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Background: Ischemic stroke (IS) is a common and serious neurological

disease, and multiple pathways of cell apoptosis are implicated in its

pathogenesis. Recently, extensive studies have indicated that pyroptosis is

involved in various diseases, especially cerebrovascular diseases. However,

the exact mechanism of interaction between pyroptosis and IS is scarcely

understood. Thus, we aimed to investigate the impact of pyroptosis on IS-

mediated systemic inflammation.

Methods: First, the RNA regulation patterns mediated by 33 pyroptosis-related

genes identified in 20 IS samples and 20 matched-control samples were

systematically evaluated. Second, a series of bioinformatics algorithms were

used to investigate the contribution of PRGs to IS pathogenesis. We determined

three composition classifiers of PRGs which potentially distinguished healthy

samples from IS samples according to the risk score using single-variable

logistic regression, LASSO-Cox regression, and multivariable logistic

regression analyses. Third, 20 IS patients were classified by unsupervised

consistent cluster analysis in relation to pyroptosis. The association between

pyroptosis and systemic inflammation characteristics was explored, which was

inclusive of immune reaction gene sets, infiltrating immunocytes and human

leukocyte antigen genes.

Results: We identified that AIM2, SCAF11, and TNF can regulate immuno-

inflammatory responses after strokes via the production of inflammatory

factors and activation of the immune cells. Meanwhile, we identified distinct

expression patterns mediated by pyroptosis and revealed their immune
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characteristics, differentially expressed genes, signaling pathways, and target

drugs.

Conclusion: Our findings lay a foundation for further research on pyroptosis

and IS systemic inflammation, to improve IS prognosis and its responses to

immunotherapy.

KEYWORDS

ischemic stroke, pyroptosis, systemic inflammation, immunity, LASSO-cox regression,
RNA modification

1 Introduction

Cerebral stroke is an acute cerebrovascular disease caused by

the sudden rupture of blood vessels in the brain or the inability of

the blood to reach the brain, like in ischemic or hemorrhagic

stroke (Wang et al., 2020). Ischemic stroke (IS) is a general term

for necrosis of brain tissues caused by stenosis, occlusion, or

insufficient blood supply of the carotid and vertebral arteries to

the brain. The incidence of IS is higher than that of hemorrhagic

stroke, accounting for 60–70% of the total stroke cases, and is

more common in males over 40 years old than in females (Cercy

et al., 2018; Liu et al., 2021a). Oxidative free-radical damage,

excitatory amino acid toxicity, intracellular calcium overload,

inflammation, and apoptosis have been recognized to potentially

result in IS. Pyroptosis is reported to participate in IS progression

directly through cell death and neuroinflammation (Ye et al.,

2020). Therefore, the immune motor mechanism of pyroptosis

on IS might be key to revealing IS pathologies, which offers

directions to explore new therapies for the patients.

The term “pyroptosis” was initially identified in 2001 when

caspase-1-dependent cells died in salmonella-induced macrophages

(Boise and Collins, 2001). Further research found that other

proinflammatory caspases like caspase-1/3/4/5/11 can also

mediate pyroptosis in addition to caspase-1. Thus, pyroptosis has

been redefined as gasdermin-mediated programmed necrosis (Ye

et al., 2020). During IS progression, inflammasomes activate

caspase-1 through an adapter protein associated with apoptosis,

whereas they directly bind to lipopolysaccharides to activate caspase-

4/5/11 (Tan et al., 2021). The activated caspase-1/4/5/11 specifically

cleaves GSDMD (gasdermin-D) into the N-terminal (NT) and the

C-terminal (CT) domain; the activated caspase-3 cleaves GSDME

(gasdermin-E). The gasdermin-NT of GSDMD and GSDME

mediates the formation of plasma membrane pores, leading to

cytoplasmic swelling, large bubble formation from the cell

membrane, and rapid intracellular content release. Eventually,

cell lysis occurs. The mature interleukin-18 (IL-18) and

interleukin-1β (IL-1β) are cleaved into biologically active, mature,

and proinflammatory cytokines by activated caspase-1 (Liu et al.,

2021a; Qing-Zhang. et al., 2021).

According to previous research, the immune system has an

intricate impact on the pathophysiological changes that occur after

IS, which appear to involve cerebral and systemic inflammation

(Masahito. and Yenari Midori, 2015). After occurrence of cell death

and brain tissue injury associated with IS, activated microglia and

ischemic endothelial cells secrete proinflammatory agents and

chemokines, and the accumulation of circulating immune cells

starts with the rapid upregulation of adhesion molecules,

selectins, and immunoglobin superfamily members (Carlo

Domenico. et al., 2020). Leukocytes cause cerebral ischemic

injury through different mechanisms (Mathias. et al., 2014;

Torres-Aguila Nuria et al., 2019), and cerebral mast cells regulate

early ischemic brain swelling and neutrophil accumulation, which is

in correlation with severe neurologic damage and indicates an

increased mortality risk (Strbian et al., 2006). Similar to

neutrophils, lymphocytes have a negative impact on stroke

(Masahito. and Yenari Midori, 2015). Thus, preventing infections

that exacerbate systemic inflammation and inhibiting neural

pathways that trigger inflammatory responses are potential

therapeutic targets for IS patients (Tomasz, 2015).

Pyroptosis, known as inflammatory injury, has had few

pathological mechanism studies focused on its relation with

systemic inflammation of IS. Therefore, we designed an

integrative analysis pipeline (Supplementary Figure S1). Here, we

first systematically evaluated PRGs’ regulation pattern in IS

systematic inflammation. It was found that the PRGs were good

differentiators of IS and healthy samples. Then, immune reactivity

and infiltrating immunocyte abundance of cells affected by IS

showed significant correlations with pyroptosis, suggesting a close

association between immune regulation and pyroptosis. Next, IS

samples were clustered in 33 PRGs, and three distinct pyroptosis

regulation patterns were determined. The different immune

characteristics among these patterns were studied, and their

biological responses and functions were also compared. Finally,

we used the clusterProfiler enrichment analysis to evaluate theDEGs

of different patterns. Our findings indicated that pyroptosis has a

crucial impact on IS systemic inflammation.

2 Materials and methods

2.1 Acquisition and pretreatment of data

The data in the present study were inclusive of 20 IS samples

and 20 sex- and age-matched healthy controls. The data were
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reserved in the Gene Expression Omnibus (GEO) database under

accession number GSE22255, which was deposited by Krug et al.

(2012). According to the manufacturer’s instructions, the gene

expression was profiled using the Affymetrix Human Genome

U133 Plus 2.0 Array microarrays. We acquired the data using the

“GEOquery” R package and preprocessed them according to a

previous study. We used log base 10 function transformation to

normalize the data. The probes were annotated as gene symbols,

and those without matching symbols were excluded. The median

value was selected as duplicate gene symbols’ expression. As for

the 33 PRGs studied in this study, we referred to the conclusions

drawn from previous research studies (Man and Thirumala-

Devi, 2015; Wang and Yin, 2017; Ye et al., 2021; Wang et al.,

2022). The “empirical Bayes method” in the R package called

“limma” (Gentleman Robert et al., 2004; Carey et al., 2005)was

applied to calculate the differential genes between IS and normal

groups. The expression value was preprocessed by the ‘Normalize

Between Arrays’ function in the ‘limma’ package.

2.2 Alteration analysis of pyroptosis genes
in ischemic stroke and healthy controls

The protein–protein interaction (PPI) network of 33 PRGs

was constructed using the Search Tool for the Retrieval of

Interacting Genes (STRING) database (Szklarczyk et al., 2019)

and then visualized using Cytoscape (Smoot Michael et al., 2011)

software. Then, we performed the Pearson correlation coefficient

(PCC) in all samples and compared their expressions between IS

samples and healthy controls using the “limma” R package, and

the cut-off criteria were p < 0.05. Univariate logistic regression

was used to identify IS-associated pyroptosis genes with p <
0.05 as the cut-off criterion. The LASSO (least absolute shrinkage

and selection operator) regression was used for feature selection

and dimension reduction. Multivariate logistical regression was

used to develop a pyroptosis regulator-related IS classifier.

Receiver operating characteristic (ROC) curve analysis was

used to evaluate the distinguishing performance of the signature.

2.3 Correlation analysis between
pyroptosis genes and immune
characteristics

Single-sample gene set enrichment analysis (ssGSEA) defines

an enrichment score to represent the degree of a gene set’s

absolute enrichment in every sample within a given dataset

(Barbie David et al., 2009). Here, the specific infiltrating

immunocytes and the activity of specific immune reactions

were estimated using ssGSEA. We acquired the gene sets used

for evaluating the infiltrating immunocytes from a previous study

(Shen et al., 2019) and downloaded gene sets related to immune

reactions from the ImmPort database (Karlsen and Haabeth,

1998). Then, the enrichment scores of immunocyte abundance

and immune reaction activity, and HLA (human leukocyte

antigen) genes’ expression were compared using the Wilcox

test between IS samples and healthy controls. The correlation

of pyroptosis genes with immunocyte fractions, immune reaction

activity, and HLA expression was performed using PCC analysis.

2.4 Identification of pyroptosis gene
regulation patterns

We performed an unsupervised clustering analysis on

33 PRG expressions for identifying their regulation patterns.

A consensus clustering algorithm was adopted to assess the

cluster numbers and robustness (Rui-Chao. et al., 2019; Zhang

et al., 2020). The robustness of classification was guaranteed

using the “ConsensusClusterPlus” R package (Wilkerson

Matthew and Hayes, 2010) with the aforementioned steps for

1000 iterations. The expressions of 33 PRGs in different

regulation patterns were further validated using principal

component analysis (PCA).

2.5 Identification of DEGs among genes
mediated by pyroptosis-related genes

We analyzed samples of distinct PRG regulation patterns

by the empirical Bayesian approach of the “limma” R package

to determine genes mediated by PRGs among different

regulation patterns. p < 0.01 was set as the criteria of

significant DEGs.

2.6 Biological enrichment analysis of
distinct pyroptosis-related genes and
identification of related drugs

We analyzed PRGs’ biological functions and genes mediated

by PRGs through the “clusterProfiler” R package (Yu and Wang,

2012) in GO-BP (Gene Ontology-biological process) enrichment

analysis. Biological signaling pathways can reflect biological

changes, and KEGG (Kyoto Encyclopedia of Gene and

Genomes) pathway analysis was used in this study. Enriched

pathways of commonly shared DEGs in different regulation

patterns were analyzed using the “clusterProfiler” R package.

Additionally, to identify the latent target drugs of IS, the list of

drug–gene interactions was obtained from the Drug–Gene

Interaction Database (DGIdb) (Cotto Kelsy et al., 2018). As a

web resource, it can consolidate disparate data sources which

describe gene druggability and drug–gene interactions. Thus, the

PRGs of different regulation patterns were, respectively,

intersected with the list of drug–gene interactions to obtain

latent target drugs for IS.
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2.7 Statistical analyses

All statistical analyses were conducted using R software

(version 4.0.5). We used the t-test to compare two groups and

the Kruskal–Wallis test to compare more than two groups.

Spearman and distance correlation analyses were used to

calculate correlation coefficients. The correlation between

pyroptosis patterns and clinical phenotypes was analyzed

using the chi-squared test. The statistical significance

threshold was set to p < 0.05 (two-tailed).

3 Results

3.1 Identification of DEGs between healthy
and ischemic stroke samples

There were 33 PRGs involved in the study, and their distribution

on chromosomes is shown in Figure 1A. To depict the

transcriptome interactions between these PRGs, we constructed

the PPI network (Figure 1B). The analysis showed close

correlations among them (Figure 1C). Then, we compared the

expression levels of 33 PRGs in 20 normal and 20 IS samples

and determined 6DEGs (p< 0.01). Among them, four genes (AIM2,

CASP3, SCAF11, and PYCARD) were downregulated, and two

genes (TNF and IL1B) were upregulated and abundant in the IS

group (Figure 1D). Next, the 33 PRGs were divided into four groups

on the basis of their expression levels (Figure 1E), excluding those

not showing noticeable change, suggesting that they might not

perform a paramount function in IS (Figure 1F). We also

validated these genes in another two datasets (GSE16561 and

GSE1954425) which shows that AIM2, IL-1B, and PYCARD are

significant differentially expressed. CASP3 and SCAF11 were also

differentially expressed but to some extent (Supplementary Figures

S3,S4). TNF has been proved to be highly expressed in the blood of

patients with cerebral infarction in many previous studies (Lin et al.,

2010; Liu et al., 2021b). All the aforementioned findings provide

certain support for our research results.

3.2 Pyroptosis-related genes can well
distinguish between healthy and ischemic
stroke samples

We employed a series of bioinformatics algorithms to

investigate PRGs’ contribution to IS pathogenesis. Univariate

FIGURE 1
Identification of DEGs between healthy and IS samples. (A) Distribution of 33 PRGs on chromosomes. (B) Thirty-three PRG protein–protein
interactions are presented. (C) Correlations among the expression of pyroptosis genes in all healthy and IS samples. (D) Volcano plot shows the
summary of expression-changing information of 33 PRGs between healthy and IS samples. (E) Heatmap plot demonstrates the transcriptome
expression status of 33 PRGs between healthy and IS samples. Blue: low expression level; red: high expression level. (F) Box plot demonstrates
the transcriptome expression status of 33 PRGs between healthy and IS samples.
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logistic regression identified four pyroptosis regulators in relation

to IS (Figure 2A) and then LASSO regression was conducted on

these four pyroptosis regulators for dimension reduction and

feature selection to exclude the unimportant regulators (Figures

2B,C). The results demonstrated that three PRGs were crucial for

IS development. Multivariate logistic regression developed a

classifier to distinguish between healthy and IS samples

(Figure 2D). The classifier made up of three PRGs

distinguished between healthy and IS samples on the basis of

risk scores and showed that IS had a much higher pyroptosis risk

score than healthy samples (Figure 2E). The PCA result

demonstrated a diverse pyroptosis regulator expression pattern

between IS and healthy samples (Figure 2F). The ROC curve

demonstrated that the three pyroptosis regulators had a positive

impact on classifying IS and healthy samples, expounding their

crucial impact on IS development (Figure 2G).

3.3 Pyroptosis-related genes are
associated with the immune
characteristics of ischemic stroke

We studied the biological correlation between pyroptosis

regulators and systemic inflammation by performing

correlation analysis for mal-adjusted pyroptosis regulators

with the immune reaction genome, infiltrating immunocytes,

and HLA expression. Differences in infiltrating cell abundance of

28 immune microenvironments were revealed between healthy

and IS samples (Figure 3A). Several infiltrating immune cell

portions were altered in IS, such as memory B cell, nature killer

(NK) cell, and mastocyte. The correlation analysis showed that

pyroptosis-related genes closely correlated with many immune

cells (Figure 3B). For example, NK T-cell abundance was

negatively correlated with AIM2, indicating that their

FIGURE 2
Pyroptosis genes can well distinguish healthy and IS samples. (A) Univariate logistic regression investigated the relationship between PRGs and
IS. (B) Least absolute shrinkage and selection operator (LASSO) coefficient profiles of 33 PRGs. (C) Ten- fold cross-validation for tuning parameter
selection in the LASSO regression. The partial likelihood of deviance is plotted against log(λ), where λ is the tuning parameter. Partial likelihood
deviance values are shown, with error bars representing SE. The dotted vertical lines are drawn at the optimal values by minimum criteria and 1-
SE criteria. (D) Distinguishing signature with three PRGs was developed by multivariate logistic regression, and the risk scores for IS were calculated.
(E) Risk distribution between healthy and IS samples, where IS samples has amuch higher risk score than healthy samples. (F)Discrimination ability for
healthy and IS samples by PRGs was analyzed using the ROC curve and evaluated by the AUC value.
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increased infiltration in IS was closely related to

AIM2 expression. Eosinophil and activated CD4+ T-cell

abundance were positively correlated with IL1B, indicating

that their increased infiltration in IS was closely related to

IL1B expression. Mastocytes were positively correlated with

TNF, indicating that the increased infiltration of mastocytes in

IS was closely correlated with its expression. The immune

reactions and HLA in IS were also analyzed (Figure 4A and

Supplementary Figure S2A). The differences in the activity of

every immune reaction genome between IS and healthy samples,

as well as the immune responses to increased or decreased

immune cell infiltration in IS, such as the activities of

chemokines and cytokines, were presented. These results

indicated that AIM2 and SCAF11 were negatively correlated

with cytokine receptors and their activity, respectively.

NLRP3 and TNF were positively correlated with

antimicrobials and chemokines, respectively (Figure 4B).

Similarly, we also explored HLA expression and found

insignificant correlations (Supplementary Figure S2B).

3.4 Pyroptosis-related gene modification
patterns mediated by 33 regulators in
ischemic stroke

We conducted an unsupervised consensus clustering analysis for

IS samples based on the expressions of 33 PRG regulators to investigate

gene modification patterns of pyroptosis in IS (Figure 5A). Three

distinct subtypes of IS were identified with qualitatively different

expressions of the 33 PRG regulators including eight samples in

subtype-1, four samples in subtype-2, and eight samples in subtype-

3 (Figure 5B). Distinct expression patterns of PRGs in the three

subtypes are shown in Figure 5C. Meanwhile, we found that the

infiltration levels ofmany immune cells were different among the three

subtypes. For example, activated CD8+ T cells were higher in subtypes

C1 and C2 but the lowest in subtype C3 (Figure 5D). Eosinophils were

lower in subtypes C1 and C2 while being the highest in subtype C3. In

addition, differences in gender (p = 0.006) and alcohol consumption

(p = 0.046) were also distinct among the clinical characteristics of

different regulatory patterns (Figure 5E).

FIGURE 3
Correlation between infiltrating immunocytes and pyroptosis genes. (A) Difference in the abundance of each infiltrating immunocyte between
healthy and IS samples. (B) Dot-plot demonstrated the correlations between each infiltrating immunocyte type and each PRG.
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3.5 Biological characteristics and potential
drugs of three pyroptosis-related gene
modification patterns

We investigated the biological responses of the three cell

pyroptosis patterns by comparing the DEGs among them and

evaluated different subtypes in BP using the clusterProfiler

enrichment analysis. The upregulated genes in subtype

C1 were more concentrated in neutrophil migration and

leukocyte chemotaxis, while those in subtype C2 were more

concentrated in the negative regulation of macrophage

migration (Figure 6A). The upregulated genes in subtype

C1 were more concentrated in coagulation and positive

regulation of the cellular protein catabolic process, while those

in subtype C3 were more concentrated in T-cell activation and

differentiation (Figure 6B). Moreover, the upregulated genes in

subtype C2 were more concentrated in myeloid cell

differentiation, while those in subtype C3 were more

concentrated in response to molecules of bacterial origin and

lipopolysaccharide than those of subtype C2 (Figure 6C).

The DGIdb provides drug–gene interactions and druggable

genome information integrated from over 30 different resources.

The drug–gene interaction analysis from DGIdb showed an

association of IS-related PRGs and latent target drugs. We

identified and overlapped pyroptosis-associated DEGs to

obtain genes associated with pyroptosis phenotypes for

understanding their molecular mechanisms in pyroptosis

regulation further. As shown in Figure 7A, totally 42 common

genes were determined to be associated with the pyroptosis

pattern phenotype. Then, GO enrichment analysis showed

that they primarily took part in leukocyte chemotaxis and

reaction to lipopolysaccharides (Figure 7B). KEGG showed

that the related pathways involved in these common genes

were significantly correlated with the NF-κB (NF-kappa B)

signaling pathway and the cytokine–cytokine receptor

interaction pathway (Figure 7C). Through the DGIdb,

12 drugs were demonstrated to interact with five genes, which

can help develop new treatment methods for IS (Figure 7D).

Previous studies showed that IL1B, CXCL8, NLRP3, TNF, and

AIP3 participate in pyroptosis and the NF-κB signaling pathway.

CXCL8 regulates inflammation through chemotaxis of

neutrophils and has a strong pro-angiogenesis effect (He

et al., 2018; Lv et al., 2019). Based on the DGIdb results,

canakinumab and colchicine were the most noteworthy

molecule drugs that were closely associated with IS, and

leflunomide and anakinra presented positive anti-

FIGURE 4
Correlation between immune reaction gene sets and pyroptosis genes. (A)Difference in the activity of each immune reaction gene set between
healthy and IS samples. (B) Dot-plot demonstrated the correlations between each dysregulated immune reaction gene set and each PRG.
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inflammatory effects. However, their exact roles in IS remain

unclear.

4 Discussion

Previous studies have reported that IS involves the activation

of immuno-inflammatory responses in systemic inflammation,

mainly in chemokine upregulation, peripheral immune cell

infiltration, and proinflammatory cytokine release

(Tuttolomondo et al., 2009; Masahito and Yenari Midori,

2015; Tomasz, 2015). Pyroptosis, also known as inflammatory

necrosis, is an important innate immune response that involves

programmed and regulatory cell death. We suspect that

pyroptosis might have a paramount effect on shaping IS

systemic inflammation because it is indispensable in immune

response. At the same time, its specific mechanism and pertinent

signaling pathways are unclear (Ye et al., 2020; Liu et al., 2021a).

Thus, our study links pyroptosis with systemic inflammation,

classifies IS patients into subtypes, and identifies DEGs, signaling

pathways, and targeted drugs.

In this study, we investigated themRNA levels of 33 currently

known PRGs in IS and normal samples and found that some of

them were differentially expressed. We performed a variety of

analyses to elucidate how pyroptosis could influence the immune

reactions in IS, enrich infiltrating immunocytes, and activate

immune pathways and drew the following conclusions: first,

some of the 33 PRGs were found to alter their expressions in IS

and healthy samples, including TNF, AIM2, and SCAF11. Many

PRGs exhibited expression correlation or protein interaction,

which revealed the regulating network of their modification.

LASSO and multivariate regression analyses were conducted

to construct a classifier based on the three PRGs related to IS

and find out which classifier significantly distinguished between

healthy and IS samples, suggesting a paramount impact of PRGs

on IS development. Second, the correlations between PRGs and

immune characteristics in IS were studied, including immune

reaction gene sets, HLA gene expression, and infiltrating

FIGURE 5
Identification of different pyroptosis expression patterns. (A) Heatmap of the matrix of co-occurrence proportions for IS samples. Blue: low-
expression level; red: high-expression level. (B) Principal component analysis for the transcriptome profiles of three pyroptosis subtypes, showing a
remarkable difference in the transcriptome between different modification patterns. (C) Expression status of 33 PRGs in the three pyroptosis
subtypes. (D) Unsupervised clustering of 33 PRGs in the three patterns (E) Comparison of age, sex, smoking, alcohol consumption,
hypertension, hypercholesterolemia, and diabetes and IS type among three pyroptosis regulation patterns. The heatmap illustrates the association of
different clinical characteristics with the three subtypes.
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immunocytes. It was demonstrated that many PRGs were in close

association with these immune characteristics, revealing the

crucial role of pyroptosis modification in IS systemic

inflammation regulation. Post IS, rapid NK cell-mediated

exacerbation of brain infarction takes place via the disruption

of NK cell tolerance, augmenting local inflammation and

neuronal hyperactivity (Gan et al., 2014). NK cells are innate

lymphocytes, and their infiltrating abundance is negative with

AIM2. Eosinophils significantly predict the severity of acute IS

(Wang et al., 2017), and infiltrating eosinophil abundance is

positively associated with IL1B. In addition, infiltrating mast cell

abundance is positively associated with TNF that mediates

blood–brain barrier disruption in IS (Mattila Olli et al., 2011).

We found that AIM2 was negatively correlated with cytokine

receptors and SCAF11 was negatively correlated with cytokine

activity. NLRP3 and TNF were positively correlated with

antimicrobials and chemokines, respectively. Cytokines and

chemokines are important components of innate immunity

and have a paramount impact on IS (Sen et al., 2007; Carlo

Domenico. et al., 2020).

During the unsupervised clustering of IS samples based on

gene expression related to pyroptosis, we found three subtypes

with distinctive PRGs and unique immune characteristics. CD4+

T lymphocytes are crucial mediators of IS tissue damage and can

inhibit B-cell infiltration into the brain (Weitbrecht et al., 2021).

The results revealed that CD4+ T-cell activation was the highest

in subtype C3 but the lowest in subtype C2. The consensus

clustering analysis of the three subtypes showed significant

differences between gender and alcohol consumption in

clinical characteristics. Next, the biological responses and

related signaling pathways of the three cell pyroptosis modes

were studied. The results of the GO analysis showed that the

42 common genes associated with the cell pyroptosis phenotype

primarily took part in the chemotaxis of leukocytes and reaction

to lipopolysaccharides, indicating that pyroptosis induced

extensive inflammatory responses. The NF-κB signaling

FIGURE 6
Diversity of underlying biofunctional characteristics among three ischemic stroke subtypes. (A), (B), and (C) Upregulated gene enrichment
among the three subtypes, pairwise comparisons were made for GO-biological processes, and potential drug targets predicted by DGIdb,
respectively.
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pathway as a positive transcriptional regulator of GSDMD was

identified via KEGG analysis (Pickering Robert and Bryant Clare,

2020). GSDMD is the executive protein and characteristic

biomarker of pyroptosis (Liu et al., 2017).

Subsequently, the obtained IS genes were combined with

existing drugs through drug–gene interactions for analysis and

exploring latent immunotherapeutic targets for IS. Based on the

DGIdb online tool searching for targeted drugs, we predicted

12 small molecules as possible drugs for IS treatment, which

potentially target IL1B, CXCL8, NLRP3, TNF, AIP3, and

GATA2 genes. The last two promising drugs contained

canakinumab and colchicine and have been tested via clinical

trials. Canakinumab is regarded as a latent drug for IS because of

its inhibition of IL-1β. Recent studies confirmed that canakinumab

specifically reduces IL-1β-mediated inflammatory lesions in

cerebrovascular diseases (Luca. et al., 2018; Fatemeh et al., 2021;

Sjöström Elisabet et al., 2021). Similar to IL-1β monoclonal

antibodies, canakinumab has been approved for several auto-

inflammatory disorders, including classic SJIA (systemic juvenile

idiopathic arthritis), gout, and macrophage activation syndrome.

Colchicine was regarded as a latent drug for IS because it inhibited

CXCL8. Colchicine has an anti-inflammatory function and can

relieve ongoing tissue damage caused by neutrophils, NK cell

migration and activation, and inflammatory cytokine release (He

et al., 2018; Ami, 2021). These findings provide a theoretical basis for

the development of latent therapeutic drugs.

This research was the first to systematically analyze the

relationship between PRG regulation and systemic

inflammation in IS. In addition, three distinct pyroptosis

expression patterns that differed from other classification

FIGURE 7
Biological characteristics and potential drugs of three PRG modification patterns. (A) Forty-two common genes were identified as genes
associated with the pyroptosis phenotype. (B) Barplot graph for GO enrichment (the longer bar means the more genes enriched, and the increasing
depth of red means the differences were more obvious). (C) Bubble graph for KEGG pathways (the bigger bubble means the more genes enriched,
and the increasing depth of red means the differences were more obvious; q-value: adjusted p-value). (D) Sankey diagram showing 42 genes
predicted by DGIdb for potential drugs.

Frontiers in Genetics frontiersin.org10

Shi et al. 10.3389/fgene.2022.909482

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.909482


standards in IS were identified. These results could greatly guide

immunotherapy development with respect to pyroptosis in IS

and provide researchers with a direction to implement these

studies. However, there are some limitations to this research

design. First, our research primarily focuses on bioinformatics

analysis based on numerous previous pyroptosis research studies;

therefore, in vitro and in vivo experiments are still required to

verify these results. Second, the analysis of immune cells mainly

used the bioinformatics analysis method to evaluate immunocyte

quantity, but the most reliable counting method is single-cell

sequencing. The results of single-cell sequencing can possibly

explain the specific changes in the IS systemic inflammation. We

will address this concern in further studies. Moreover, in this

study, some of the mRNAs identified may be false-positives

owing to the small number of samples from IS patients. In

further studies, we will use a greater number of samples to

confirm their in vivo roles in IS.

In conclusion, the research demonstrates the latent

regulation mechanisms of PRG modification in IS systemic

inflammation. The diversity of PRG modification patterns has

a crucial effect on the complexity and heterogeneity of IS

systemic inflammation. In our study, the integrated analysis of

PRG modification patterns is conducive to investigating the

immune-regulated network mechanism and exploring more

effective immune-related therapies in IS.
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