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Ovarian cancer is the most common and lethal gynecological tumor in women worldwide.
High-grade serous ovarian carcinoma (HGSOC) is one of the histological subtypes of
epithelial ovarian cancer, accounting for 70%. It often occurs at later stages associated
with a more fatal prognosis than endometrioid carcinomas (EC), another subtype of
epithelial ovarian cancer. However, the molecular mechanism and biology underlying the
metastatic HGSOC (HG_M) immunophenotype remain poorly elusive. Here, we
performed single-cell RNA sequencing analyses of primary HGSOC (HG_P) samples,
metastatic HGSOC (HG_M) samples, and endometrioid carcinomas (EC) samples. We
found that ERBB2 and HOXB-AS3 genes were more amplified in metastasis tumors than
in primary tumors. Notably, high-grade serous ovarian cancer metastases are
accompanied by dysregulation of multiple pathways. Malignant cells with features of
epithelial-mesenchymal transition (EMT) affiliated with poor overall survival were identified.
In addition, cancer-associated fibroblasts with EMT-program were enriched in HG_M,
participating in angiogenesis and immune regulation, such as IL6/STAT3 pathway activity.
Compared with ECs, HGSOCs exhibited higher T cell infiltration. PRDM1 regulators may
be involved in T cell exhaustion in ovarian cancer. The CX3CR1_macro subpopulation
may play a role in promoting tumor progression in ovarian cancer with high expression of
org July 2022 | Volume 13 | Article 9231941
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BAG3, IL1B, and VEGFA. The new targets we discovered in this study will be useful in the
future, providing guidance on the treatment of ovarian cancer.
Keywords: scRNA-seq, tumor microenvironment, T cells, myeloid cells, high-grade serous ovarian carcinoma
INTRODUCTION

Epithelial ovarian cancer usually occurs at an advanced stage and
is the most common cause of death from gynecological cancer (1).
High-grade serous ovarian carcinoma (HGSOC) is a common
histological subtype of epithelial ovarian carcinoma, for 70 to 80%,
while the endometrioid carcinoma (EC) subtype accounts for 10%
(2). HGSOC is associated with a more fatal prognosis and frequent
recurrences, with more than 85% of womenwith this type having a
10-year mortality rate of 70%, whereas endometrioid carcinoma is
thought to originate in endometriosis, a histologic type that tends
to have a better prognosis. Our knowledge of the molecular
etiology and clinical pathology of HGSOC has greatly improved,
and recent therapy has advanced (3–6). However, most patients
are diagnosed at a late stage, when cancer has already
metastasized, and the diagnosis results in 5-year survival of 30%.
Accordingly, the development of effective therapies for metastatic
ovarian cancer is urgently needed. To do so, we need to
comprehensively characterize the cellular heterogeneity and
define transcriptional featureswithin the tumormicroenvironment.

Genomic analysis of HGSOC revealed a mutation in the tumor
suppressor gene TP53, which is also seen in endometrioid carcinoma
(3), promoting ovarian cancer metastasis and chemoresistance, and
defecting in homologous recombination (HR) DNA repair, which
contributes to the somatic BRCA mutation (7). The Cancer Genome
Atlas (TCGA) project has classified HGSOC into four transcriptional
subtypes: ‘differentiated’, ‘immunoreactive’, ‘proliferative’, and
‘mesenchymal’ (8, 9).

Recently, a scRNA-seq study of six metastatic omental tumors
that derived from primary HGSOCs unraveled the genetic
signatures of immune cell subsets within the tumor
microenvironment and identified NR1H2+ IRF8+ and CD274+

macrophage clusters, which were suggested with an anti-tumor
response (10). Another scRNA-seq study revealed that the inhibition
of the JAK/STAT pathway has potential anti-tumor activity (11).
The heterogeneity of tumor cells and different immune cell types
within the TME play a paramount role in shaping tumor behavior
(12–14). Therefore, characterizing the complex interplay between
tumor cells and immune cell phenotype within HGSOC will be
beneficial to find the critical factors of ovarian carcinogenesis,
metastasis, and targeted treatment.

In this study, we conducted single-cell RNA sequencing of five
primary high-grade serous carcinomas samples (HG_P), three
metastases from HGSOC to the peritoneum (HG_M), one normal
ovarian sample, and two primary Endometrioid (EC_P) samples.
By comparing HG_Mwith HG_P and EC_P, we comprehensively
characterized the heterogeneity of tumor cells and immune cells in
ovarian cancer lesions, as well as the dynamic changes in cell-type
composition and intercellular interactions, providing new insights
into the biological basis of the development of HGSOCs and ECs.
org 2
RESULTS

Single-Cell Transcriptomic Profiling of the
Cellular Heterogeneity of the HGSOCs
Droplet-based single RNA-seq (10X Genomic) was performed on a
total of eight samples from five treatment-naive patients. For
parallel analyses, the public scRNA-data of 1 HG_P and 2 HG_M
samples (15) from the same patient were downloaded (Figure 1A,
Tables S1, S2). After quality filtering, approximately 0.68 billion
unique molecular identifiers (UMIs) were collected from 55802 cells
with >250 genes detected. Of these cells, 28,571(51.2%) cells were
from HG_P, 8925 (16%) cells were from HG_M, and 12751(22.9%)
cells were from EC_P. All high-quality cells were used to perform
canonical correlation analysis (CCA) and identify anchors or
mutual nearest neighbors (MNNs). Then, we integrated all cells,
conducting unsupervised graph-based clustering (16).

By Uniform Manifold Approximation and Projection
(UMAP) with the resolution of 1.1, we identified 10 major
lineages (epithelial cells, B cells, NK cells, T cells, plasma cells,
fibroblasts, mesenchymal stem cells (MSCs), endothelial cells,
neutrophils, and myeloid cells) (Figures 1B, C, S1A). The cell
types were mainly assigned based on canonical cell markers and
functional categories according to significantly differential genes
expressed from different clusters (17, 18). One remaining cluster
was labeled as “N” because we could not confidently recognize
this cell type (10). The respective proportion of each cell type was
varied and significantly differed between tumors (Figure 1D,
proportion test, df=10, p-value < 2.2e-16). Interestingly, the
boxplot exhibited that the medians in B cells, NK/T cells, and
myeloid cells were higher in HG_P than HG_M and EC_P,
whereas plasma cells were more enriched in EC_P (Figure S1B).

Previously, The Cancer Genome Atlas (TCGA) had stratified
HGSOC into four molecular subtypes. We wondered if the inter-
patient variability among tumorswere consistentwith these subtypes.
To this end, we assignedmolecular subtypes to our samples with the
consensusOV (9) classifier (Version 1.14.0) (Figure 1D, S2A). We
found that all four subtypes were well presented in each ovarian
lesion. EC_P expressed the DIF signature slightly over HG_P and
HG_M, while HG_P was comparable with HG_M, and EC_P
presented the lowest IMR signature, supporting low immune-cell
infiltration (Figure 1E). What’s more, certain subtypes tended to be
consistentwith specific cell types (Figure S2B). Epithelial cells highly
expressed the differential (DIF) signature and lesser expressed
proliferative (PRO) signature. The mesenchymal (MES) signature
was strongly expressed by the fibroblasts and MSCs cells, while the
immunoreactive (IMR) signature mainly consisted of myeloid, T
cells, and NK cells. Notably, more fibroblasts were classified as
proliferative subtypes in our data, suggesting that there are more
fibroblasts with relatively high tumor purity. Based on this result, we
wanted to know which genes made the most contribution to this
July 2022 | Volume 13 | Article 923194

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Deng et al. Tumor Microenvironment in HGSOC Patients
classification. Thus, we extracted markers that were used for
classification and calculated their average expression in each cell
type (Figure S3A). As expected, proliferative markers such as
MARCKSL1, STMN1, UCHL1, MFAP2, TRO, etc. are indeed
expressed at higher levels in fibroblasts than others. Likewise, we
plotted these markers in the heatmap in each cell of fibroblasts
(Figure S3B) and we found PRO-markers like MARCKSL1 and
STMN1, especially for MARCKSL1, which are highly expressed in
most cells. And these markers contribute the most to the
classifications of proliferative-subtype, while other PRO-related
markers, UCHL1 and MFAP2, are not expressed significantly per
cell infibroblasts though their average expression is higher thanother
cell types. These results illustrated the importance of fibroblasts in
cancer progression and indicated that a subset of fibroblasts in our
data is cancer-associated fibroblasts (CAFs).
Frontiers in Immunology | www.frontiersin.org 3
In addition, we can assess TCGA-subtypes at the patient level
from our single-cell data by calculating the average of each gene
per sample. Validated with the dataset from a previous study (19)
(Figure S4A-4C), we had a high degree of confidence to infer the
subtypes of HG1_P, HG2_P, HG4_M2, and EC2_P (Figure S4D,
4E). Their subtypes are likely to be IMR, IMR, MES, and DIF.
Overall, our findings fully illustrated the difference in subtype
classification between bulk samples and single-cell data, where
single cells can more accurately describe the TCGA-subtype and
characterize the heterogeneity of ovarian cancer.

Distinguish Worse Survival Cells from
Cancer Epithelial Cells of HGSOCs
Based on the expression of PAX8 and CD24 (20, 21), we found that
they were mainly expressed in epithelial cells as well as the subtype
A

B

D

E

C

FIGURE 1 | Overview of TME in primary HGSOCs, metastatic HGSOCs, and ECs. (A) Workflow of the samples collected and the data analysis strategy. (B) Cell
populations identified. The UMAP projection of 55802 single cells from HG_P (n=5), HG_M (N=3), EC_P (n=2), HG_Nor (n=1) samples shows the 10 main clusters
with annotation. Each dot corresponds to a single cell, colored according to cell type. (C) Canonical cell markers are used to identify the clusters. (D) Barplots of the
cell type and cancer subtypes for all 11 tumors. (E) The cancer subtypes proportion for each pathological group.
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DIF(FiguresS2A,S5A),whichwe termed “cancerepithelial cells”. In
addition, we used T cells and myeloid cells from the normal sample
(HG2_nor) as controls by inferring chromosomal copy number
alterations (InferCNV, Version 1.2.1) (11) to confirm this (Figure
S6). As shown below, we found that CNV trends in the same
chromosomal region of different primary patients were distinct,
whereas they were approximately consistent in the same patient
(Figures 2A, B, S5B). Obviously, the genes generally mutated in
ovarian cancer were more amplified in chr17 in HG3_M than in the
primary tumors on both sides, such as the ERBB2 and HOXB-AS3
genes, which are generally mutated in ovarian cancer (8). These
Frontiers in Immunology | www.frontiersin.org 4
results demonstrated both intertumoral heterogeneity between
patients and consistency within the same patient lesion.

Re-running UMAP analysis on these cells, a total of eight sub-
clusters were identified, of which revealed interpatient tumor-
specific clusters (22, 23) (Figure 2C). Conversely, re-clustering
the subsets like T cells and fibroblast cells without integration, we
found that ovarian lesions from the same batch clustered
together (Figure S5C). Differentially expressed genes in each
cluster, interpatient GSVA, and cell cycle analysis were also
shown (Figures 2D and S5D, 5E). We then used a Scissor
algorithm (Version 2.0.0) to classify cells associated with worse
A B

D

E

F
G

C

FIGURE 2 | Copy number profiles, intertumoral heterogeneity, and EMT signature subpopulations are identified. (A) The chromosomal landscape of copy number
for 13,634 epithelial cells of seven primary tumors; amplification (red) and deletions (blue). (B) The chromosomal landscape of copy number for 2849 epithelial cells of
metastatic tumors and primary tumors of the HG3 patient (L_HG3_P means the primary tumor from the left ovary in the HG3 patient; R_HG3_P means the primary
tumor from the right ovary in HG3 patient). (C) The UMAP projection of 17,551 epithelial cells from 10 tumors of six patients (indicated by labels and colors) reveals
tumor-specific clusters. (D) Differentially expressed genes of the top 10 genes (rows) that are differentially expressed in each cluster (columns). (E) Differentially
expressed genes between Scissor+ cells and all other cells in HGSOCs, each point represents a gene. Red: significant genes; Black: NS genes. avg_logFC: log 2
fold-change of the average expression between the two groups. ((log-FC > 0.25, FDR <0.05) (F) Enrichment of significant genes related to Reactome and Hallmark
pathways. (G) Kaplan-Meier plot shows that high expression of EMT signature has shorter overall survival in ovarian cancer. The high and low patients are split by
the mean expression of the EMT-related gene set.
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survival (Scissor+ cells) from cancer epithelial cells, based on
GDC TCGA bulk RNA-seq expression and clinical phenotype
(24). As described previously, Scissor can quantify the similarity
between single-cell data and bulk data through measurements,
for example, Pearson correlations, and then it optimizes a
regression model on the correlation matrix with the sample
clinical phenotype. After that, it will provide feedback on three
cell types, such as cells associated with worse prognosis (Scissor+

cells), cells related to better prognosis (Scissor- cells), and cells
that have no relationship with prognosis (Background cells).

In HGSOCs, we found that Scissor+ epithelial cells mainly
accumulated in patients with metastasis (Figure S7A). To
distinguish Scissor+ cells from Scissor- cells and Background cells
(All other cells), we compared their gene expression (Figure 2E,
S7C, cut off: avg_log-FC > 0.25, FDR <0.05). Interestingly, high
expression of EMT-related genes like GAS1, DCN, COL1A1, MGP,
etc. in HGSOCs Scissor+ cells derived predominantly from patients
with tumors metastasized (Figures 2E, S7B). Genes such as
STMN1, CCND1, TUBA1B, and TUBB significantly expressed in
Scissor+ cells of ECs were associated with the cell cycle (Figure S7E),
which is a barometer of epithelial tumor cells proliferation (25).
Furthermore, functional enrichment analysis of significantly
expressed genes in Scissor+ cells also confirmed these (Table 1,
Figures 2F, S7D), and survival analyses revealed that high levels of
EMT and cell cycle signature were significantly related to poor
overall survival in the Ovarian Cohort (Figures 2G, S7F). The
observation of HGSOCs was consistent with the previous report
that EMT is involved in increasing the invasion and metastasis of
epithelial tumors (26–29). Therefore, targeting epigenetic regulation
of EMT is a potentially powerful approach to inhibit the migration
and invasiveness of HGSOCs.

Dynamic Trajectory Analysis During the
Progression of HGSOCs
In the recent past, omentum metastasis has been reported (10). But
in general, there are still few studies on the genetic dynamics of
high-grade serous ovarian cancer metastasis, especially on the
transcription factors involved in tumor progression. Based on the
Monocle2 method (Version 2.21.1), pseudo-time reconstruction of
Frontiers in Immunology | www.frontiersin.org 5
epithelial cells was performed to infer the progression path of
HGSOC (Figure 3A, and S8A). Macroscopically, the number of
metastatic epithelial cells increased along the trajectory at the later
stage. Besides, we also estimated the RNA velocities of every single
cell by distinguishing un-spliced and spliced mRNAs, a function
provided by velocyto (30) package. According to the direction of
movement of each cell, the process of metastasis of HGSOCs can be
clearly detected (Figure S8D).

In particular, the dynamic gene expression profiles during the
development of tumors were extracted. (Figures 3C, D).
Interestingly, we found that the molecular mechanisms involved in
metastatic HGSOCs were consistent whether the primary HGSOC
was on the left or right side (Figures 3C, S8E). Genes related to the
immune response were significantly decreased, whereas the genes
related to DNA replication, cell cycle, epithelial cell proliferation,
oxidative phosphorylation, and TCA cycle were significantly
increased (Figures 3C, D). These results also suggested that
inhibitors based on poly (ADP-ribose) polymerase (PARP), which
aids in stopping the regenerationof cancer cells, such asOlaparib and
Rucaparib, may be helpful for the treatment of metastatic HGSOCs
(31–33). Meanwhile, the transcriptional factors (TFs) related to
immune regulation, such as ARID5A, NFKB1, RORA, and
ZNF683, were gradually downregulated along with the trajectory
differentiation process (Figure 3E). And these immune-related TFs
were scattered in the clusters of epithelial cells as well as other cell
types (Figure S8B). Conversely, some well-known factors related to
tumor growth promotion, such as HMGA1, GTF3A, PHF19,
CENPX, and MBD2, were upregulated. Zingg emphasized that loss
of cilia acceleratesmelanomametastasis in benign cells by enhancing
Wnt/b-Catenin Signaling (34). In our data, the expression of
epithelial cilium movement markers, including FOXJ1, PRG,
RFX2, and TMF1, although increased during the process, were
mainly overexpressed in primary tumor cells (Figures 3A, F). This
may indicate that disruption of cilia assembly leads to primary
ovarian cancer that metastasizes to the peritoneum.

We also utilizedGeneSwitches (35) (Version 0.1.0) to predict the
genes that act as on/off switches between cell states in order during
the tumor’s metastasis process (Figures 3B, S8C). Accordingly,
overexpression of some acting on genes like FOSL2, NFIB, NFIC,
TABLE 1 | Functional enrichment analysis based on the upregulated genes in HGSOCs Scissor+ cells versus All other cells (Scissor- and Background cells).

Pathological
subtype

Category Description Log10
(q)

Genes

HGSOC Reactome
Gene Sets

Peptide chain elongation -35.94 COL3A1, MT1E, MT2A, ZFP36, FOS, HBB, RPS17, NNMT, RPL13A, COL6A2,
COL6A1, RPS9, JUN, RPL31, SLC25A6, RPL34, SAT1, RPS4X, ZFP36L1, RPS6,
EEF2, RPS5, RPL11, RPL13, RPL23, CEBPB, RPL10A, RPS12, RPS20, RPL19,
RPL10, RPS16, RPLP2, ID1, ACTB, RPL18, RPS14, RPS3, RPL7

HGSOC Reactome
Gene Sets

Signaling by Receptor Tyrosine Kinases -8.00 COL3A1, COL1A1, FOS, JUNB, ID3, COL6A2, EGR1, FOSB, LAMA4, NR4A1,
COL6A1, MYC, FN1, ID1, ACTB

HGSOC Reactome
Gene Sets

ECM proteoglycans -6.99 DCN, COL3A1, COL1A1, C3, TIMP1, HBB, COL6A2, HP, HTRA1, LAMA4,
COL6A1, FN1, FTL

HGSOC Hallmark
Gene Sets

HALLMARK_TNFA_SIGNALING_VIA NFKB -21.61 DCN, MT1E, MT2A, ZFP36, FOS, JUNB, EGR1, DUSP1, FOSB, CYR61, NR4A1,
PNRC1, MYC, IER2, JUN, KLF4, SAT1, NR4A2, IER3, CEBPB, KLF6, EIF1, UGP2

HGSOC Hallmark
Gene Sets

HALLMARK_EPITHELIAL_MESENCHYMAL
TRANSITION

-15.12 MGP, GAS1, DCN, COL3A1, COL1A1, TIMP1, VIM, NNMT, COL6A2, CYR61,
HTRA1, JUN, FN1, SAT1, IGFBP4

HGSOC Hallmark
Gene Sets

HALLMARK_P53_PATHWAY -7.88 GNB2L1, FOS, JUN, KLF4, SAT1, ZFP36L1, IER3, RPS12, RPL18, ISCU
July 2022 | Volume 13 | Article 923194

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Deng et al. Tumor Microenvironment in HGSOC Patients
and PROCR,which are associatedwith proliferation andmetastasis,
predicts poor prognosis in high-grade serous ovarian cancer
(Figure 3G). Taken together, these results reveal dynamic gene
expression profiles, highlighting several quintessential TFs and
surface proteins that are dysregulated during ovarian
cancer progression.

Cancer-Associated Fibroblasts with the
EMT Program Enriched in
Metastatic HGSOCs
Fibroblast is another vital biological cell type that synthesizes the
extracellular matrix and collagen to maintain the structural integrity
Frontiers in Immunology | www.frontiersin.org 6
of connective tissue. In this study, 12,236 fibroblast cells were
categorized into five distinct sub-clusters (Figures 4A, S9B, 9C).
Fibro_1 cells were marked by STAR, an exclusive marker for
ovarian stromal cells as previously reported (15). Fibro_2 cells
were characterized by collagen (COL1A1, COL3A1) and cancer-
associated fibroblast genes (CTHRC1, FAP). Fibro_3 cells expressed
immunomodulatory (CFD, OGN) and tumor suppressor genes
(CCDC80, PLA2G2A). Fibro_4 cells expressed growth factors
(EGFR, IER2M KLF2). Fibro_5 cells were characterized by
conserved and nuclear-enriched lncRNA (MALAT1, NEAT1),
and MALAT1 modulates the expression of cell cycle-related genes
in lung fibroblast and EMT-related genes in breast cancer (36, 37)
A

B

D

E

F
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C

FIGURE 3 | Trajectory reconstruction during metastatic HGSOCs. (A) Monocle2 infers the development of epithelial cells along with pseudo-time (from patients HG3
and HG4 respectively, L_HG3_P means the primary tumor from the left ovary). Pseudo-time legend from dark to bright indicates cancer progression from the early to
late stage. (B) Genswitches deduces the genes switch between cell states (left: L_HG3; right: HG4). (C, D) The heatmap displays the dynamic gene expression
profiles during metastasis of ovarian cancer (from patients HG3 and HG4 respectively). The color key from blue to red indicates relative expression levels from low to
light. The top annotated GO and KEGG terms in each cluster are shown. (E, F) Top 100 differentially expressed transcription factor genes (TFs; left) and the
expression of specific TFs are on view along with the pseudo-time curve in (right). (G) Overexpression of proliferation and metastasis-related genes predicts poor
prognosis in HGSOCs.
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(Figure 4C). The distribution of fibroblast sub-clusters in each
tumor was varied (Figure 4B). In addition, comparisons based on
hallmark gene sets of fibroblasts had been conducted. Fibroblasts
from HG_M were more abundant in supporting tumor progress
than HG_P, including angiogenesis, coagulation system, and EMT
(Figure S9D). Fibroblasts from EC_P were more enriched in the
structure formation of tissue than HG_P, such as myogenesis and
adipogenesis, whereas inflammatory pathways including TNFA
signaling via NFkB and inflammatory response more enriched in
HG_P than EC_P (Figure S9E). Combined with the analysis of
normal fallopian tubes (nFT) from previous studies (38, 39), we
found that fibroblasts from HG_P were more abundant in
supporting interferon-alpha/gamma response than HG_nor/nFT
while estrogen responses early activity was more active in HG_nor/
nFT than HG_P (Figure S9F).
Frontiers in Immunology | www.frontiersin.org 7
Notably, Fibro_2 cells, the most enriched subtype in HG_M,
accounting for 32%, expressed genes of cancer-associated
fibroblasts (CAFs), angiogenesis, and collagen at a high level
(Figures 4D, S9A). CAFs have been verified to promote tumor
metastasis through upregulating genes like HSF1, which was
involved in the pro-tumorigenic pathway (40). Furthermore,
Hallmark pathway analysis also confirmed that Fibro_2 cells had
more relevance with the pathways that sustain tumor growth,
including angiogenesis, epithelial-mesenchymal transition (EMT),
hypoxia, and PI3K/AKT/mTOR signaling (Figure 4E). Compared
with HG_M and EC_P, Fibro_3 cells (19%) and Fibro_5 cells (3%)
accounted for less proportion in HG_P. Intriguingly, Fibro_3 cells
and Fibro_5 cells were both consistent with the characteristic of
“antigen-presenting CAFs” as previously discerned (41), owning to
express genes like CD74 andhuman leukocyte antigen (Figure 4D).
A B

D
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C

FIGURE 4 | Diversity of fibroblasts in HG_M. (A) The UMAP projection of 12,236 fibroblast cells of 11 samples from six patients (indicated by labels and colors).
(B) Proportion and cell number of each fibroblast subtype in 11 samples. (C) Heatmap of marker genes expression. (D) Heatmap of functional gene sets. (E) GSVA
analysis of differential pathways is scored per cell among five fibroblast subsets. (F) Active regulons in each fibroblast subsets.
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With the help of the SCENIC tool, we identified regulons
unique to each fibroblast sub-clusters (Figure 4F). For instance,
the transcription factors of SOX4 and SRF underpinned Fibro_2,
while Fibro_5 cells were characterized by STAT1/STAT3 and
NFKB1/NFKB2. Strikingly, SOX4 has been proven as an
important co-factor of SMAD3, controlling pro-metastatic
gene transcription and shaping the cell response to TGF-b in
different scenarios, thereby promoting tumorigenesis (42). While
STAT3 and NF-kB are pro-inflammatory regulators and they
form transcriptional complexes that positively regulate gene
expression in oncogenic pathways (43).

Heterogeneity of Tumor-Infiltrating
Lymphocytes in HGSOCs
Infiltration of T cells into tumors modifies the natural course of the
disease and plays a critical role in cancer immunotherapy (44, 45).
From the ovarian cancer lesion, we classified a total of 7967 T and
NK cells into eight subtypes: CD4+ T cells (CD4 IL7R; CD3D+

CD4+), regulatory CD4+ T cells (Tregs FOXP3; CD4, FOXP3),
CD8+ T cells (CD8 GZMK, CD8 GZMH; CD3D+ CD8+), NK cells
(NK CD56, NK IL7R; NCAM1, GNLY, TYROBP, NKG7), NKT
cells (CD3D, CD8A, FCGR3A, GNLY), and Innate Lymphoid Cells
(ILCs; CD3D) (Figures 5A, C and S10A). The number of cells and
the proportion of each subtype in each tumor were shown
(Figure 5B). Notably, 1665 T/NK cells were obtained from
HG_M, while 5394 T/NK cells were from HG_P. Using a
dendrogram to group the tumors based on the average expression
of T cell markers, we found that HG_M showed a similar pattern to
HG_P, whereas EC_P emerged with low expression in CD4+ T and
CD8+ T cells (Figure 5D). This observation was consistent with the
boxplot shown, the lower proportion of CD4+ T cells and CD8+ T
cells was detected in EC_P than in HG_P and HG_M (Figure
S10B). The low tumor-suppressive status in EC_P suggested that T
cell-based immunotherapy may be inefficient in EC_P.

Among CD4+ T cells, we identified naive (CD4 IL7R; TCF7,
CCR7, SELL, LEF1) and regulatory (Tregs FOXP3; IL2RA,
FOXP3, IKZF2). The Tregs FOXP3 cells highly expressed
inhibitory genes, including TIGIT, CTLA4, and ENTPD1, and
they also relatively expressed high levels of costimulatory
molecules CD28, TNFRSF14, ICOS, TNFRSF9, which stimulate
the inhibitory activities (Figure 5F). The tumor-suppressive
microenvironment mediated by Tregs is a significant obstacle to
successful immunotherapy, suggesting that depletion of Treg cells,
like immune checkpoint blockade of CTLA-4 or PD1/PDL1, could
be a potentially effective immunotherapy for ovarian cancer (46).

AmongCD8+ T cells, CD8GZMKandCD8GZMHT cellswere
characterized by relatively high cytotoxic genes granzyme K
(GZMK) and granzyme H (GZMH), respectively. Meanwhile,
these cells also positively expressed T cell exhaustion markers,
including LAG3 and PDCD1, indicating that the CD8+ T cells are
exhausted after initial activation in ovarian cancer (Figure 5F). In
addition, we inferred the gene regulatory networks across the TILs
subtypes by SCENICmethod (Figure 5G). The regulon of PRDM1
was upregulated in CD8 GZMK and CD8 GZMH T cells, which is
connected with terminal T cell differentiation and contributes to the
maintenance of an early memory phenotype and cytokine poly-
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functionality in TILs after knockout (47). Consequently, we
concluded that PRDM1 might be one of the factors contributing
to the exhaustion of CD8 GZMK and CD8 GZMH T cells. Indeed,
verified by bulk RNA-seq from the TCGA dataset, it was a slightly
significant Spearman correlation between PRDM1 expression and
immune exhausted infiltrate in ovarian cancer (Cor:0.41, FDR:
2e−12, Figure S10C). Beyond that, higher expression of PRDM1
predicted a worse prognosis in ovarian cancer (Figure 5H).

Next, we performed pseudo-time trajectory analysis to
explore the dynamic states and cell transitions of CD4+ IL7R
to CD8+ T cells via Monocle2. In the developmental trajectory,
CD4+ IL7R started as a root, and gradually evolved into CD8
GZMK and CD8 GZMH, presenting a binary branched structure
in which one side was the end of exhausted T cells, and the other
side was the end of cytotoxic T cells (Figure 5E). In HG_M, the
proportion of CD8+ cytotoxic T cells was higher than in HG_P
(Figure 5I). On the contrary, the percentage of exhausted CD8+

T cells in HG_P was more than that in HG_M (Figure S10D).
We noticed three sub-clusters expressing the NK cells marker:

TYROBP, GNLY, and NKG7. NK CD56 cells were characterized
by NCAM1 (CD56), NK IL7R cells were characterized by IL7R,
and NKT cells were identified by the specific T-cell markers
including CD3D and CD8A (Figures 5C, D). NKT cells strongly
expressed the GZMB, GZMA, GZMH, and PRF1 genes,
indicating that they promoted tumor cytotoxicity in ovarian
cancer (Figure 5F). Generally speaking, NK CD56 and NKT cells
were more enriched in HG_P and HG_M than EC_P
(Figure S10E).

Trajectory Reconstruction of HGSOCs
Revealed Monocyte-to-Macrophage
Differentiation
Tumor-infiltrating myeloid cells (TIMs) are critical regulators in
tumor progression, playing essential roles in modulating tumor
inflammation and angiogenesis (48, 49). Altogether, 7265myeloid
cells were collected, revealing 23 subsets through the ROGUE
statistic (Version 1.0) (50) purified the cell population (Figures
S11A, 11B). Then, we identified four common linages (cDCs,
monocytes, or macrophage and monocytes derived DC) based on
canonical cell markers and they were well presented in each
sample (Figures 6A, B, D, S11D, 11E). Moreover, a subset of
myeloid cells expressed myeloid/T-cells markers simultaneously
(CD3D_undefined), which was not discussed below.

Monocytes are the progenitors of monocytes-derived
macrophages and contribute to the overall coordination of
immunity (51). Correspondingly, Monocytes can be separated
frommacrophages based on phylogenetic reconstruction (Figure
S11F). CD14_mono cells were characterized by CD14, SELL, and
S100A8/9, representing classical monocytes and being recruited
during inflammation (Figure 6I). They also highly expressed
FCN1, a complement system protein that defends against
infectious agents (52). CD16_mono cells were less abundant
and represented non-classical monocytes with high expression of
FCGR3A (CD16), CDKN1C, LST1, and low expression of CD14.
Similarly, CD16_mono cells expressed FCN1 at high levels but
were more enriched in HG_M (Figure S11C).
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DC cells were classified according to their origin and typical
genes. CLEC10A_mono-DC with lower abundance was
characterized by CLEC10A and CD14 representing monocyte-
derived dendritic cells. CD1C_DC cells represented a classic
cDCs subset, with high expression of CD1C, CD1E,
and CLEC10A.

Macrophage cells were characterized by tissue-resident and
their pro-inflammatory or anti-inflammatory function.
CCL2_macro represented early-stage macrophage with the
expression of CCL2. CX3CR1_macro expressed genes involved
Frontiers in Immunology | www.frontiersin.org 9
in immune modulation of chemokines, such as CCL3, CCL4, and
CXCL8. What’s more, CX3CR1_macro significantly secreted
BAG3 (Figure 6I), a multifunctional protein, which can
combine with a specific receptor IFITM2 to induce the release
of factors that sustain the growth and metastasis of tumor (53).
MMP9_macro expressed genes related to inflammatory
chemokines (CXCL2, CXCL3, CXCL8) and genes like MMPs
(MMP19, MMP9), which play an important role in tumor tissue
remodeling. CCL18_macro expressed both M1 marker (CD68)
and M2 markers (CCL18, GPNMB). By the way, CCL18 played a
A

B

D E

F

G

I
H

C

FIGURE 5 | Subpopulations of tumor-infiltrating lymphocytes (TILs) in HG_M. (A) The UMAP projection of 7967 TILs of 11 samples from six patients (indicated by
labels and colors). (B) Proportion and cell number of each subtype in 11 samples. (C) Dot plot (left) and UMAP-plot (right) display canonical cell markers.
(D) Hierarchical clustering heatmap groups the tumors between HG_P, HG_M, and EC_P. (E) Reconstruction trajectory of CD8+ T cells inferred by Monocle2 (color
by subtypes, expression of signature genes, and pseudotime). (F) Heatmap of the functional gene sets in TILs. (G) Active Regulons in each TILs. (H) Overexpression
of the PRDM1 gene predicts a worse prognosis in ovarian cancer. (I) Cumulative distribution of cytotoxic CD8+ T cells between HG_P, HG_M, and EC_P. The
cytotoxic score is calculated based on the average expression of cytotoxic markers. P-value was calculated by a two-sided unpaired Kruskal-Wallis rank-sum test.
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key role in recruiting immunosuppressive myeloid cells (54).
Finally, LYVE1_macro represented resident macrophages with a
high level of LYVE1 and FOLR2.

Early works have supported that macrophages can either
originate from monocyte cells or tissue-resident macrophages
(55–57). Accordingly, we employed the RNA velocity to explore
the ovarian cancer lineage trajectories and we found that a small
number of CD14_mono evolved toward MMP9_macro, while
LYVE1_macro evolved toward CCL18_macro as well as toward
MMP9_macro (Figure 6C). To further investigate the dynamic
change of genes during the differentiation of CD14_mono into
macrophages in the ovarian lesions, we extracted classical
monocytes (CD14_mono) and related macrophages
(MMP9_macro, CCL18_macro, CX3CR1_macro) to delineate
Frontiers in Immunology | www.frontiersin.org 10
monocyte-to-macrophage differentiation by trajectory
development analysis (Figure 6E). During the trajectory,
CD14_mono were progenitor cells for MMP9_macrophage
and then further separated into CX3CR1_macro and
CCL18_macro. Profiling of gene expression dynamics along
the trajectory had been divided into four modules (Figure 6F).
Genes like CX3CR1, CXCL8, CXCR4, CCL3L1, VEGFA, and
IL1B in Module 2 increased during the evolution of the branch of
CX3CR1, whereas, they decreased during the evolution of the
branch of CCL18_macro. Vice versa, Genes in Module 4 like
CCL18, CCL7, and CCL8 were increased in the branch of
CCL18_macro and reduced in the branch of CX3CR1. To
reveal the biological characteristics of these two branches, we
performed gene functional enrichment analysis. In the branch of
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FIGURE 6 | Subpopulations of myeloid cells in HG_M. (A) The UMAP projection of 7265 myeloid cells of 11 samples from six patients (indicated by labels and
colors). (B) Proportion and cell number of each myeloid subtype in 11 samples. (C) RNA velocity of each myeloid subtype. (D) The dot plot displays canonical cell
markers. (E) Trajectory reconstruction of monocyte evolved into macrophages. (F) Dynamics gene expression profile during monocyte-to-macrophage terminal
differentiation. (G, H) Biological processes enrichment analysis of module 2 and module 4. (I) Heatmap of significant genes in each subtype. (J) Activate regulons in
each myeloid subtype.
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CX3CR1_macro, the corresponding high expressed genes tend to
be associated with inflammatory response and positive
regulation of cell migration (Figure 6G), which is consistent
with the suggestion that the high VEGF, CXCL8+ IL1b+ TAMs
with the features of inflammatory could promote tumor
progression in ovarian cancer (54, 58). Parallel results, in the
branch which evolved into CCL18_macro, their corresponding
high expressed genes were associated with metabolic precursor
and energy production (Figure 6H).

We further characterized the functions of nine subtypes
explained above by comparing pathway activities (Figure
S11G). Pathways involved in angiogenesis, EMT, TNFA
signaling via NFKB, and hypoxia were upregulated in
CX3CR1_macro, MMP9_macro, and CD14_mono. These
results indicate the potential tumor-promoting feature of
CX3CR1_macro derived from CD14_mono. Finally, we
applied SCENIC to identify TFs underlying each phenotype
(Figure 6J). Interestingly, some recruited macrophage
phenotypes shared similar TFs expression patterns with
monocytes and tissue-resident macrophages.

Intercellular Communication Networks
As mentioned above, we have obtained cancer epithelial cells
with poor prognosis (Scissor+ Epithelial cells), and we wondered
what function they are involved in with the crosstalk of the
tumor microenvironment in ovarian lesions. To this end, the
CellphoneDB repository (Version 2.1.4) (59) was used to predict
putative intercellular interactions between Scissor+ Epithelial
cells and other cell types based on ligand-receptor signaling.
Interestingly, many significantly overexpressed molecular pairs
were associated with immunosuppression and HG_M showed a
similar pattern to HG_P (Figures 7B, C). Compared with EC_P,
Scissor+ Epithelial cells in HG_M and HG_P had more outgoing
interactions with other cell types. Of note, macrophage and
fibroblasts connected with Scissor+ Epithelial more frequently
in HG_M (Figure 7A). When Scissor+ Epithelial cells expressed
a relatively high level of EGFR as receptors, their corresponding
ligands, such as AREG, COPA, GRN, MIF, and TGFB1, were
widely expressed in other cells. When Scissor+ Epithelial cells
expressed genes related to angiogenesis (VEGFA), the
interactions (VEGFA_FLT1, VEGFA_KDR) were slightly
abundant in HG_M. In addition, when Scissor+ Epithelial
expressed ACKR2 acting as a receptor for chemokines
including CCL3/CCL4/CCL5, their interactions were more
abundant in HG_P than that of the other two groups
(Figure 7B). It has been reported that ACKR2 is a scavenger
receptor for chemokines and its deficiency against metastasis
(60). And, CCL5 is important for the recruitment and activation
of lymphocytes (61), so we proposed that ACKR2_CCL5 may
weaken the recruitment and activation of lymphocytes,
contributing to the metastasis of primary high-grade serous
carcinoma. Among the three groups, the MDK_LRP1 molecule
pair between Scissor+ Epithelial cells and myeloid cells expressed
significantly, while their mean expression level in EC_P was
higher than HG_P and HG_M (Figure 7B). MDK can combine
with its receptor LRP1, which is beneficial to tumor-infiltrating
macrophages, promoting myeloid inhibitory cell differentiation
Frontiers in Immunology | www.frontiersin.org 11
(MDSCs) (62, 63). Thus, MDK targeted therapy should suggest
an effective treatment for ovarian cancer.

In general, these results revealed that the crosstalk between
Scissor+ Epithelial cell and other cell types via diverse receptor-
ligand signals may profoundly affect ovarian cancer development
and metastasis.
DISCUSSION

Our current study has comprehensively characterized the
dynamic variation of gene profiles during tumor progression in
HGSOCs, as well as the heterogeneity of tumor cells, fibroblast
cells, and immunophenotype, and the intricate intercellular
interactions across HG_P, HG_M, and EC_P. We have
identified unique subpopulations such as Scissor+ Epithelial
cells, CAFs–Fibro_2, CX3CR1/CCL18 macrophages, and
GZMK/GZMH CD8+ T cells. Those results provide a new
perspective on the tumor microenvironment of ovarian cancer.

Epithelial cells were the largest cluster of cells, composing ~31%
of the cells analyzed. However, current single-cell studies of ovarian
cancer cannot explicitly distinguish cells with specific clinical
phenotypes (24). To this end, Scissor+ cells with poor prognosis
were identified by the Scissor algorithm. Consistent with the
previous conclusion that the EMT signature is a potential factor
for tumor invasion and metastasis (26, 27), the genes related to the
EMT signature, including MGP, GAS1, and JUN, were found in
Scissor+ cells of metastatic HGSOCs lesions. Moreover, during
HGSOCs progression, several signaling pathways such as the cell
cycle, tumor cell proliferation, oxidative phosphorylation, and TCA
cycle, which needed energy metabolism, were markedly enhanced,
suggesting that poly (ADP-ribose) polymerase (PARP) inhibition
may be a targeted strategy for the treatment of metastatic HGSOCs
(31–33). Strikingly, in our data, regardless of whether the primary
tumor was from the left ovary or the right, the pathway activities
generated by the tumor progression were basically consistent,
as well as their copy number alterations in one segment
of chromosomes.

Since the fibroblasts were the second-largest cluster cells
analyzed, we observed Fibro_2, a subtype of CAF expressing
the EMT program was specifically enriched in HG_M. This
result supports that CAFs contribute to the EMT in HG_M and
subsequently promote metastasis (64). Beyond that, the
IL6_JAK_STAT3 signal pathway was also more enriched in
Fibro_2. Consistently, JAK/STAT inhibitor JSI-124 has been
proven to have an anti-tumor property in HGSOC cell lines
(11). Combination therapies with the EMT or JAK/STAT
inhibitor may help in the treatment of HGSOCs.

T cells are the crucial players in cancer immunotherapy (44,
45). Olalekan has revealed that ovarian cancer with high
infiltration of CD8+ TOX+ and CD4+ GNLY T cells may be a
good indication for patients (10). In our data, we found low T cell
infiltration in EC_P compared with HG_P and HG_M.
Furthermore, GZMH CD8 cells and GZMK CD8 cells
simultaneously presented cytotoxicity and cell exhaustion.
Notably, HG_M showed the highest cytotoxic of CD8+ T cells
while the highest exhaustion of CD8+ T cells was in HG_P.
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Through the gene regulatory networks analysis, we speculated
that PRDM1 may be involved in CD8+ T cells exhaustion and
predicted that its high expression in ovarian cancer was
associated with poor prognosis.

It has been manifested that TAM can promote the formation of
niches before metastasis by secreting specific cytokines (65). They
also can regulate the Tregs and Th17 cells to create
immunosuppression, thereby promoting invasion and metastasis
of ovarian cancer (66). On the basis of these theories, we have
identified a subtype of TAM (CX3CR1_macro) with abundant
production of BAG3, which can combine with IFITM2, leading to
tumor metastasis (53). This TAM subtype also owns a high level of
VEGFA, CXCL8, and IL1b, similar to previously reported TAM
induced frommonocyte with factor-1a stabilization in solid ovarian
cancer that promoted tumor inflammation and metastasis (54).

By investigating the signaling network of Scissor+ Epithelial
cells - other cells communication, we detected several receptor-
ligand complexes that should be paramount for ovarian cancer
Frontiers in Immunology | www.frontiersin.org 12
development. Compared with HG_P and EC_P, stronger
angiogenesis and tumor cell proliferation of intercellular
interactions in HG_M. Metastasis of high-grade serous
carcinoma may be related to the interaction between high
expression of ACKR2 chemokine receptor and cytokines such
as CCL5. The apparent pair of MDK_LRP1 among the three
groups suggested that inhibition of the MDK_LRP1 pair might
be an effective therapeutic target for ovarian cancer to reduce
myeloid inhibitory cell differentiation (MDSCs).

We note that there are several limitations to our study. First,
the number of patients with metastatic HGSOCs is small.
Second, the clonal relationship of T cells was not investigated
while T cell receptor therapy is an alternate therapy with great
potential for ovarian cancer treatment (67). Hence, enlarging the
cohort of metastatic HGSOCs and conducting immune profiling
of T cell receptors and spatial transcriptomic may help unravel
molecular mechanisms and elucidate the roles of different
immune cells in HG_M.
A
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FIGURE 7 | The intricate intercellular interplay in HG_P, HG_M, and EC_P. (A) Circos plot shows the intercellular interactions in HG_P, HG_M, and EC_P. Each line
represents an interaction where one end represents a ligand that is expressed in one cell type and the other end represents a receptor that is expressed in another
cell type. The thickness of each line corresponds to the number of distinct interacting pairs. (B, C) Dot plot shows the means of the average expression levels and
the possibility of occurrence in selective interaction pairs.
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In conclusion, our data have shed light on the tumor
microenvironment of metastatic high-grade serous ovarian
cancer at the single-cell level. Several novel markers and the
potential therapeutic target detected in this study could provide
valuable guidance for future clinical treatment.
MATERIALS AND METHODS

Patients and Samples Collection
In this study, a total of eight samples, including one metastatic
HGSOC matched two primary HGSOCs, one pair of matched
primary HGSOC and normal ovary, one primary HGSOC and
two ECs were collected from The Third Affiliated Hospital of
Guangzhou Medical University, which have been subjected to
pathological diagnosis. The clinical information of these patients
is summarized in Table S1.

Preparation of Single-Cell Suspension
Specimens collected from patients with ovarian cancer were
minced into fragments (< 1 mm3) and digested with 0.25%
trypsin-EDTA (GIBCO) and DNase I (Roche Diagnostics) for 30
min at 37°C with agitation. The dissociated cell suspension was
filtered through 70 mm strainer (BD Falcon), washed with cold
PBS, and centrifuged at 4°C, x400g for 5 min. The cell pellet was
resuspended in serum-free DMEM for further use.

Droplet-Based scRNA-Seq Data
Preprocessing
The Cell Ranger (Version 6.0.2) pipeline generated raw gene
expression matrices with human reference genome GRCh38.
After removing doublets with DoubletFinder (Version 2.0.3) in
each sample individually, the remaining cells were imported into R
software (Version 4.1.0) for subsequent analysis by the Seurat
package (Version 3.2.3). Cells with > 200 genes detected, genes
expressed >5 cells, and genes expression >0 in all cells were selected
for further analysis. Low-quality cells were removed according to
the following criteria: unique molecular identifiers (UMIs) <500;
genes <250 or genes >11000; UMIs derived from the mitochondrial
genome >25%. After quality control, the gene expression was
normalized by NormalizeData function, and cellular sequencing
depth was adjusted by the SCTransform method.

Multiple Datasets Integration
To integrate multiple datasets across three conditions, we used
the integration methods described at https://satijalab.org/seurat/
v3.0/integration.html and https://hbctraining.github.io/scRNA-
seq/lessons/06_SC_SCT_and_integration.html. The Seurat
package (version 3.0.0) was used to assemble multiple distinct
scRNA-seq datasets into an integrated and unbatched dataset. In
brief, we used Sctransform to regress out confounding factors:
number of UMIs, percentage of mitochondrial RNA, estimating
the variance of the raw filtered data, and identifying the 3000
most variable genes. After that, we performed canonical
correlation analysis (CCA) and then “integrated” the
conditions to overlay cells that were similar or had a “common
set of biological features” between groups.
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Identification of Major Cell Types and
Their Phenotype
Differential gene expression analysis was performed for clusters
generated at various resolutions by both the Wilcoxon rank-sum
test of Single-cell Transcriptomics (MAST) using the
FindMarkers function. Annotation of the resulting clusters to
cell types was based on the expression of marker genes along with
the cell types assigned by SingleR packages (version ‘1.6.1’).

TCGA Subtype Classification
Single cell subtypes were classified by the consensusOV (version
1.14.0) package, with get.consensus.subtypes function, which
also returns random forest probabilities for each subtype. The
core principle of consensusOV is that it: 1. standardizes genes in
each dataset to the same mean and variance, 2. computes binary
gene pairs based on the standardized expression values.

CNV Estimation and Identification of
Malignant Cells
We used an approach described previously to infer CNVs from the
scRNA-seq data. Its R code was provided online. (https://github.
com/broadinstitute/inferCNV) We set the cut off=0.1,
denoise=TRUE, HSMM=TRUE, and hclust_method=‘ward.D2’.
Immune cells from normal samples were considered as putative
nonmalignant cells as control, and their CNV estimates were used
to define a baseline. All epithelial cells from the ovarian tumor
sample were used as input.

Distinguish Phenotype-Associated Cells
To link cells with specific phenotypes, we used the Scissor
algorithm, a novel R package (Version 2.0.0) to identify the
populations of the single-cell data associated with given
phenotypes. (https://github.com/sunduanchen/Scissor)

Scissor integrates phenotype-associated bulk expression data
and single-cell data by quantifying the similarity between every
single cell and bulk sample. To identify relevant subpopulations, it
then optimizes a regression model on the correlation matrix with
the sample phenotype. The core formula of Scissor is as follows:

min
b

−
1
n
l bð Þ + l a ∥ b ∥1 +

1 − a
2

bTLb
� �

where L is a symmetric normalized Laplacian matrix; the tuning
parameter l controls the overall strength of the penalty, and a
balances the amount of regularization between smoothing and
sparsity. The phenotype-related cell subsets of interest are
selected using the non-zero coefficient b solved for by the
optimization model described above.

Statistical test:Thescissorsalgorithmincorporates a reliability test
to rule out false associations between identified cell subsets and bulk
phenotypes. This statistical test can determine whether the inferred
phenotype-cell association is reliable (P<0.05)ora falsepositive.First,
it performs k-fold cross-validation (CV) on the correlation matrix S
andestimates thecell coefficients inScissorusingonly the trainingset.
The predictive performance of the trained Scissormodel is evaluated
on the test set, and an averaged evaluation metric is obtained as the
actual test statistic. Second, the bulk sample labels are randomized
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multiple times to break the original bulk phenotype-genotype
relationship. Predictive performance at the random level was
quantified by performing the same Scissor analysis and CV
assessment using each permuted batch of data, obtaining the
background distribution of the corresponding assessment
measures. Finally, the actual test statistic calculated in the raw data
is compared to the background distribution value. The reliability
significance test p-value is the number of permutations-based test
statistics above (or below) the actual test statistic divided by the
number of permutations. In this study, the evaluationmeasures used
in reliability significance tests were mean squared error (MSE) for
linear regression (smaller isbetter), areaunder theROCcurve (AUC)
for classification (higher is better), and agreement Sex index (C-
index) for Cox regression (higher is better).

In actual operation, we set the family=“ cox”, alpha=0.077 for
the HG group, and alpha=0.0265 for the EC group to select the
phenotype-associated cell subpopulations by a Cox regression
model. The number of the Scissor selected cells should not
exceed 20% of the total cells in the single-cell data.

SCENIC Analysis
The regulons and TF activity (AUC) for each cell were calculated
with the SCENIC (version 1.2.4) pipeline with motif collection
version mc9nr, using per cell type with raw count matrices as
input. We used GRNBoost (in Python) instead of GENIE3 to
detect positive and negative associations for a bigger dataset. The
function of exportsForGRNBoost was used to generate a gene
expression matrix and TF list in special formats for GRNBoost
to load.

Trajectory Inference Analysis
Trajectory analysis was performed using Monocle 2 (version
2.20.0), We assessed the significant gene by the differential gene
expression analysis, and DEGs between the clusters were applied
for dimension reduction using the reduceDimension function.
Genes that changed along with the pseudotime were calculated
and visualized with the plot_pseudotime_heatmap and the genes
were clustered into subgroups according to the gene expression
patterns. To identify the genes that separate cells into branches,
the branch expression analysis modeling (BEAM) analysis was
performed and genes resulting from the BEAM analysis with a q-
value < 10−4 were separated into groups and visualized with the
plot_genes_branched_heatmap function.

Estimations of RNA Velocities by
Velocyto Package
In order to smoothly assess spliced and un-spliced mRNAs, we
needed to convert the bam file to loom file by the function of run10x,
provided by velocyto.py. Next, wemergedmultiple loom files by the
function of loompy.combinemand then loaded themerged loomfile
into R software to combine analysis with the Seurat package.

Ordering the Gene Expression During Cell
State Transitions
The genes, including the human surface proteins and
transcription factors (TFs), act as on/off switches between cell
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states and are discovered by GenSwitches R packages (Version
0.1.0). The workflow of GeneSwitches is as follows:

1. Binarize gene expression data into 1(on) or 0(off).
2. Fit logistic regression on the binary states of gene expression

and estimate switching time.
3. According to the default Settings, the poorly fitting genes are

filtered and specific genes are extracted for plotting.

Gene Set Variation Analysis (GSVA)
Pathway analyses were performed on the 50 hallmark pathways
described in the molecular signature database. We also evaluated
the activity of 65 specific KEGG pathway activities from the
Canonical pathway KEGG subset. To assign pathway activity
estimates to individual cells, we applied GSVA (Version ‘1.34.0’)
with standard settings.

Enrichment Analysis of Marker Genes
GeneOntology (GO) enrichment andKyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analysis of differential genes was
implemented by the clusterProfiler (version 4.0.2) package.
Reactome and Hallmark pathways analysis on differential genes
was implemented by Metascape web-based portal (68).

Cell Cycle Scoring Assign
Each cell in the epithelial subpopulation was assigned a cell cycle-
related score based on the gene expression of the G2/M and S
phases. The “CellCycleScoring” function of the Seurat package
was used to calculate the cell cycle score and store G2/M and S
phase scores into data objects to predict the cell state.

TCGA Database
The cohort of TCGA ovarian cancer data was downloaded from
https://xenabrowser.net/datapages/. The gene expression matrix
and clinical phenotypes of HGSOCs and ECs were assessed using
different datasets (GDC TCGA Ovarian Cancer (OV) & TCGA
Endometrioid Cancer (UCEC)).

Survival Analysis
The Kaplan-Meier method evaluated ovarian cancer survival
utilizing the KM plotter database (https://kmplot.com/analysis/).

We set split patients by ‘Auto select best cutoff’, which chooses
the best performing threshold as cut-off among all possibilities
between the lower and upper quartiles. All datasets provided by
the KM plotter were taken into consideration for analysis.

Definition of Cytotoxicity and
Exhaustion Scores
Cytotoxicity and exhaustion scores were calculated by the average
expression of the genes from the predefined gene sets in CD8+ T
cells of each group. To implement this method, the
AddModuleScore function of the Seurat package was applied as
previously described. We used eight cytotoxicity associated genes
(GZMA, GZMB, GZMH, GZMH, IFNG, NKG7, PRF1, GNLY)
and seven exhaustion associated genes (LAG3, TIGIT, PDCD1,
HAVCR2, CTLA4, ENTPD1, BTLA) to define cytotoxicity and
exhaustion scores
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Correlation Analysis Between Immune
Infiltration and Single Gene Expression
Spearman correlation between mRNA expression and exhausted
infiltrate in ovarian cancer was performed by immune cell
abundance pattern of Gene Set Cancer Analysis (GSCA)
(69).(http://bioinfo.life.hust.edu.cn/GSCA/#/).

Statistics
Statistical analysis was carried out using R and Bioconductor.

Cell-Cell Communication Network
To investigate potential interactions between different cell types
in the ovarian cancer tumor microenvironment, cell-cell
communication analysis was performed as described previously
by the CellPhoneDB Python package (Version 2.1.4), a publicly
available repository of curated receptors and ligands and their
interactions. Prediction of enriched receptor-ligand pairs
between two cell types was derived from the expression of a
receptor by one cell type and the expression of the corresponding
ligand by another cell type. By default, only ligands and receptors
expressed in at least 10% of cells in a given cell cluster were taken
into consideration.

Pairwise comparisons between selective cell types were
performed. We randomly permuted the cluster labels of all
cells 1000 times to determine the mean of average ligand and
receptor expression levels of the interactions, generating a null
distribution for each receptor-ligand pair. A p-value for the
likelihood of cell-type specificity of the corresponding
receptor-ligand complex was obtained by calculating the
proportion of the means as high as or above the actual mean.
Then, we can select biologically relevant interactions.
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