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Human-robot communication is one of the actively researched fields to enable efficient and
seamless collaboration between a human and an intelligent industrial robotic system. The
field finds its roots in human communication with the aim to achieve the “naturalness”
inherent in the latter. Industrial human-robot communication pursues communication with
simplistic commands and gestures, which is not representative of an uncontrolled real-
world industrial environment. In addition, naturalness in communication is a consequence
of its dynamism, typically ignored as a design criterion in industrial human-robot
communication. Complexity Theory-based natural communication models allow for a
more accurate representation of human communication which, when adapted, could also
benefit the field of human-robot communication. This paper presents a perspective by
reviewing the state of human-robot communication in industrial settings and then presents
a critical analysis of the same through the lens of Complexity Theory. Furthermore, the
work identifies research gaps in the aforementioned field, fulfilling which, would propel the
field towards a truly natural form of communication. Finally, the work briefly discusses a
general framework that leverages the experiential learning of data-based techniques and
naturalness of human knowledge.

Keywords: human-robot communication, industrial human-robot collaboration, complexity theory, natural human-
robot communication, complexity theory based human-robot collaboration

INTRODUCTION

In the industrial setting, automation has long boosted production where repetitive, physically taxing,
and non-ergonomic tasks have been taken over by industrial robotic systems. However, in safety
critical industries such as mining and high-accuracy low-volume sectors such as aerospace
manufacturing, human experts are still required to apply their dexterity and cognitive decision-
making capabilities to carry out tasks. Automation, in its current state, fails to be an effective or even,
economic solution for these industries. In addition, re-programming of industrial robots for
customized products proves to be time consuming and requiring a high degree of expert
knowledge. Effective human-robot collaboration (HRC) allows for human and autonomous
robots to share a physical workplace, tasks, and resources (Mukherjee et al., 2022a). This can be
achieved through a shared understanding of the work environment and seamless transfer of tasks
leading to a safe and less strenuous workplace for humans. One approach in achieving this goal has
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been to bestow human-robot teams with communication
capabilities that enable communication to be as “natural” as
that of an all-human team.

The challenge of imitating human communication for human-
robot communication (HRCom) has typically been tackled under
two broad settings—social and industrial, with distinct
requirements and use cases for each. The work in this paper
touches upon the common practices, often employed in industrial
HRCom and presents an analysis of its “naturalness” through the
lens of complex systems theory.

HUMAN COMMUNICATION AS A
COMPLEX SYSTEM

Before discussing about the quality of “naturalness” in the context
of HRCom, an understanding must emerge from the realm of
human communication which deals with communication
between humans. This field has historically been dealt through
causal relationships among a small number of variables and linear
communication models (Sherry 2015). Empirical research in
communication extensively uses inferential statistics to test
theorized causal relationships (Sherry 2015). Efficient
communication is often studied through Grice’s maxims
(Baker et al., 2019), which have played a significant role in
shaping the study of the field and are summarized below. In
the next section, recent literature in HRCom has been shown to
be modelled based on these maxims as well.

1. Manner: those in conversation must speak in a logical and
controlled manner

2. Quality: information conveyed is factually correct
3. Quantity: those in the conversation should be succinct.
4. Relation: those in conversation should say only what is

relevant to the topic at hand.

The maxims, however, fail to effectively model most day-to-day
human communication (Fahmi 2018). Developed in mid-20th
century, general Complexity Theory provides a much better base
for natural communication. The same is recognized bymany human
communication researchers and comprehensively reviewed in
(Sherry 2015), but is yet to find its way into industrial HRCom.

Complexity theory makes a distinction between “small number
problems” (problems with few components which have been
explained adequately by traditional science) and “large number
problems” (problems such as kinetic theory of gases: with large
number of components described by statistics and averaged values),
by introducing “middle number problems” (Kay and Schneider
1995), also called problems of “organized complexity.” In such
systems, components exhibit interdependencies with an adaptive
and an overall organized behavior. Neither the reductionist approach
of small number problems nor the holistic one of large number
problems can be successfully applied to such systems. For the study
of such systems, analysts decide which dependencies to either study
or ignore, giving a level of subjectivity and an inescapable observer-
dependence (Kay and Schneider 1995). The process strays away
from the previously terse treatment using Grice’s Maxims that relies

on the existence of an objective truth which has been a mainstay in
directing the design space of HRCom.

The six characteristics of complex systems (Flake 2001)
summarized below can be used to adequately describe human
communication:

1. Collections: Large collection of agents; in terms of
communication, agents are components that make up the
system of exchange of information i.e., units or symbols of
verbal and non-verbal communication. A note to be made
here is that agent in this case and wherever referred to in this
document refers to the components that drive communication
and is a field-specific term for complex systems rather than the
autonomous agents (human or robotic).

2. Multiplicity: Communication agents contain varying degrees
of differences to make the system more robust. Various
cultures, languages give rise to different human expressions
and assumptions that must be considered to develop robust
communication.

3. Parallelism: Parallel processing of operations through
simultaneous functioning of agents in order to accomplish
tasks more efficiently: human communication consists of both
voluntary and involuntary modes (Finnegan 2014). In fact,
nonverbal synchronization of postures has been shown to
facilitate mutual understanding during communication
(Shockley et al., 2003).

4. Iteration: Being redundant on the time scale via computation-
communication is made up of multiple levels of words,
phrases, nonverbal movement repeated through common
speech patterns.

5. Recursion: Basic algorithms are applied repeatedly to grow the
system: taking turns talking is an example of this feature
wherein each subsequent turn to express builds upon the
scaffolding of the turns preceding it.

6. Feedback: Circularity of actions within the system and from
the environment meant to regulate actions. In terms of
communication, positive feedback drives the conversation
forward towards positive outcomes while negative stifles it
towards a certain direction.

Since the baseline on which human-robot communication is to
be built is increasingly being studied as a complex system, HRCom
too must be modelled by considering the complexities it inherits
from the presence of the human partner(s) along with ones
stemming from technological challenges unique to itself. Instead
of emulating human communication, HRCom can benefit from the
plethora of research into the former in order to create easy-to-use
systems that do not require a steep learning curve or exclude certain
sections of the population through requirements of high educational
qualifications or professional expertise.

RECENT ADVANCES IN INDUSTRIAL
HUMAN-ROBOT COMMUNICATION

HRCmay be achieved through effective understanding of human
intentions regarding a shared task (Zhang et al., 2022). This
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understanding would allow the robot partner to control its speed,
trajectory, and action planning. In HRCom, similar to human
communication, multiple input channels called modes exist such
as gaze (Tidoni et al., 2022), hand gestures (Liu and Wang 2018),
natural language interfaces (Fogli et al., 2022), voice commands
(Bingol and Aydogmus 2020), and facial expressions (Spezialetti
et al., 2020; Chiurco et al., 2022) and much research has been
carried out to detect and classify them. These multiple modes
theoretically lend redundancy to the systems but are
advantageous for industrial settings that are full of noises and
disturbances. If hand gestures or the face are obscured by
shadows (occlusion), then voice commands can be used by the
robot to take a decision; conversely, if the environment is too
noisy, then gestures may be more useful. In addition, hand and
arm gestures can combine a lot of contextual meaning compared
to voice commands where complicated sentences have to be used
(Mukherjee et al., 2022b). Such multiple modes of
communication have been explored for enhanced HRCom,
safety systems and by the robot for predicting the intention of
its human partner (Kulić and Croft 2007; Luca and Flacco 2012;
Rossi et al., 2013; Park et al., 2017; Plappert et al., 2018).

Thus, HRCom has been designed through long-term research
to demonstrate the characteristics of collections and iteration in
its structure. Also, in order to deploy these technologies on the
factory floor, it is essential to allow them to make decisions in
real-time. This requires running the classifiers of all channels of
communication in parallel thus fulfilling the parallelism criterion
of complex systems. Much like in human collaboration, research
in human-robot systems can be designed to enable the partners to
take turns in carrying out their tasks. Turn taking which leads to
recursion of actions, as the name suggests, is used to coordinate
actions between participants through the use of verbal, gaze,
gesture, and body language-based commands (T. Zhou and
Wachs 2018).

HRCom in industries has typically concentrated on providing
a smarter robot control interface (Berg and Lu 2020) through
either increasing the accuracy of detection and classification of
hand gestures on standard, publicly available datasets (Liu et al.,
2018a), or utilized existing models of voice command recognition
and hand gesture recognition to design communication modules
that work on information fusion (Jiang et al., 2020). Limited voice
commands, pointing and grasping gestures, and a few body
postures using skeleton and hand tracking were used to
communicate with the robot under different scenarios of
typical industrial tasks (Liu et al., 2018b; Berg et al., 2019;
Lenz et al., 2008; Roitberg et al., 2015). Higher degree of
semantics in the form of addition of common expressions for
a given task was incorporated in the HRC scenario (Maurtua
et al., 2017). This provided some flexibility to the human partner
in conveying the command.

Thus, the nature of communication in these works can be
inferred to be based on Grice’s Maxims since they are marked by
brevity of commands through the usage of limited gestures,
usually static in nature, description of a work scenario using
limited commands and the metric of effective communication
being the accuracy of detection of commands (Papanastasiou
et al., 2019). While the objective truth in the case of HRCom can

be captured through data-driven artificial intelligence techniques,
subjective knowledge arising as a result of multiplicity of cultures,
languages, behaviors, and beliefs as well as the quintessential
human behavior of feedback are yet to dictate technical
considerations for the same. A summary of the characteristics
of human communication derived from Complexity Theory and
adapted from (Sherry 2015) along with the design considerations
of industrial HRCom based on the same is captured in Figure 1.

FUNDAMENTAL GAPS IN INDUSTRIAL
HUMAN-ROBOT COMMUNICATION

Industrial HRCom’s design emulates human communication in
terms of the collections, iteration, parallelism, and recursion
characteristics, the end goal of efficient communication. The
following offers the authors’ perspective on the vital roles of
the often-missed characteristics i.e., multiplicity and feedback in
making human communication truly natural and the need for the
inclusion of these fundamental elements in HRCom based on
compelling human behavioral evidence.

Role of Multiplicity
Contrary to routine operation wherein humans and potentially
their robotic partners would behave and communicate in logical,
orderly, and brief manner, research has shown that in moments
of extreme negative emotions such as anger, fear, outrage, high
stress, conflict, or concern, humans face difficulty in processing
information (Glik 2007; U.S. Department of Health and Human
Services 2019). This may be a consequence of the mental noise
theory that states that when stressed, humans are inundated by
internal “mental noise” which inhibits information retention of
up to 80%, information that may be required to extricate
themselves from the difficult situation (Baron et al., 2000).

Most research in HRCom limits the use of communication
vocabulary for ease of use (Neto et al., 2018). This does not
provide the scope for nuanced communication especially in
conditions wherein the human is unsure of their actions or
plan and their judgement is clouded due to mental noise. If
the communication protocol or the capabilities of the robotic
partner does not allow for more complex formulations than just
one-word directional commands, potential safety-critical
situations may not be adequately tackled. “Naturalness”
criterion as an envisioned design guide does not get fulfilled in
critical scenarios that could be especially common in industrial
settings because human communication does not follow Grice’s
Maxims, rather, it is fraught with emotional barriers.

Due to the indispensable effect of emotions in human
communication, HRC has brought Affective Computing into
the fold (Chuah and Yu 2021). HRC systems with the
capability of recognizing emotions of the human and reacting
appropriately to them are particularly useful in service and social
robotics. In (Góngora Alonso et al., 2019), inclusion of social and
emotional interactions in human-robot interaction design have
demonstrated improvement of health conditions in elderly care.
Similarly, communication with chatbots was enriched with the
addition of emotional elements e.g., a joyful message tone to elicit
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positive feelings (Zhou et al., 2018). Socio-affective competence
leading to trust significantly impacts human collaborative and
organizational behaviors (Kramer and Tyler 1996). Within
professional human collaborators, good rapport leads to better
collaboration. In addition, Seo et al. (2017) suggests that humans
expect to have a social relationship with their teammates: human
or robot. A compelling study found that appropriate gaze
behaviors of the robot enhanced cooperative and adaptive
behaviors in the human partners (Hoffman and Cynthia
2004). Thus, both social and industrial HRC would benefit
from improving the robot’s socio-affective capabilities.

Consequences in not including the aspect of social competence
may lead to the robot committing social errors that could result in
lack of confidence in the robotic partner, leading to degraded
collaboration. Apart from communicating effectively in safety-
critical situations, socio-affective competence also includes
gauging the knowledge-state of the collaborating partner.
Failure to carry out a correct assessment may hamper the task
execution. Tian and Oviatt (2021) developed hypothetical HRC
scenarios to study the effect of violation of social norms by robots
with one of them featuring a convergence of social and industrial
robotics. Indeed, a study, concluded that apologies can be used in
industrial settings quite effectively to make the robot seem less
scary and unpredictable and thus making it easier to work with
Fratczak et al. (2021). Such scenarios are not completely
unprecedented and would see a surge in the near future, thus
requiring multiplicity of channels and means of expression for a
more natural HRCom that is robust to not only the external
conditions but also towards idiosyncrasies of human cultures and
languages.

Role of Feedback
In human communication, especially in collaborative scenarios,
teammates continuously provide feedback in addition to
coordination of actions. This is achieved through verbal

utterances, gaze, and gestures such as smiling or nodding.
Feedback signals continued attention, understanding,
acceptance or the lack of them (Allwood et al., 1992). Based
on the feedback, humans adjust their behavior in order to
accommodate the level of knowledge, understanding, and
viewpoints of the collaborating partner. In industry as well,
feedback is essential for safely carrying out tasks (Neto et al.,
2018). This becomes quite critical in uncertain scenarios wherein
the humans need to know if the robot is either waiting for a
command or will begin to move to fulfill a command. A key
quality of a communication being “natural” is its ability to adapt
to dynamic scenarios aided through feedback from the
environment and the participants.

Some research is ongoing in terms of addition of feedback to
joint human-robot tasks, e.g., Skantze et al. (2014) investigated
the extent to which the human teammate responded to gaze
and verbal feedback from the robotic partner. It was found that
feedback from the robot enhanced the performance of the
humans and the gaze of the robot helped in disambiguation of
the directions given. Mutual gaze responses as a form of
bilateral feedback enhanced collaboration while
unresponsiveness to the human’s gaze resulted in the robot
being perceived as not engaged or not friendly (Kompatsiari
et al., 2017).

In terms of the broad field of verbal commands understanding,
there are two: NLP (natural language processing) and NLU
(natural language understanding). The former deals with part-
of-speech tagging, text categorization, and segmentation,
translation while the latter is used for understanding
sentiments in a given text, creating dialogues for chatbots, and
overall, aiming to gain a deeper understanding and context of the
language. Commanding a robot in the industrial tasks is usually
tackled as a unilateral approach with the human commanding
and the robot carrying out the task and hence utilizes NLP
(Bamdale et al., 2019).

FIGURE 1 | Characteristics of human communication derived from Complexity Theory and design considerations of human-robot communication based on them.
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The field of human-robot bilateral communication
feedback in industrial settings is still a fledgling field. As
tasks increase in complexity, there would be greater need
for more complex commands and task execution driven by
effective, timely feedback from all participants in the
collaboration. This would be especially relevant when one
partner holds more knowledge required for solving the task
as compared to the other. In terms of safety, feedback of the
human’s wellbeing and engagement in the task would be
essential pre-requisites for robot behavior.

A General Framework
Recent trend in HRCom sees an increasing number of end-to-end
data-driven communication models, often trained on curated
datasets that fail to capture the true sense of human
communication and the various forms it takes. The
complexities in human communication could be better tackled
through the utilization of more hybrid forms of learning for
improving the employability of machine learning models with
expert systems and domain-specific experiential information,
often in the form of hand-crafted rules. Such an approach
enhances the capabilities of machine learning models in highly
dynamic real-world settings (Du et al., 2018).

In one such application, hybrid interaction modes:
natural language and block-based interfaces were used to
simplify robot programming task for non-technical users
(Fogli et al., 2022). Two sequential phases were designed:
these involved expression of the users’ needs in a natural
way to the robot followed by more logical approach to the

design developed in the previous phase. The researchers
utilized behavioral patterns through their studies with
human participants. Saunderson and Nejat (2022)
designed their hierarchical assistive robot learning system
for persuading the human partner to exercise. Their hybrid
framework was based on the two typical behaviors exhibited
by humans when they are being persuaded: more logically
inclined or more intuitively so. A hierarchical
communication framework was presented in Mukherjee
et al. (2022a). It employed hand gesture and voice
command recognition along with fuzzy inferencing and
application-based hand-crafted rules for enhanced
decision-making by the collaborative robot in a hand-
over task.

To further emphasize on the perspective presented in this
article, a framework is developed for human-robot
communication (HRCom) in an industrial setting by
considering four modes: hand gestures, voice commands,
facial emotion recognition through expressions, and body
language. The first two modes are used to provide
commands to the robot while the latter two provide an
indication of the focus of the human partner on the task at
hand, the datasets for which are based on socio-affective
human behaviors. The low-level detection and recognition
of signals are data-driven using machine learning models
while the high-level robot decision-making are carried out
by information fusion based on expert knowledge through
fuzzy inference and evidential reasoning systems. A snapshot
of the framework is presented in Figure 2.

FIGURE 2 | A general framework for human-robot communication (HRCom) in industrial settings utilizing data-driven machine learning, expert knowledge, and
socio-affective human behaviors.
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DISCUSSION

Human communication has evolved over millennia to reach the
current level of sophistication that can convey nuances in
emotions, context of actions and intent through seemingly
“natural” and intuitive ways. While research is ongoing in
affective computing, natural language processing, behavioral
psychology to gain better understanding of this complex
phenomenon, the field of human-robot collaboration (HRC)
can certainly benefit from that understanding. A trend can be
seen of this endeavor in the move towards hybrid forms of
learning that are incorporating application-specific hand-
crafted rules and heuristics based on human behaviors. This
will lead to safer, more natural systems built upon the
characteristics of human communication, which would not
require intensive training or extensive educational qualifications
for workers, thus leading to higher rates of acceptance by both
the industry as well as the workers. Ultimately, while the field of
HRC is seemingly polarized into social and industrial robotics,
certain scenarios may merge the requirements and the complete
arsenal of affective computing, machine learning, robotic control
strategies, and industrial engineeringmust be used to solve this inter-
disciplinary challenge.
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