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Abstract: The precise control method plays a crucial role in improving the accuracy and efficiency of
the micromanipulation of optically induced dielectrophoresis (ODEP). However, the unmeasurable
nature of the ODEP force is a great challenge for the precise automatic manipulation of ODEP. Here,
we propose a data-driven kinematic model to build an automatic control system for the precise
manipulation of ODEP. The kinematic model is established by collecting the input displacement
of the optical pattern and the output displacements of the manipulated object. Then, the control
system based on the model was designed, and its feasibility and control precise were validated
by numerical simulations and actual experiments on microsphere manipulation. In addition, the
applications of ODEP manipulation in two typical scenarios further demonstrated the feasibility of
the designed control system. This work proposes a new method to realize the precise manipulation
of ODEP technology by establishing a kinematic model and a control system for micromanipulation,
and it also provides a general approach for the improvement of the manipulation accuracy of other
optoelectronic tweezers.

Keywords: optically induced dielectrophoresis (ODEP); data-driven modeling; controller design;
accurate manipulation

1. Introduction

Optically induced dielectrophoresis (ODEP), as a micromanipulation technology, has
been widely used for micro/nanoparticles’ separation, manufacture and assembly [1–4].
It is also considered as a label-free and non-invasive technique for the manipulation of
living cells. For example, Yang et al. completed the dynamic manipulation of a single
microparticle and demonstrated the human liver cells’ patterning for the first time using
ODEP [5]; Liao et al. realized the high-purity CD45neg/Ep-CAMneg cells’ isolation from
the blood samples of cancer patients by ODEP [6]; Liang et al. used ODEP to rapidly
separate Burkitt’s lymphoma cells and red blood cells without markers [7]. Our previous
works also used the ODEP to isolate S. cerevisiae from its surroundings for the diagnosis
of several special diseases [8–10]. The principle of ODEP manipulation is based on the
dielectrophoretic force generated by dynamically altering virtual electrodes that produce
non-uniform electric fields applied on polarized particles via controlling the optically
projected patterns, which are digitally generated by a computer. The dielectrophoretic force
is also called the “ODEP force”, and the ODEP force applied on a spherical particle in a
fluidic medium is described as:

FODEP = 2πR3εmRe[K∗(ω)]∇|E|2 (1)
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where R is the particle radius, εm denotes the permittivity of the liquid medium, K*(ω);
is a Clausius–Mossotti (CM) factor and E is the electric field [11–15]. However, the un-
measurable characteristic of ∇E in Equation (1) results in it being hard to calculate the
ODEP force applied on the manipulated object, which brings great challenges to its precise
manipulation. Stoke’s law is often used to characterize the magnitude of the ODEP force,
that is, the viscous resistance of the manipulated object when it moves at a uniform speed is
equal to the ODEP force [16]. While the manipulated object is also subjected to other forces
in addition to the ODEP force, such as gravity, Brown force and viscous resistance [17,18],
which makes precise manipulation of ODEP more difficult.

Fortunately, an automated manipulation method provides a feasible solution to the
aforementioned technical problem. Our previous work demonstrated an automatic method
for ODEP manipulation by introducing image processing and recognition to realize auto-
matic operation on microparticles [19]; Gan et al. also introduced PI control theory into
the ODEP system and accomplished specific trajectory control for a single polystyrene
microsphere as well as rapid aggregation operations through a visual feedback control
method [20]. These automatic operations take the operated position as the controlled object,
and use the position deviation of the manipulated particle as the feedback signal to achieve
precise operation by adjusting the position of the input optical pattern. In this paper, to
acquire more precise automatic manipulation of ODEP, we propose a data-driven kinematic
model of ODEP manipulation, which is independent of traditional ODEP force models
(Equation (1)) and is established with an ODEP automation control system to achieve more
accurate manipulation. A target recognition and location information collection system
was designed at first to obtain the displacements of the manipulated particles and the
optical patterns based on the previous works [19]. Then, the collected data were used to
establish the kinematic model of ODEP manipulation. The controller and automatic control
system were designed to achieve precise manipulation, and the latter’s feasibility and
control precision were validated by the numerical simulation. Finally, several experiments
have verified that the system achieved high-precision operations in different applications.
This provides a new method to describe the kinetic mechanisms of ODEP manipulation for
precise operations, and it is also used as a general approach for the improvement of the
manipulation accuracy of other optoelectronic tweezers.

2. Materials and System
2.1. Sample Preparation

5 µm polystyrene microsphere solution is prepared as follows. 7 mL deionized water
and 3 µL microsphere solution (Shanghai Huge Biotechnology Inc., Shanghai, China) with
the concentration of ~9 × 106 beads/mL were dropped in a test tube, and then, the solution
undergoes ultrasonic treatment for 30 min. In addition, add 400 µL bovine serum albumin
(BSA) solution to the microsphere solution to reduce its friction with ITO conductive glass
and its adhesion to the base plate of the ODEP chip [7,19]. The prepared microsphere
solution undergoes ultrasonic treatment for 10 min before experiments.

2.2. Experimental Setup

The system mainly includes a vision module, ODEP chip, 3D mobile platform, virtual
electrode generation module and automatic manipulation module, as shown in Figure 1.
The vision module is composed of a charge coupled device (CCD) (PL-D755, PixeLink
Inc., Ottawa, ON, Canada) and an objective lens, and is used to observe the manipulation
process in real time. The ODEP chip is the core part of the ODEP system, in which the mi-
cromanipulation is performed and it is fixed on a 3D mobile platform. The virtual electrode
generation module consists of a projector, a condenser lens and a function generator. A
projector is used to project optical patterns drawn by the software onto the ODEP chip, and
then a function generator is used to apply AC voltage to both the upper and lower layers of
the indium tin oxide (ITO) glasses of the ODEP chip to generate a virtual electrode in the so-
lution layer, consequently generating a non-uniform electric field and ODEP force applied
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on the manipulate particles. The automatic manipulation module contains the functions of
data collection, target recognition and the automatic setting of optical patterns [19]. During
automatic operation, the automatic manipulation module identifies the manipulated object
at first by an image recognition method, and then automatically captures and moves the
object to the target location by the designed control system. 
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Figure 1. Schematic of the experimental system. 

  

Figure 1. Schematic of the experimental system.

2.3. Fabrication of ODEP Chip

As the core part of the ODEP system, the ODEP chip is a “sandwich” structure, as
shown in Figure 1, whose upper and lower layers are transparent conductive glass covered
with ITO on one side (impedance of 3 Ω). The lower layer of the ITO glass is deposited
with a photosensitive material of hydrogenated amorphous silicon (a-Si:H) (thickness of
500 nm) on the side attached with ITO by the plasma enhanced chemical vapor deposition
method (PECVD) [17,21]. Then, the photosensitive material on the surface of the lower
layer was scratched off the at the boundary at 2~3 mm wide to expose the ITO conductive
layer, which is used to connect with the AC voltage. The two layers of the ITO glasses
are cleaned with ethanol and blow dried with nitrogen, respectively, and they are bonded
together with double-sided scotch tape to assemble a complete ODEP chip. Then, take two
copper wires: one end of the two wires is fixed on the conductive part of the two-layer ITO
glass substrate with adhesive copper foil, and the other end is clamped with the function
generator, respectively. Finally, the chip is fixed on the 3D mobile platform.

2.4. Working Principle of ODEP System

The a-Si:H is a well photoelectric material that has a large impedance under the
unilluminated condition, and shares most of the AC voltage drop, while the voltage of the
middle layer of an ODEP chip is low, that is, not enough to generate a non-uniform electric
field to actuate manipulated objects. When an optical pattern designed by the drawing
software is projected on the surface of the a-Si:H layer of ODEP chips, the impedance of the
illuminated area as well as its surrounding decreases significantly, which generates a non-
uniform electric field in the middle layer [22,23]. Then, an ODEP force will be produced
and applied on manipulated objects in the middle layer, so as to realize the manipulation
of the objects.

In this work, annular optical patterns are chosen to capture and manipulate 5 µm
polystyrene microspheres. The relative position of the manipulated microsphere in the
optical pattern is affected by the direction of the ODEP force, which is determined by the
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CM factor. Namely, if the microsphere is subjected to a positive ODEP force, it moves to
the edge of the illuminated area, and then, attaches to the edges of the annular optical
pattern; on the contrary, the moving direction of the microsphere is towards the center of
the illuminated area, and thus, a potential well is created under the action of negative ODEP
forces that keeps the microsphere in the center of the optical pattern [24,25]. So, in order
to manipulate the microsphere more easily, a negative ODEP force is chosen and adjusted
in the following results by changing the medium conductivity, where the microsphere is
captured in the center of the annular optical pattern.

3. Data-Driven Modeling
3.1. Data Acquisition

Establishing a kinematic model has a vital impact on improving the control accuracy
of the ODEPs’ manipulation. Although the system has a mechanism model for the ODEP
force as described above, the immeasurability of ∇E in the model makes it more difficult
to achieve precise control of the manipulation [26]. Therefore, a kinematics model of the
ODEP manipulation with a controllable input and measurable output is needed to achieve
precise operational control. To establish the model, the microsphere in the view is arbitrarily
selected to be manipulated, and the corresponding operation parameters are set, including
the optical pattern and its moving speed; then, the manipulated process in real-time is
recorded through the vision module, and the displacement data of the optical pattern and
the manipulated microsphere are extracted and collected. Finally, these data are divided
into two parts, one of which is used to build a data-driven kinematic model, while the other
is used to verify the accuracy of the model.

Usually, an annular optical pattern is used to capture and manipulate a single micro-
sphere, and the optical pattern is controlled to move and push the manipulated microsphere
to the target location. Here, the displacements of the optical pattern are used as input
signals, and the displacements of the manipulated microsphere are taken as output signals.

Combining with our previous work on automatic manipulation [19], the input and
output datasets were obtained by using the imaging recognition method to automatically
identify and record the relative positions of the manipulated microsphere at the different
moving speeds of the optical pattern. The inner radius and the outer radius of the annular
optical pattern are 20 µm and 25 µm, respectively, and the movement speeds of the optical
patterns vary from 0.75 µm/s to 2.0 µm/s. All acquired data are under the same mag-
nification of the CCD. The position information of the optical patterns and manipulated
microspheres is based on the pixel value of the field of view as the position coordinates.
The coordinates are established with the lower left corner of the field of view as the origin,
the horizontal direction as the x-axis and the vertical direction as the y-axis. Figure 2 is a
typical dataset of the collected signals, which includes the time-domain input data of the
x-axis and y-axis values of the optical pattern (Figure 2a,b) and the corresponding output
data of the manipulated microsphere (Figure 2c,d). Figure 2c,d also show that there are
uncertain deviations in the movement trajectory of the manipulated microsphere between
the real-time measured state and in the ideal state (only subject to the ODEP force), mainly
because the microsphere is affected by forces other than the ODEP force, including viscous
resistance, gravity, etc.
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Figure 2. An example of data acquisition. Coordinates values of the optical pattern at the x-axis
(a) and the y-axis (b), respectively. Corresponding coordinates values of the manipulated microsphere
at the x-axis (c) and the y-axis (d), respectively. The green dashed lines represent the ideal movement
trajectories of the manipulated particle.

3.2. Modeling

The kinematic model of the ODEP system takes the displacements of the optical
patterns as the input and the locations of the manipulated objects as the output, and the
model is described as the following by Equation (2).[

y1(k)
y2(k)

]
= G(z−1)

[
u1(k)
u2(k)

]
(2)

where ui(k), i = 1,2, are the coordinate values of the x-axis and y-axis of the optical pattern,
respectively; yi(k), i = 1,2 and indicate the coordinate values of the x-axis and y-axis of the
manipulated microsphere, respectively; and G(z−1) represents the transfer function.

Then, the collected dataset is divided into two parts, of which 600 sets of the data
are used to build the model and the remaining 219 sets of the data are used to verify the
accuracy of the model. The system identification toolbox of Matlab software was used to
established the transfer function G(z−1), as described in Equation (3).

G(z−1) =

 1.038−1.02z−1

1−0.9797z−1−0.003785z−2

0.0007−0.0007089z−1

1−1.998z−1+0.9988z−2

−0.0002807+0.0002092z−1

1−1.993z−1+0.9938z−2

1.008−1.008z−1

1−1.04z−1+0.04001z−2

 (3)

Considering the independent control of the x-axis and y-axis, Equation (3) can be
simplified as Equation (4):

G(z−1) =

[
1.038−1.02z−1

1−0.9797z−1−0.003785z−2

0

0
1.008−1.008z−1

1−1.04z−1+0.04001z−2

]
(4)
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Figure 3a,b show the measured data and the model output data of the x-axis and y-axis
in the process of establishing the model, respectively, and the red dotted lines and the blue
solid lines in Figure 3 represent the actual measured output and model-calculated output of
the manipulated microsphere in the same input trajectory of the optical pattern, respectively.
The best fit at the x-axis and y-axis are 93.36% and 84.18%, respectively. Figure 3c,d show
the corresponding model verification curves, which were acquired by validating the model
with the remaining 219 datasets at the x-axis and y-axis, respectively. The results show that
the model accuracy at the x-axis and y-axis are 86.37% and 94.46%, respectively. The results
demonstrate that the established model can fit well the relationship between the input and
output of the system.
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(a) and the y-axis (b), respectively; The model output and the measured output with the data sets for
validating the model at the x-axis (c) and the y-axis (d), respectively.

3.3. Controller Design

Based on the aforementioned kinematic model, an automated operation controller
was established. PID, as a precise control method commonly used in industrial fields
and embedded equipment, was adopted in this control system, as shown in Figure 4.
Considering that the data used for modeling are time-domain data in two vertical directions,
and the data in the two directions themselves are decoupled, therefore, an independent
PID control process for the two directions were established, and the transfer function is
demonstrated in Equation (5):

H(z) =
[

PID1(z) 0
0 PID2(z)

]
(5)
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Figure 4. Schematic diagram of the control system.

In addition, it must be considered that the manipulated microsphere should always
be located inside the optical pattern during the operation process when using the annular
optical pattern, otherwise, there will be an escape phenomenon, that is, if the manipulated
microsphere is outside the annular during the movement, it is difficult to capture it again
and realize target operation. Especially, escape of the manipulated microsphere is easier to
occur when the feedback deviation value is larger than the diameter of the annular optical
pattern. Therefore, the PID output is not directly used as the input value of the controlled
object, and instead, the initial values are added, as described in Equation (6), that is,[

u1
u2

]
=

[
v1
v2

]
+

[
x0
y0

]
(6)

where v1 and v2 are the PID output of the x-axis and y-axis, respectively, and (x0,y0) is the
initial position of the manipulated microsphere. The design of the actuator reduces the
scope at each PID adjustment, thereby avoiding the escape of the manipulated microsphere.

In order to verify the efficiency and select the control parameters, a numerical simula-
tion was performed. Here, only a PI control was used, and the PI parameters of both the
x-axis and y-axis directions were set to be consistent. The PI parameters were selected as:
proportional coefficient Kp = 0.01 and integral coefficient Ki = 0.1. The targeted location
of the manipulated microsphere is (200, 800), and the initial position is (1500, 300). The
curves of the model output at the x-axis and y-axis direction are shown in Figure 5a,b,
respectively. The results show that the manipulated microsphere finally stays at the target
position within 50 s and indicate that the microsphere can reach the set position accurately
under the PI control parameters.

Micromachines 2022, 13, x FOR PEER REVIEW 5 of 9 
 

 

 
Figure 5. Numerical simulation results of the control system at the x-axis (a) and the y-axis (b), 
respectively. 

  

Figure 5. Numerical simulation results of the control system at the x-axis (a) and the y-axis (b), respectively.

4. Results and Discussion
4.1. Experimental Verification

Next, the PID controller and the designed actuator were integrated into the ODEP
system. Combined with the image recognition approach, which can acquire the real-time
location of the manipulated microsphere, proposed in our previous work [19], the precise
automatic manipulation on the microsphere was performed as follows.

In this experiment, the inner radius and outer radius of the optical pattern were set
as 20 µm and 25 µm, respectively. The PI parameters were set as: proportional coefficient
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Kp = 0.01 and integral coefficient Ki = 0.1. The coordinates of the initial position of the ma-
nipulated microsphere were (235, 468), and the coordinates of the target location were (635,
868). The amplitude and frequency of the AC voltage were set as 15 V and 300 kHz, respectively.

The manipulation process and results are shown in Figure 6. The target location is
marked with a red cross, and the initial position is indicated as a blue dotted circle. The
manipulation process (Figure 6) demonstrates that the microsphere can accurately reach
the target position.
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Figure 6. Moving process of the microsphere manipulation based on the designed control system.
The yellow circle is the optical pattern, the red “×” is the target point and the blue dotted circle is the
initial position.

Subsequently, the real-time position changes of the manipulated microsphere between
the calculated results from the model and the actual, measured results were compared
under the same PI parameters and set points, as shown in Figure 7. Figure 7a,b represent
the time-dependent curves of the theoretical and the experimental coordinate values of
the x-axis and y-axis during the operation, respectively. The results show that although
the manipulation in the experiment has a hysteresis relative to the theoretical calculation,
the manipulated microsphere was moved to the set position in a relatively short time both
theoretically and experimentally. It is also validated that the model described above can
accurately demonstrate the manipulation process of ODEP.
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Figure 7. Diagrams of the model output and the actual output at the x-axis (a) and the y-axis (b), respectively.
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4.2. Accurate Manipulation

In this section, the control method was used in different scenarios of precise manipula-
tion. Achieving precise micromanipulation in narrow areas is a typical application of ODEP.
Therefore, the first scenario is to move the manipulated microsphere through a narrow
passage to the target position, as shown in Figure 8. The center of the red arc is the target
location, whose coordinate values are (1300, 500), and the notch of the arc is the entrance of
the manipulation of the annular optical pattern. Here, the red arc represents a barrier that
prohibit passage. The radius and line width of the red arc are 40 µm and 3 µm, respectively.
The inner radius and outer radius of the annulus optical pattern were set as 20 µm and
25 µm, respectively, and the amplitude and frequency of the AC voltage were set as 15V
and 300 kHz, respectively.
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Figure 8. Diagrams of the manipulation process. The center of the red arc is the target position and
the notch of the arc is the entrance of the optical pattern; The green circle is an annular optical pattern.
(a–f) are the real-time status of automatic manipulation in chronological order.

Figure 8a–f show the manipulation processes in this scenario. In this experiment, a
transition point was set at the center of the entrance of the red arc to ensure that the light
pattern would not touch the arc wall during the manipulation. The results illustrate that the
control method can accurately move the microsphere to the target position in this scenario
with a position error approximating 0.

Obstacle avoidance is also a common scenario in ODEP micromanipulation, especially
during the precise screening and isolation of living cells. Then, in another scenario, the
control method to the micromanipulation was used in the application of obstacle avoidance.
As shown in Figure 9, the red linear spot represents an obstacle, and the green circle is
the annular optical pattern. Tthe inner radius and the outer radius of the annular optical
pattern were set as 20 µm and 25 µm, respectively; the length and width of the linear spot
were 90 µm and 2.5 µm, respectively. The initial position is to the left of the linear spot, and
the target location is to the right of the linear spot. The amplitude and frequency of the AC
voltage were set as 15 V and 300 kHz, respectively.

In this application scenario, the microsphere bypassed the red obstacle from the initial
position to the target location. Similarly, to prevent the annular optical pattern from touch-
ing the linear spot during the manipulation, a transition potion was set below the linear
spot, and the microsphere was first moved to this transition point and then to the target
location. Figure 9a–f show the operation process in this scenario. The results demonstrate
that the control method proposed in this paper can precisely move the microsphere to the
target position across the obstacle, and the position accuracy obtained by the data analysis
of the moving trajectory approximates 0.
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Figure 9. Diagrams of the manipulation process for obstacle avoidance. The red linear grating
denotes the obstacle, and the green circle is the annular optical pattern. (a–f) are the real-time status
of automatic manipulation in chronological order.

5. Conclusions

In summary, this paper proposed an accuracy control method for ODEP manipulation
by establishing the corresponding data-driven kinematic model. The displacements infor-
mation of the optical pattern and the manipulated microsphere were obtained, respectively,
through the data acquisition and image recognition methods under the designed optical
patterns. Then, the kinematic model of the ODEP manipulation was established with the
input of the optical pattern displacements and the output of the microsphere displacements.
The kinematic model does not pay attention on the various forces applied on the manipu-
lated object, avoiding the challenges of precise operation due to the unmeasurable nature of
the ODEP force. Then, the control system of the ODEP manipulation was designed based
on the kinematic model, and the control parameters were obtained through numerical
simulations. The feasibility of the designed control system was verified by precise manipu-
lation on microspheres, and the applications on two typical scenarios of the control system
further demonstrates the feasibility of the control method in ODEP manipulation. This
study provides a new model to accurately demonstrate ODEP manipulation and establishes
a precise control method for ODEP manipulation, which is of great significance to further
expand the application of ODEP. It also provides a general approach for the improvement
of the manipulation accuracy of other optoelectronic tweezers. In the future, kinematic
models based on a variety of optical patterns and operation modes will be established,
making ODEP suitable for any occasion to achieve precise micromanipulation.
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