nearest Neighbor, decision table, decision
stump, OneR, and ZeroR), five of which achieved an accuracy of more than 90%. Akib
Mohi [29] presented a COVID-19 classification system using textual clinical reports. They
extracted features using several feature extraction techniques such as bag of words, term
frequency/inverse document frequency, and report length, and then used these features as
input to traditional and ensemble machine learning classifiers. Their experiments showed
that logistic regression and multinomial Naive Bayes achieved better accuracy than other
methods. Khaloufi [30] proposed a preliminary diagnosis of COVID-19 using symptom
monitoring from smartphone embedded sensors. The model achieved an overall accuracy
of 79% for detecting the COVID-19 cases. Menni [9] proposed a model combining symp-
toms to predict COVID-19 cases based on reported symptoms via a smartphone-based
app. The study found that loss of smell and taste is a potential predictor of COVID-19
apart other symptoms such as high temperature and a new, persistent cough. Canas [31]
presented an early detection model for COVID-19 cases using prospective, observational,
longitudinal, and self-reported data from patients in the UK on 19 symptoms over three
days after symptom onset. The experimental results showed that the hierarchical Gaussian
model achieved higher performance than the logistic regression model.

Some researchers have used FL in the COVID-19 detection system to protect patients’
data because patients’ data are sensitive and impacts patient security. Yan [21] proposed
an FL for COVID-19 detection based on chest X-ray images. The study compared perfor-
mances of four models (MobileNetv2, ResNet18, ResNeXt, and COVID-Net) and found that
ResNet18 achieved the highest accuracy in both training with and without FL. Zhang [15]
presented a novel dynamic fusion-based FL approach to detect COVID-19 infections us-
ing CT and chest X-ray images. The study conducted experiments using the following
three models: GhostNet, ResNet50, and ResNet101 and found that the proposed approach
achieved better performance than the default setting one for ResNet50 and ResNet101.
Abdul [32] presented an FL model to identify COVID-19 cases using chest X-ray images
and a descriptive dataset. The study found that using softmax activation function and
stochastic gradient descent (SGD) optimizer achieved better performance. A brief summary
of existing COVID-19 detection approaches is presented in Table 1.
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Table 1. The summary table of existing COVID-19 detection approaches.

Author Title Data Approach Limitations

Horry et al. [14]
(2020)

COVID-19 detection
through transfer learning

using multimodal imaging data

X-ray,
ultrasound,

CT scan
VGG19 Sharing sensitive

data of patients

Afshar et al. [26]
(2020)

Covid-caps: A
capsule network-based

framework for identification
of COVID-19 cases
from X-ray images

Chest X-ray COVID-CAPS Sharing sensitive
data of patients

Mukherjee et al. [27]
(2021)

Deep neural network to detect
COVID-19: one architecture for
both CT Scans and Chest X-rays

Chest X-ray,
CXR images

CNN tailored Deep
Neural Network

Sharing sensitive
data of patients

Otoom et al. [28]
(2020)

An IoT-based
framework for early

identification and
monitoring of

COVID-19 cases

COVID-19
symptom

Eight algorithms
(SVM, neural network,

Naïve Bayes, KNN,
decision table,

decision stump,
OneR, ZeroR)

Sharing sensitive
data of patients

Akib et al. [29]
(2020)

Machine learning based
approaches for detecting

COVID-19 using
clinical text data

COVID-19
symptom

Logistic regression,
multinomial Naïve Bayes

Sharing sensitive
data of patients

Khaloufi et al. [30]
(2021)

Deep Learning Based
Early Detection Framework
for Preliminary Diagnosis

of COVID-19 via
Onboard Smartphone Sensors

COVID-19
symptom

ANN, AI-enabled
framework to diagnose

COVID-19 using
a smartphone

Sharing sensitive
data of patients

Menni et al. [9]
(2020)

Real-time tracking
of self-reported symptoms

to predict potential
COVID-19

COVID-19
symptom

Smartphone-based app,
logistic regressions

Sharing sensitive
data of patients

Canas et al. [31]
(2021)

Early detection of
COVID-19 in the

UK using self-reported
symptoms: a large-scale,

prospective, epidemiological
surveillance study

Chest X-ray
images

MobileNetv2,
ResNet18, ResNeXt,

COVID-Net

Sensitive data can still
be revealed through

model updates

Zhang et al. [15]
(2021)

Dynamic fusion-based
federated learning for
COVID-19 detection

Chest X-ray
images, CT scan

GhostNet,
ResNet50,
ResNet101

Sensitive data can still
be revealed through

model updates

Abdul et al. [32]
(2021)

COVID-19 detection
using federated

machine learning

Chest X-ray,
descriptive dataset

Federated with
SGD optimizer

Sensitive data can still
be revealed through

model updates

Unlike existing methods, we presented an FL framework with higher privacy for
COVID-19 detection by adding differential privacy stochastic gradient descent (DP-SGD).
We also provided strategies for improving model accuracy on Non-IID data and maintain-
ing the robustness between security and accuracy of the COVID-19 detection model. By
evaluating the proposed models on two different challenging datasets (chest X-ray images
and symptom information), we found that convolutional neural network (CNN) model
with adding spatial pyramid pooling (SPP) layer achieved the highest accuracy on the chest
X-ray images model and artificial neural networks (ANNs) outperformed the other models
such as long short-term memory (LSTM) and 1D CNN (1DCNN) for COVID-19 detection
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using symptom dataset. To the best of our knowledge, this is the first study to apply the
DP-SGD in FL to detect COVID-19 cases based on chest X-ray images and symptoms.

3. Approach

In this section, we present a comprehensive overview of our privacy-preserving FL
system for COVID-19 detection. This section is organized as follows: first, we introduce the
overview of FL in Section 3.1. We then provide a comprehensive introduction of DP-SGD in
Section 3.2. We explain the detail of our federated COVID-19 system model in Section 3.3.
Finally, Sections 3.4 and 3.5 present various network models designed to recognize COVID-
19 cases based on chest X-ray images and symptom information, respectively.

3.1. Federated Learning

The FL approach was introduced in 2016. It is a machine learning strategy in which
multiple clients can collaboratively solve a machine learning problem, with each client
storing their own data and sharing or transfering data with other clients [18]. FL ues less
storage or computational resources on the central server than centralized learning, and it
helps protect each client’s private data.

FL was initially implemented over several small devices [18,33]. The various imple-
mented FL applications have significantly increased, including some, which might involve
only a few clients in collaboration among institutions [34–36]. These two FL settings are
called “cross-device” and “cross-silo”, respectively. A typical FL training is achieved by fol-
lowing several basic steps. In the first step, all chosen clients download the current weight
of the master model. Second, the clients compute the weight and update it independently
based on their local data. Finally, all clients update their weight to the server, where they
are gathered and aggregated to produce a new master model. These steps are repeated
until a certain convergence criterion is satisfied.

In our setting, we termed the Federated Averaging (FedAvg) [18] as our FL system.
In this manner, the selected clients will compute the gradient of the loss on the current
model using their local data for each communication round. Then, the server calculates a
weighted average of the resulting models. The pseudo-code of FedAvg adapted from [18]
is given in Algorithm 1.

Algorithm 1 FederatedAveraging. The K clients are indexed by k, B is the local minibatch
size, E is the number of local epochs, and η is the learning rate.
Service executes:

w0 ← random initialization
for each round t = 1,2,... do

St ← (random subset of max(C× K, 1) clients)
for each client k ∈ St in parallel do

wk
t+1 ← ClientUpdate(k,wt)

end for
wt+1 ← ∑K

k=1
nk
n wk

t+1
end for

Client update(k, w):
Split local dataset in B ( B

nk
batches of size B)

for epoch e ∈ [1, E] do
for batch b ∈ B do

w← w− ηO`(w; b)
end for

end for
return w to server
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3.2. Differential Privacy Stochastic Gradient Descent (DP-SGD)

Differential privacy is a strong standard for quantifying and limiting personal infor-
mation disclosure [37–39]. It masks the contribution of any individual user by introducing
a level of uncertainty into the released model. Privacy loss parameters (ε, δ) quantify
differential privacy, where ε denotes how much a person with output would be able to see
the dataset, δ represent the probability that an unwanted event happens that leaks more
data than normally. The smaller the (ε, δ), the higher the privacy. We have a differential
privacy definition as follows: a randomized algorithm A: D→ R with domain D and range
R is (ε, δ)-differential private if for any subset of outputs S ⊆ R and for any two adjacent
inputs d, d′ ∈ D: Pr[A(d) ∈ S] ≤ eεPr[A(d′) ∈ S] + δ.

In the term of Federated Learning, we say that two decentralized datasets D and D′

are adjacent if they differ in a single entry, that is, if D′ can be obtained from D by adding
or subtracting all the records of a single client. δ is preferably smaller than 1

|d| .
Differential privacy guaranteeing may impact the accuracy or utility of our model.

In the context of rich data, it appears that the model can offer both low privacy risk and
high utility. However, for large datasets, the optimization methods must be scalable.
Therefore, we used SGD to control the influence of training data during the training process
as described in previous works [40–42] for our differential privacy setting. The DP-SGD
strategy adds random Gaussian noise on the aggregated global model that is enough to hide
any single client’s update. It consists of the following steps: at each step of the DP-SGD, we
compute the gradient for a random subset of examples, then clip these per-sample gradients
into a fixed maximum norm `2. Next, random noise is added to the clipped gradients in
computing the average step. Finally, we multiply these clipped and noised gradients using
the learning rate and apply the product to update model parameters. Clients perform
perturbation on their gradients using the DP-SGD strategy after computing the training
gradients based on their local data in Algorithm 1.

3.3. System Model

We developed our Federated COVID-19 detection system based on a client-server
architecture implementing the FedAvg via local stochastic gradient descent (SGD) and
addressing privacy risks with a DP-SGD guarantee. Our federated COVID-19 system
includes three stages: clients synchronize with the server, clients compute the local models
based on individual data, and the server aggregates the global model. The overall system
architecture is shown in Figure 1.

Figure 1. Federated COVID-19 detection system architecture.
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Clients synchronize with the server

At the round t, a random C fraction of the clients were selected to connect to the server
for computing the gradient of loss over all the data held by these clients. The selected
clients download the current average model parameters θt−1

average from the previous iteration.
For the 1st iteration, the clients will use the same random initial model parameters θ0.

Clients compute the local models based on individual data

Each client locally computes the training gradients and updates independently based
on their local data divided into B mini-batches for E epochs. The client then performs
perturbation on their gradients using the DP-SGD technique described in Section 3.2.
Finally, the client reports the learned model parameters (denoted as θt

k where k is the client
index) to the server for averaging.

Server aggregates global model

Once the server receives the parameter updates from clients, the aggregation model will
average the updates to produce the new model parameters based on the FedAvg approach.

The overall complexity of the proposed scheme can be expressed as O(t× K× E× B) at
max, where t, K, E, and B represent the total number of communication rounds, the total num-
ber of clients, the number of local epochs, and the local minibatch-size of clients, respectively.

3.4. Network Models Designed for the Recognition of COVID-19 Using Chest X-ray Images

To evaluate the performance of our FL system using chest X-ray images, we used
four deep learning models, such as 2D CNN with 5 × 5 convolutional layers (5 × 5 CNN),
residual neural networks (ResNets), 2D CNN with 3 × 3 convolutional layers (3 × 3 CNN),
and 2D CNN with 3 × 3 convolutional layers and SPP (3 × 3 CNN-SPP). The complexity
of each model is O(ω), where ω denotes the model parameters. The detailed descriptions
are presented in Table 2.

Table 2. The complexity of the proposed models using chest X-ray images.

Model No. Layers No. Parameters ω (Milion)

5 × 5 CNN 3 22
ResNet18 18 11.2
ResNet50 50 23.5

3 × 3 CNN 3 1.6
3 × 3 CNN-SPP 4 0.2

5 × 5 CNN

The 5 × 5 CNN model was used to construct the decentralized classification model for
MNIST digit recognition and has shown promising results [18]. The 5× 5 CNN architecture
includes two 5 × 5 convolution layers; the first convolution layer has 32 channels, the
second layer has 64 channels, each layer followed with 2 × 2 max pooling, and the fully
connected layer with 512 units and ReLu activations. Similar to [18], we used a 5 × 5 CNN
with SGD optimizer function for COVID-19 detection using chest X-ray images.

ResNets

ResNets is a specific neural network proposed in [43]. ResNets are made up of residual
blocks, which help improve the accuracy of models using skip connections. The skip con-
nections in residual blocks solve the vanishing gradient problem in deep neural networks
(DNNs). As a result, the model learns in such a way that the higher layer outperforms the
lower layer. The ResNet has multiple variations, namely ResNet16, ResNet18, ResNet34,
ResNet50 and ResNet101, which contains 16, 18, 34, 50, and 101 layers, respectively. ResNet
has shown a compelling efficiency for COVID-19 detection using chest X-ray data [44–47].
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Similar to these previous works, we applied ResNet18 and ResNet50 as one of the deep
learning networks for our COVID-19 detection based on chest X-ray images.

3 × 3 CNN

The 3 × 3 CNN was one of our evaluation models for COVID-19 detection based on
chest X-ray images, which includes two 3 × 3 convolutional layers; the first layer with
32 channels, and the second layer with 64 channels followed with 2 × 2 max-pooling layer
and a fully connected layer with 128 units, ReLu activation, and a final softmax output
layer. Two dropout layers were added before and after the fully connected layer with the
dropout probability of 0.25, and 0.5, respectively, to reduce overfitting. Figure 2 shows our
proposed 3 × 3 CNN architecture for COVID-19 detection.

Figure 2. The 2D CNN with 3 × 3 convolutional layers architecture.

3 × 3 CNN-SPP

The SPP layer was first introduced in [48], which helps the CNN model agnostic input
image size. The Bag of Words (BoW) approach inspires SPP [49], which pools the features
together. SPP outperforms conventional pooling by capturing more spatial information
and accepting arbitrary input size. To adopt SPP in a deep network, we must replace the
last pooling layer with an SPP layer, such as pooling layer after the last convolutional layer.

A deep network using the SPP layer has shown outstanding accuracy in classification,
and detection problems [48,50–54]. In this work, we used an SPP layer with (1 × 2 × 4)
spatial bins for our 3 × 3 CNN model before classification. Figure 3 shows our COVID-19
detection using a 3 × 3 CNN with SPP architecture.

Figure 3. The 2D CNN with 3 × 3 convolutional layers and SPP architecture.

3.5. Network Models Designed for the Recognition of COVID-19 Using Symptom Data

To evaluate the performance of our FL system using symptom data, we used three
machine learning models such as 1DCNN, ANN, and LSTM. The complexity of each model
is O(ω), where ω denotes the model parameters. The detailed descriptions are presented
in Table 3.
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Table 3. The complexity of the proposed models using symptom data.

Model No. Layers No. Parameters ω (Thousand)

1DCNN 5 37.4
ANN 4 26.3
LSTM 5 90.2

1DCNN

CNN not only achieves excellent performance on computer vision tasks such as object
detection [55,56], image classification [57], image generation [58], tracking task [59], and
face recognition [60], but also can be used to sequence data [61]. Some works have achieved
great results in COVID-19 detection using CNN architecture on textual data. For example,
Lella et al. [62] used the 1DCNN with augmentation to diagnose COVID-19 in human-based
respiratory sounds such as cough, breath, and voice. In this study, we applied the 1DCNN
to verify COVID-19 cases based on symptom data. Our model contained three 1DCNN
layers, each with a convolutional kernel size of three and a one-step stride. The output size
for all layers is 64. After the third layer, the dropout function with a probability of 0.5 is
applied to prevent the model from overfitting. Then, a 1D max-pooling layer is applied to
reduce the output dimension. Finally, a softmax layer is applied to calculate the probability
of each output.

ANN

The ANN is a computer simulation based on the human brain that allows the machine
to learn and make decisions [63]. There are different layers in an ANN structure, each layer
is arranged as a vector with several single units called neurons. Each input layer performs
mathematical processing to produce the output layer, which serves as the input for the next
layer. Figure 4 represents the structure of an ANN.

Figure 4. The structure of ANN.

Because of these abilities, ANN has been applied to different machine learning tasks
such as time-series prediction [64] and computer vision task [65,66], and has produced
reliable results. In the COVID-19 prediction task, several works using the ANN structure
have yielded excellent results [67–69]. Furthermore, Hayat Khaloufi et at. [30] conducted
a highlight study in which a customized ANN was proposed to predict COVID-19 from
the collected dataset, which can help predict whether a patient is infected based on their
symptoms. The proposed model outperformed other traditional machine learning methods.
In this study, we employed an ANN structure with four hidden layers. The hidden size of
the four layers is 64, 128, 128, and 2, respectively. A dropout function with a probability of
0.5 is applied after the third layer to reduce the dimensional output vector and speed up
the training process. Finally, a softmax function is applied after the last layer to produce
the probability of our outputs.
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LSTM

An RNN is considered another type of ANN, which can collect data across sequential
steps and process one element of sequential data at a time. Unlike the traditional neural
networks, the output of RNN depends on the primary elements within the sequence, which
makes RNN suitable for solving sequential or time-series data.

The LSTM is a variant of RNN, which was first proposed by Hochreiter et al. [70] to
tackle the vanishing and exploding gradients problems that commonly happened from
the conventional RNN. In general, a typical LSTM cell is comprised of four different gates
such as forget gate, input gate, cell gate, and output gate. The structure of an LSTM cell is
presented in Figure 5.

Figure 5. The structure of one cell conventional LSTM.

In each operation, the LSTM cell processes an given input sequence x = [X1, X2, ..., XT ]
to produce an output hidden sequence h = [h1, h2, ..., hT ] using the following equations
iteratively from t = 1 to T:

it = σ(Wixt + Uiht−1 + bi), (1)

ft = σ
(

W f xt + U f ht−1 + b f

)
, (2)

ot = σ(Woxt + Uoht−1 + bo), (3)

c̃t = tanh(Wcxt + Ucht−1 + bc), (4)

ct = ft � ct−1 + it � c̃t, (5)

ht = ot � tanh(c̃t), (6)

where ft, it, c̃t, and ot are the forget gate, the input gate, the candidate cell gate, and the
output gate at time t, respectively; Wi, Ui, W f , U f , Wc, Uc, Wo, Uo are the weight matrices;
bi, b f , bc, bo are the bias vectors; � denotes the Hadamard product; σ and tanh denotes a
sigmoid and a tangent activation function, respectively.

With the great success in solving sequence data, LSTM has been applied to COVID-19
detection tasks and achieved great performances [71–75]. For instance, ArunKumar et al. [76]
proposed a deep learning approach that modified the traditional LSTM with a new activa-
tion function for predicting the infected cases and death cases of the COVID-19 dataset. In
this paper, we employed a simple stacked of three LSTM layers with a hidden size of 64 to
predict our COVID-19 symptom dataset. The LSTM has a dropout layer with a probability
of 0.25. After the LSTM, two Linear layers are added to reduce the output dimension.
Finally, a softmax layer is applied to calculate the probability of each output.
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4. Experiment
4.1. Data Collection and Processing

Two types of COVID-19 datasets, chest X-ray images and symptom data, were used to
train and evaluate our FL system.

4.1.1. Chest X-ray Dataset

Following the work of a group of researchers from Qatar University and the Uni-
versity of Dhaka, Bangladesh, and collaborators from Pakistan, Malaysia, and medical
doctors [77,78], we collected a dataset containing 3616 COVID-19 positives, 10,192 normal
and 1345 viral pneumonia chest X-ray images. The COVID-19 data were collected from the
various publicly accessible datasets, online sources, and published papers [79–84], normal
data were collected from two different datasets [85,86], and viral pneumonia data were
collected from chest X-ray images (pneumonia) database [86]. Few samples of chest X-ray
images are shown in Figure 6.

Figure 6. Few samples of chest X-ray images.

For each class, we randomly kept 200 images for testing data and the rest for training.
The statistics of the chest X-ray dataset are shown in Table 4.

Table 4. The statistics of the chest X-ray dataset.

Covid Normal Viral Pneumonia Total Images

Training 3416 images 9992 images 1145 images 14,553 images
Testing 200 images 200 images 200 images 600 images

4.1.2. Symptom Dataset

The symptom dataset for COVID-19 cases is based on a list of symptoms published
by WHO in May 2020 from India. It is provided by [87]. The symptom dataset contains
5434 samples with 21 columns such as breathing problem, fever, dry cough, sore throat,
running nose, asthma, chronic lung disease, headache, heart disease, diabetes, hyperten-
sion, fatigue, gastrointestinal, abroad travel, contact with COVID-19 patient, attended a
large gathering, visited public exposed places, family working in public exposed places,
wearing masks, sanitization from markets, and COVID-19. Each column contains a “Yes”
or “No” value.

We did some data processing before feeding the data into the network model using
the following steps:

• Removing the columns containing unique values because these columns provide no
useful information for our model;

• Converting categorical data to one-hot encoding data as follows: 1 represents “Yes”
and 0 represents “No”;

• For each COVID-19 class, we randomly kept 10% for testing and used the rest (90%)
for training.

Table 5 presents the statistics of the symptom dataset.
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Table 5. The statistics of the symptom dataset.

Covid Non-Covid Total

Training 3949 images 941 images 4890 images
Testing 434 images 110 images 544 images

4.2. Improvement in COVID-19 Detection Based on Chest X-ray Images and 3 × 3 CNN-SPP

To choose an effective model for our federated COVID-19 detection based on chest X-
ray images, we conducted experiments using four different models discussed in Section 3.4.
We tested each model by running experiments with the number of clients K = 3, client-
fraction C = 0.33 (one client per round), local epoch E = 1, client learning rate η = 0.02, and
the local minibatch size B = 20. As shown in Figure 7, the 3 × 3 CNN model achieved better
accuracy than 5 × 5 CNN, Resnet18, and Resnet50 methods. Furthermore, the model was
further improved by adding an SPP layer. Our proposed 3 × 3 CNN-SPP model achieves
the highest accuracy of 95.32% after 1000 communication rounds. Adopting the SPP layer
allows our deep convolutional neural network is able to generate representations from
arbitrarily sized images. The 3× 3 CNN-SPP is therefore able to extract features at different
scales and capture more spatial information. As such, the classification performance is
improved. Therefore, we used this 3 × 3 CNN-SPP model for our COVID-19 detection
system based on chest X-ray images. The 5 × 5 CNN model achieved a faster convergence
compared to the other models. In addition, the accuracy of all models steadily increases
after 200 communication rounds and keeps being stable.

Figure 7. Improvement in COVID-19 detection based on chest X-ray images and 3 × 3 CNN-SPP.

4.3. Improvement in COVID-19 Detection Based on Symptom Data and ANN

We evaluated three models discussed in Section 4.3 for our federated COVID-19
detection using symptom data. For each model, we conducted the experiment with the
number of clients K = 4, client-fraction C = 0.25 (one client per round), local epoch E = 1,
client learning rate η = 0.02, and local minibatch size B = 20. As shown in Figure 8, our
proposed ANN achieved a more favorable performance than 1DCNN and LSTM, with
the highest accuracy of 96.65%. Owning the functionality of hosting multiple data points
through the neurons to perform the mathematical processing to produce the outputs. ANN
applies the learnable weight for each neuron and updates it by the cost function after each
iteration to fit the training data. For that reason, the ANN has shown great success when
dealing with a dataset that has a non-linear between the input and output variables. As
such, the accuracy is improved. Therefore, we used this ANN model as our COVID-19
detection model using the symptom dataset. The accuracy of 1DCNN and ANN models
steadily increases after 200 communication rounds and keeps stable until reaching a certain
convergence at 600 communication rounds, while the LSTM model reaches the convergence
very early at the first round.
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Figure 8. Improvement in COVID-19 detection based on symptom data and ANN.

4.4. IID and Non-IID

Unlike centralized models, FL usually faces a Non-IID problem [18] in which the
size and distribution of local datasets will typically vary heavily between different clients
because each client corresponds to a particular user, geographic location, or time window.
For instance, the chest X-ray dataset with an imbalance label size is shown in Figure 9,
where each client owns data samples with a fixed number of k label classes. It resulted
in the client’s local models having the same initial parameters converging to different
models, and aggregating the divergent models on the server can slow down convergence
and worsen the learning performance.

Figure 9. An illustrative example of imbalance size for chest X-ray data with three clients and k = 1.

In this study, we compared the performance of our model on both IID and Non-IID
datasets. For the IID dataset, each client is randomly assigned a uniform distribution over
all classes. For the Non-IID dataset, we first sort the data using the class label. We then
divide data into two cases: (1) Non-IID(1), 1-class non-IID, where each client receives data
partition from only a single class, and (2) Non-IID(2), 2-class Non-IID, where each client
receives data partition from not more than two classes. We did not consider Non-IID(2) for
the symptom dataset because the symptom dataset only contains two classes.

We used the same parameters in Sections 4.2 and 4.3 for chest X-ray and symptom
models. As shown in Figure 10 and Table 6, a significant reduction is observed on Non-IID
data than IID data on our chest X-ray images. The maximum accuracy reduction occurs for
the most extreme 1-class non-IID(1), approximately 49.71 to 55.32%. For 2-class non-IID(2),
the accuracy reduction was approximately 14 to 24%.
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Figure 10. Performance comparison between IID and Non-IID based on chest X-ray images.

A similar observation was made with the symptom dataset; Figure 11 and Table 7
show a 1.28% to 2.29% reduction in accuracy in Non-IID(1) compared to IID.

Table 6. The summary table of the performance comparison between IID and Non-IID based on chest
X-ray images.

Round IID Non-IID(1) Non-IID(2)

400 94.50% 40.56% 70.38%
600 94.72% 39.40% 73.45%
800 95.17% 45.46% 78.62%

1000 95.32% 44.68% 80.93%

Figure 11. Performance comparison between IID and Non-IID based on symptom dataset.

Table 7. The summary table of the performance comparison between IID and Non-IID based on
symptom dataset.

Round IID Non-IID(1)

400 95.88% 94.24%
600 96.68% 94.39%
800 96.67% 95.03%
1000 96.65% 95.37%
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From these experiments, we found that non-IID data are one of the major issues of the
FL system because non-IID contains different sizes and distributions of local datasets for
each client. It resulted in the client’s local models being significantly different from each
other, and aggregating the divergent models on the server can slow down convergence
and significantly reduce model accuracy. Therefore, we must find a way that can improve
our model performance on non-IID data. In the next section, we will propose a strategy to
improve our Non-IID(1) data performance.

4.5. Non-IID Improvement

In this section, we evaluate different parameters in our Non-IID(1) setting to determine
the relationship between these parameters and our model performance. We first experiment
with total client K, client-fraction C, and local mini batch-size B on models using chest X-ray
images. We then further validate these parameters on the model using the symptom dataset.

4.5.1. Non-IID with Different Numbers of Client

We first evaluated the model’s performance using chest X-ray images on Non-IID(1)
with various total numbers of clients (3, 30, and 300) while keeping the other parameters:
client-fraction C = 0.33, local epoch E = 1, client learning rate η = 0.02, and the local
minibatch size B = 20. Figure 12 and Table 8 show the impact of varying K for our COVID-
19 detection model. The results demonstrated that using a larger number of clients (K = 30
and K = 300) significantly improves for our Non-IID(1) setting than the model using K = 3.
This can be explained by using many clients for our Non-IID(1) setting; some clients may
receive data from the same class. Therefore, if our model has previously learned similar
data patterns from previous clients, it will easily recognize the patterns of the current client.
This improved the model’s accuracy on chest X-ray images.

Figure 12. Non-IID with different numbers of clients based on chest X-ray images.

Table 8. The summary table of the accuracy of Non-IID with different numbers of clients based on
chest X-ray images.

Round 3 Clients 30 Clients 300 Clients

400 40.56% 64.57% 73.36%
600 39.40% 65.93% 73.37%
800 45.46% 66.52% 74.89%

1000 44.68% 65.93% 75.42%

4.5.2. Increasing Client-Fraction

In this experiment, we evaluated our model using chest X-ray images with client-
fraction C, which controls the amount of multi-client parallelism. To compute this, we
fixed local epoch E = 1, batch-size B = 20, client learning rate η = 0.02, and number of total
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client K = 300 (achieved best performance in previous Section 4.5.1), while changing the
ratio of client-fraction C with varying value ∈ {0.1, 0.3, 0.6, 0.9, and 1.0}. As shown in
Figure 13, using the larger client-fraction improved our model accuracy. Moreover, the
model with a larger client-fraction helped the model converge faster with the same number
of communication rounds.

Figure 13. Non-IID with different client-fraction based on chest X-ray images.

4.5.3. Increasing Computation per Client

The local batch-size B is the last parameter we used to evaluate the effect on the
Non-IID(1) model. We fixed client-fraction C to 1.0, which showed the improvement results
in the previous section, local epoch E to 1, client learning rate η to 0.02, and the number of
clients K to 300, while the local batch-size value will be selected via varying value ∈ {1, 20,
100, 200, and 500}. Figure 14 shows that with 1000 communication rounds, the model
using chest X-ray images with small batch-size B = 1 achieved the lowest accuracy of
approximately 63.33%, while larger batch-size B = 20 achieved an improvement result
with 77.56% of accuracy, and the best result was achieved by the model using largest
batch-size B = 200 with 79.56% of accuracy. In addition, the model using a larger batch-size
achieves convergence faster compared to the model with a smaller batch-size because a
larger batch-size means using a larger amount of data.

Figure 14. Non-IID with different batch-size based on chest X-ray images.
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4.5.4. NonIID and Refined NonIID

In Sections 4.5.1–4.5.3, we discovered that each component has affection on chest
X-ray model performance. We then combined these parameter values to see how much our
model accuracy can be increased compared to the baseline model. The baseline model is
Non-IID(1) used in Section 4.4 with the number of clients K = 3, fraction C = 0.33, client
learning rate η = 0.02, and local batch-size B = 20. Non-IID(300 clients) is a modification of
the baseline model with K = 300 clients. The final refined model is a refined model from
Non-IID (300 clients) with the number of client-fraction = 1.0, and local batch-size = 200.

Table 9 shows that using K = 300 clients helped improve accuracy by up to 33.97%
compared to the baseline model using three clients. Furthermore, we further improved the
accuracy model of Non-IID (300 clients) by up to 4.7% with an increasing client-fraction
and local batch-size.

Table 9. Non-IID with refined Non-IID based on chest X-ray images.

Round Baseline Non-IID (300 Clients) Refined Non-IID

400 40.56% 73.36% 77.30%
600 39.40% 73.37% 78.07%
800 45.46% 74.89% 78.59%
1000 44.68% 75.42% 79.56%

4.5.5. Experiments on Symptom Data

From Section 4.4, we observed a slight deduction of the symptom model on Non-
IID(1). We now examined whether tuning parameters (number of total clients K, client-
fraction C, and local mini batch-size) of the chest X-ray model are also efficient with the
symptom model.

As shown in Figure 15, using a larger client-fraction C showed slight improvement
for model performance on Non-IID(1). However, increasing the number of clients K and
batch-size B did not improve the performance of our symptom model on Non-IID(1), as
shown in Figure 16.

Table 10 shows that our refined model has slightly improved with 0.31 to 0.82%
accuracy compared to Non-IID(1) and almost reached the model’s accuracy on IID data.

Figure 15. Non-IID with different client-fraction based on symptom data.
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Figure 16. Non-IID with different batch-size and client based on symptom data.

Table 10. Non-IID with refined Non-IID based on symptom data.

Round IID Non-IID(1) Refined Non-IID(1)

400 95.88% 94.24% 95.06%
600 96.68% 94.39% 95.17%
800 96.67% 95.03% 95.52%

1000 96.65% 95.37% 95.68%

4.6. Privacy Improvement for Federated COVID-19 Detection Model Using DP-SGD

FL helps mitigate privacy risks associated with centralized machine learning without
sharing each client’s private data. However, the adversary might infer our information
from the shared gradients from the previous model of our FL system. To make it much
more challenging for an adversary to breach privacy, we applied DP-SGD by adding a
random Gaussian noise on local gradients in the aggregating step on the server’s model. In
this section, we first examine how much the different levels of privacy affects our model
performance. We then provide the strategy to keep the robustness of differential privacy
and model’s accuracy. Our FL with DP-SGD for a COVID-19 detection system is shown in
Figure 1.

4.6.1. Trade-Off between the Model Privacy and Accuracy

For the chest X-ray model, we conducted experiments for the IID dataset setting with
number of total clients K = 3 and with varying noise values to see how much differential
privacy impacts our utility model. A lower ε value means the model has higher security.
We set δ = 10−5, client-fraction = 0.33, client learning rate η = 0.02, and batch-size = 20. As
shown in Figure 17, we found a trade-off between our privacy and model accuracy. The
more noise we add to our model, the more reduced our model accuracy is.

The similar observations were made when experiments on the symptom model.
Figure 18 presents a trade-off between model privacy and performance when we con-
ducted experiments with varying noise values. When the noise value was set to 1.0, the
model achieved the highest accuracy, but it was less secure with the largest ε value = 1600.
In contrast, the model achieved the most security but also worse accuracy when the noise
value was set to 5.0. We kept the number of total clients K to 4, client-fraction C to 0.25,
client learning rate η to 0.02, δ = 10−5, and batch-size to 20 in these experiments.
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Figure 17. Differential privacy with different noise values on chest X-ray model.

Figure 18. Differential privacy with different noise values on symptom model.

4.6.2. Robustness of Differential Privacy

Section 4.6.1 demonstrated the trade-off between privacy and the model’s accuracy.
Therefore, we wanted to find a way that helps us reduce the model privacy risk, but we
can still keep the similar utility of our model. We first experimented with three system
parameters: fraction of model q (number of clients per round/total number of clients),
number of total clients, and the noise value on our chest X-ray model. In our experiments,
we scaled up the total number of clients while keeping the fraction of the model constant,
and the noise value was scaled up using varying values ∈ {0.1, 0.3, 0.7, 1.3, 1.9, and 2.1}. As
shown in Figure 19 and Table 11, by increasing the total number of clients while keeping
the fraction of the model constant, we could add the larger noise value, and the model
achieved a similar utility and higher privacy. For example, after increasing the number of
clients from 180 to 270, we could increase the noise value from 1.3 to 1.9, lowering a half ε
value from 97.39 to 46.36 while the model’s accuracy only reduced by 0.94% from 70.21%
to 69.27%.
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Figure 19. The robustness of differential privacy on chest X-ray images.

Table 11. The summary table of the robustness of differential privacy on chest X-ray images.

q Noise Accuracy ε

1/3 0.1 86.58% 9.7 × 104

10/30 0.3 75.36% 8.9 × 103

30/90 0.7 68.35% 5.6 × 102

60/180 1.3 70.21% 97.39
90/270 1.9 69.27% 46.36

100/300 2.1 68.70% 39.40

The same conclusion was reached on the symptom model; we achieved robustness of
differential privacy and accuracy by increasing the total number of clients while keeping
the fraction of model constant, and scaling up noise proportionally. As shown in Table 12,
after increasing the number of clients from four to sixty while keeping the fraction of model
q constant, we could reduce by more than ten times ε value from 1600 to 120 while the
model’s accuracy only reduced by 0.17% from 93.56% to 93.39%.

Table 12. The robustness of differential privacy on symptom data.

q Noise Accuracy ε

1/4 1.0 93.56% 1.6 × 103

10/40 2.0 93.99% 2.9 × 102

15/60 3.0 93.39% 1.2 × 102

20/80 4.0 91.33% 73.56
25/100 5.0 88.73% 49.96

5. Conclusions

This study presented a higher privacy-preserving FL system for COVID-19 detec-
tion based on two types of datasets: chest X-ray images and symptom data. Through
experiments on seven deep learning models: 5 × 5 CNN, ResNets, 3 × 3 CNN, 3 × 3
CNN-SPP, ANN, 1DCNN, and LSTM, our federated COVID-19 detection model using 3
× 3 CNN-SPP and ANN achieved the best accuracy of 95.32% on chest X-ray images and
96.65% on symptom data, respectively. We first showed that the accuracy of FL for COVID-
19 identification reduced significantly for Non-IID data. As a solution, we proposed a
strategy to improve accuracy on Non-IID data by increasing the total number of clients,
parallelism (client–fraction), and computation per client (batch size). Experiments showed
that Non-IID model accuracy could be increased by 18.41% for chest X-ray images and
0.82% for symptom data. Second, to enhance patient data privacy for our FL model, we
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applied a DP-SGD that is resilient to adaptive attacks using auxiliary information. Finally,
we proposed a strategy to keep the robustness of FL to ensure the security and accuracy of
the model by keeping the fraction of the model constant and proportionally scaling up the
total number of clients and the noise.

In our future work, we would like to implement this method using a larger dataset
available from various hospitals worldwide. Furthermore, we hope that our proposed
privacy-preserving FL framework enhances data protection for collaborative research to
fight the COVID-19 pandemic.

Author Contributions: Formal analysis, T.-T.H.; Methodology, T.-T.H. and K.-D.T.; Project administra-
tion, T.-T.H.; Software, K.-D.T.; Supervision, Y.H.; Writing—original draft, T.-T.H.; Writing—review &
editing, K.-D.T. and Y.H. All authors have read and agreed to the published version of the manuscript.

Funding: The work was supported by Ministry of Science and Technology of the Republic of China
under grant MOST109-2221-E-001-019-MY3. The work was also supported by Academia Sinica under
grant AS-KPQ-109-DSTCP.

Institutional Review Board Statement: Ethical review and approval were waived for this study
because all data derived from the public database.

Informed Consent Statement: Patient consent was waived because all data were derived from the
public database.

Data Availability Statement: Public data can be freely accessed and downloaded at https://figshare.
com/articles/dataset/COVID-19_Image_Repository/12275009 (accessed on 12 June 2021), https://si
rm.org/category/senza-categoria/COVID-19/ (accessed on 12 June 2021), https://github.com/ieee8
023/covid-chestxray-dataset (accessed on 12 June 2021), https://github.com/armiro/COVID-CXNet
(accessed on 12 June 2021), https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
(accessed on 12 June 2021), https://www.kaggle.com/paultimothymooney/chestxray-pneumonia
(accessed on 12 June 2021), https://www.kaggle.com/hemanthhari/symptoms-and-covid-presence
(accessed on 12 December 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. CNN’s John Bonifield. Vaccinating Whole World against COVID-19 Won’t Happen Until 2024, Manufacturer Says. 2020. Available

online: https://edition.cnn.com/world/live-news/coronavirus-pandemic-09-22-20-intl/h_d87943489d99be3975c8407911232cb9
(accessed on 12 June 2021).

2. Chen, J.; Wang, R.; Gilby, N.B.; Wei, G.-W. Omicron variant (B. 1.1. 529): Infectivity, vaccine breakthrough, and antibody resistance.
J. Chem. Inf. Model. 2022, 62, 412–422. [CrossRef] [PubMed]

3. Shi, Q.; Dong, X.-P. Rapid global spread of the SARS-CoV-2 delta (B. 1.617. 2) variant: Spatiotemporal variation and public health
impact. Zoonoses 2021, 1. [CrossRef]

4. Khalili, M.; Karamouzian, M.; Nasiri, N.; Javadi, S.; Mirzazadeh, A.; Sharifi, H. Epidemiological characteristics of COVID-19:
A systematic review and meta-analysis. Epidemiol. Infect. 2020, 148, e130. [CrossRef] [PubMed]

5. O’Keefe, J.B.; Tong, E.J.; O’Keefe, G.D.; Tong, D.C. Description of symptom course in a telemedicine monitoring clinic for acute
symptomatic COVID-19: A retrospective cohort study. BMJ Open 2021, 11, e044154. [CrossRef] [PubMed]

6. Gao, Z.; Xu, Y.; Sun, C.; Wang, X.; Guo, Y.; Qiu, S.; Ma, K. A systematic review of asymptomatic infections with COVID-19.
J. Microbiol. Immunol. Infect. 2021, 51, 12–16. [CrossRef]

7. Gao, Z.; Xu, Y.; Sun, C.; Wang, X.; Guo, Y.; Shi Qiu, S.; Ma, K. Asymptomatic patients as a source of COVID-19 infections:
A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 98, 180–186.

8. Drew, D.A.; Nguyen, L.H.; Steves, C.J.; Menni, C.; Freydin, M.; Varsavsky, T.; Sudre, C.H.; Cardoso, M.J.; Ourselin, S.; Wolf, J.; et al.
Rapid implementation of mobile technology for real-time epidemiology of COVID-19. Science 2020, 368, 1362–1367. [CrossRef]

9. Menni, C.; Valdes, A.M.; Freidin, M.B.; Sudre, C.H.; Nguyen, L.H.; Drew, D.A.; Ganesh, S.; Varsavsky, T.; Cardoso, M.J.; Moustafa,
J.S.E.-S.; et al. Real-time tracking of self-reported symptoms to predict potential COVID-19. Nat. Med. 2020, 26, 1037–1040.
[CrossRef]

10. Bastiani, L.; Fortunato, L.; Pieroni, S.; Bianchi, F.; Adorni, F.; Prinelli, F.; Giacomelli, A.; Pagani, G.; Maggi, S.; Trevisan, C.; et al.
Rapid COVID-19 screening based on self-reported symptoms: Psychometric assessment and validation of the EPICOVID19 short
diagnostic scale. J. Med. Internet Res. 2021, 23, e23897. [CrossRef]

11. Chung, M.; Bernheim, A.; Mei, X.; Zhang, N.; Huang, M.; Zeng, X.; Cui, J.; Xu, W.; Yang, Y.; Fayad, Z.A.; et al. CT imaging features
of 2019 novel coronavirus (2019-nCoV). Radiology 2020, 295, 202–207. [CrossRef]

https://figshare.com/articles/dataset/COVID-19_Image_Repository/12275009
https://figshare.com/articles/dataset/COVID-19_Image_Repository/12275009
https://sirm.org/category/senza-categoria/COVID-19/
https://sirm.org/category/senza-categoria/COVID-19/
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/armiro/COVID-CXNet
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data
https://www.kaggle.com/paultimothymooney/chestxray-pneumonia
https://www.kaggle.com/hemanthhari/symptoms-and-covid-presence
https://edition.cnn.com/world/live-news/coronavirus-pandemic-09-22-20-intl/h_d87943489d99be3975c8407911232cb9
http://doi.org/10.1021/acs.jcim.1c01451
http://www.ncbi.nlm.nih.gov/pubmed/34989238
http://dx.doi.org/10.15212/ZOONOSES-2021-0005
http://dx.doi.org/10.1017/S0950268820001430
http://www.ncbi.nlm.nih.gov/pubmed/32594937
http://dx.doi.org/10.1136/bmjopen-2020-044154
http://www.ncbi.nlm.nih.gov/pubmed/33674374
http://dx.doi.org/10.1016/j.jmii.2020.05.001
http://dx.doi.org/10.1126/science.abc0473
http://dx.doi.org/10.1038/s41591-020-0916-2
http://dx.doi.org/10.2196/23897
http://dx.doi.org/10.1148/radiol.2020200230


Sensors 2022, 22, 3728 22 of 24

12. Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected
with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [CrossRef]

13. Wang, Y.; Dong, C.; Hu, Y.; Li, C.; Ren, Q.; Zhang, X.; Shi, H.; Zhou, M. Temporal changes of CT findings in 90 patients with
COVID-19 pneumonia: A longitudinal study. Radiology 2020, 296, E55–E64. [CrossRef] [PubMed]

14. Horry, M.J.; Chakraborty, S.; Paul, M.; Ulhaq, A.; Pradhan, B.; Saha, M.; Shukla, N. COVID-19 detection through transfer learning
using multimodal imaging data. IEEE Access 2020, 8, 149808–149824. [CrossRef] [PubMed]

15. Zhang, W.; Zhou, T.; Lu, Q.; Wang, X.; Zhu, C.; Sun, H.; Wang, Z.; Lo, S.K.; Wang, F.-Y. Dynamic fusion-based federated learning
for COVID-19 detection. IEEE Internet Things J. 2021, 8, 15884–15891. [CrossRef]

16. Khuzani, A.Z.; Heidari, M.; Shariati, S.A. COVID-Classifier: An automated machine learning model to assist in the diagnosis of
COVID-19 infection in chest X-ray images. Sci. Rep. 2021, 11, 9887. [CrossRef]

17. Voigt, P.; Von dem Bussche, A. The eu general data protection regulation (gdpr). In A Practical Guide, 1st ed.; Springer International
Publishing: Cham, Switzerland, 2017; Volume 10, p. 3152676.

18. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-efficient learning of deep networks from
decentralized data. Artif. Intell. Stat. 2017, 54 , 1273–1282.

19. Kumar, R.; Khan, A.A.; Zhang, S.; Wang, W.Y.; Abuidris, Y.; Amin, W.; Kumar, J. Blockchain-federated-learning and deep learning
models for COVID-19 detection using ct imaging. IEEE Sens. J. 2021, 21, 16301–16314. [CrossRef]

20. Wang, L.; Lin, Z.Q.; Wong, A. Covid-net: A tailored deep convolutional neural network design for detection of COVID-19 cases
from chest X-ray images. Sci. Rep. 2020, 10, 1, 19549. [CrossRef]

21. Yan, B.; Wang, J.; Cheng, J.; Zhou, Y.; Zhang, Y.; Yang, Y.; Liu, L.; Zhao, H.; Wang, C.; Liu, B. Experiments of federated learning for
COVID-19 chest X-ray images. Proc. Int. Conf. Artif. Intell. Secur. 2021, 1423, 41–53.

22. Fredrikson, M.; Jha, S.; Ristenpart, T. Model inversion attacks that exploit confidence information and basic countermeasures.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, Denver, CO, USA, 12–16
October 2015; pp. 1322–1333.

23. Melis, L.; Song, C.; De Cristofaro, E.; Shmatikov, V. Exploiting unintended feature leakage in collaborative learning. In Proceedings
of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, USA, 20–22 May 2019; pp. 691–706.

24. Phong, L.T.; Aono, Y.; Hayashi, T.; Wang, L.; Moriai, S. Privacy-preserving deep learning via additively homomorphic encryption.
IEEE Trans. Inf. Forensics Secur. 2017, 13, 1333–1345. [CrossRef]

25. Zhu, L.; Han, S. Deep leakage from gradients. IEEE Trans. Inf. Forensics Secur. 2020, 32 , 17–31.
26. Afshar, P.; Heidarian, S.; Naderkhani, F.; Oikonomou, A.; Plataniotis, K.N.; Mohammadi, A. Covid-caps: A capsule network-based

framework for identification of COVID-19 cases from X-ray images. Pattern Recognit. Lett. 2020, 138, 638–643. [CrossRef]
27. Mukherjee, H.; Ghosh, S.; Dhar, A.; Obaidullah, S.M.; Santosh, K.C.; Roy, K. Deep neural network to detect COVID-19: One

architecture for both CT Scans and Chest X-rays. Appl. Intell. 2021, 51, 2777–2789. [CrossRef] [PubMed]
28. Otoom, M.; Otoum, N.; Alzubaidi, M.A.; Etoom, Y.; Banihani, R. An IoT-based framework for early identification and monitoring

of COVID-19 cases. Biomed. Signal Process. Control 2020, 62, 102149. [CrossRef] [PubMed]
29. Khanday, A.M.U.D.; Rabani, S.T.; Khan, Q.R.; Rouf, N.; Din, M.M.U. Machine learning based approaches for detecting COVID-19

using clinical text data. Int. J. Inf. Technol. 2020, 12, 731–739. [CrossRef] [PubMed]
30. Khaloufi, H.; Abouelmehdi, K.; Beni-Hssane, A.; Rustam, F.; Jurcut, A.D.; Lee, E.; Ashraf, I. Deep Learning Based Early Detection

Framework for Preliminary Diagnosis of COVID-19 via Onboard Smartphone Sensors. Sensors 2021, 21, 6853. [CrossRef]
31. Canas, L.S.; Sudre, C.H.; Pujol, J.C.; Polidori, L.; Murray, B.; Molteni, E.; Graham, M.S.; Klaser, K.; Antonelli, M.; Berry, S.; et al.

Early detection of COVID-19 in the UK using self-reported symptoms: A large-scale, prospective, epidemiological surveillance
study. Lancet Digit. Health 2021, 3, e587–e598. [CrossRef]

32. Salam, M.A.; Taha, S.; Ramadan, M. COVID-19 detection using federated machine learning. PLoS ONE 2021, 16, e0252573.
33. McMahan, B.; Ramage, D. Research Scientists. Federated Learning: Collaborative Machine Learning without Centralized

Training Data. 2018. Available online: https://ai.googleblog.com/2017/04/federated-learning-collaborative.html (accessed on
12 June 2021).

34. Yang, W.; Zhang, Y.; Ye, K.; Li, L.; Xu, C.-Z. Ffd: A federated learning based method for credit card fraud detection. In Proceedings
of the International Conference on Big Data, Silchar, India, 9–12 December 2019; pp. 18–32.

35. Sarma, K.V.; Harmon, S.; Sanford, T.; Roth, H.R.; Xu, Z.; Tetreault, J.; Xu, D.; Flores, M.G.; Raman, A.G.; Kulkarni, R.; et al.
Federated learning improves site performance in multicenter deep learning without data sharing. J. Am. Med. Inform. Assoc. 2021,
28, 1259–1264. [CrossRef]

36. Roth, H.R.; Chang, K.; Singh, P.; Neumark, N.; Li, W.; Gupta, V.; Gupta, S.; Qu, L.; Ihsani, A.; Bizzo, B.C.; et al. Federated learning
for breast density classification: A real-world implementation. In Proceedings of the Domain Adaptation and Representation
Transfer, and Distributed and Collaborative Learning, Lima, Peru, 4–8 October 2020; pp. 181–191.

37. Dwork, C. A firm foundation for private data analysis. Commun. ACM 2011, 54, 86–95. [CrossRef]
38. Dwork, C.; McSherry, F.; Nissim, K.; Smith, A. Calibrating noise to sensitivity in private data analysis. In Proceedings of the

Theory of Cryptography Conference, New York, NY, USA, 4–7 March 2006; pp. 265–284.
39. Dwork, C.; Roth, A. The algorithmic foundations of differential privacy. Found. Trends Theor. Comput. Sci. 2014, 9, 211–407.

[CrossRef]

http://dx.doi.org/10.1016/S0140-6736(20)30183-5
http://dx.doi.org/10.1148/radiol.2020200843
http://www.ncbi.nlm.nih.gov/pubmed/32191587
http://dx.doi.org/10.1109/ACCESS.2020.3016780
http://www.ncbi.nlm.nih.gov/pubmed/34931154
http://dx.doi.org/10.1109/JIOT.2021.3056185
http://dx.doi.org/10.1038/s41598-021-88807-2
http://dx.doi.org/10.1109/JSEN.2021.3076767
http://dx.doi.org/10.1038/s41598-020-76550-z
http://dx.doi.org/10.1109/TIFS.2017.2787987
http://dx.doi.org/10.1016/j.patrec.2020.09.010
http://dx.doi.org/10.1007/s10489-020-01943-6
http://www.ncbi.nlm.nih.gov/pubmed/34764562
http://dx.doi.org/10.1016/j.bspc.2020.102149
http://www.ncbi.nlm.nih.gov/pubmed/32834831
http://dx.doi.org/10.1007/s41870-020-00495-9
http://www.ncbi.nlm.nih.gov/pubmed/32838125
http://dx.doi.org/10.3390/s21206853
http://dx.doi.org/10.1016/S2589-7500(21)00131-X
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
http://dx.doi.org/10.1093/jamia/ocaa341
http://dx.doi.org/10.1145/1866739.1866758
http://dx.doi.org/10.1561/0400000042


Sensors 2022, 22, 3728 23 of 24

40. Song, S.; Chaudhuri, K.; Sarwate, A.D. Stochastic gradient descent with differentially private updates. In Proceedings of the 2013
IEEE Global Conference on Signal and Information Processing, Austin, TX, USA, 3–5 December 2013; pp. 245–248.

41. Bassily, R.; Smith, A.; Thakurta, A. Private empirical risk minimization: Efficient algorithms and tight error bounds. In Proceedings
of the 2014 IEEE 55th Annual Symposium on Foundations of Computer Science, Washington, DC, USA, 18–21 October 2014;
pp. 464–473.

42. Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H.B.; Mironov, I.; Talwar, K.; Zhang, L. Deep learning with differential privacy. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October
2016; pp. 308–318.

43. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 1273–1282.

44. Xu, X.; Jiang, X.; Ma, C.; Du, P.; Li, X.; Lv, S.; Yu, L.; Ni, Q.; Chen, Y.; Su, J.; et al. A deep learning system to screen novel
coronavirus disease 2019 pneumonia. Engineering 2020, 6, 1122–1129. [CrossRef] [PubMed]

45. Narin, A.; Kaya, C.; Pamuk, Z. Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional
neural networks. Pattern Anal. Appl. 2021, 24, 1207–1220. [CrossRef] [PubMed]

46. Abbas, A.; Abdelsamea, M.M.; Gaber, M.M. Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional
neural network. Appl. Intell. 2021, 51, 854–864. [CrossRef]

47. Rajpal, S.; Lakhyani, N.; Singh, A.K.; Kohli, R.; Kumar, N. Using handpicked features in conjunction with ResNet-50 for improved
detection of COVID-19 from chest X-ray images. Chaos Solitons Fractals 2021, 145, 110749. [CrossRef]

48. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef]

49. Sivic, J.; Zisserman, A. Video Google: A text retrieval approach to object matching in videos. Proc. Comput. Vis. IEEE Int. Conf.
2003, 3, 1470.

50. Zhang, X.; Wang, W.; Zhao, Y.; Xie, H. An improved YOLOv3 model based on skipping connections and spatial pyramid pooling.
Syst. Sci. Control. Eng. 2021, 9 (Suppl. 1), 142–149. [CrossRef]

51. Tan, Y.S.; Lim, K.M.; Tee, C.; Lee, C.P.; Low, C.Y. Convolutional neural network with spatial pyramid pooling for hand gesture
recognition. Neural Comput. Appl. 2021, 33, 5339–5351. [CrossRef]
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