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Abstract The quality of social relationships is a powerful determinant of lifetime health. Here,

we explored the impact of social experiences on circulating oxytocin (OT) concentration, telomere

length (TL), and novelty-seeking behaviour in male and female rats. Prolonged social housing raised

circulating OT levels in both sexes while elongating TL only in females. Novelty-seeking behaviour

in females was more responsive to social housing and increased OT levels than males. The OT

antagonist (OT ANT) L-366,509 blocked the benefits of social housing in all conditions along with

female-specific TL erosion and novelty-seeking deficit. Thus, females seem more susceptible than

males to genetic and behavioural changes when the secretion of endogenous OT in response to

social life is interrupted. Social enrichment may, therefore, provide a therapeutic avenue to

promote stress resiliency and chances of healthy aging across generations.

DOI: https://doi.org/10.7554/eLife.40262.001

Introduction
The quality and quantity of social relationships in the modern era are rapidly changing, with increas-

ing social isolation, and many individuals no longer living in extended families or missing close confi-

dants. Restricted social relationships can endanger public health and increase mortality rate

(Mikosz et al., 2016). Males and females, both human and animal, respond differently to social

interactions. Differences may range from changes in neurobiological processes (Mikosz et al., 2016;

Stack et al., 2010; Ngun et al., 2011; Cherif et al., 2003) to displaying distinctive gender-specific

behaviours (Szell and Thurner, 2013; Jukka-Pekka Onnela et al., 2014; Palchykov et al., 2012;

Trainor et al., 2011). Genetic and hormonal determinants regulate social behaviours

(Choleris et al., 2018) and dictate morphological and behavioural variations in males and females.

Robust sexual dimorphism was found in the neuropeptide oxytocin (OT) receptor density throughout

the rat brain (Smith et al., 2017) and in OT receptor signaling in the medial prefrontal cortex

(mPFC), which may modulate social interactions in females in response to OT (Nakajima et al.,

2014). Primarily synthesized in the paraventricular nucleus (PVN) and supraoptic nucleus of the
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hypothalamus (Jurek and Neumann, 2018), OT is a key hormonal correlate of social behaviours in

mammals (Anacker and Beery, 2013; Knobloch and Grinevich, 2014). OT exposure promotes

social behaviours (Gamer et al., 2010; Guastella et al., 2008; Andari et al., 2010; Lim and Young,

2006; Bernaerts et al., 2017; McGraw and Young, 2010) and facilitates adaptive responses to

stressors and stress resiliency (Olff et al., 2013). OT has also been shown to prevent premature

aging of muscle tissue and facilitates muscle regeneration (Elabd et al., 2014). Hence, it can be

hypothesized that OT exposure influences the chances of healthy aging.

A specific cellular index which differs according to age and sex indicates changes in telomere

length (TL). Telomeres are DNA-repetitive nucleotide segments at the ends of each chromosome in

mammals that protect genetic material from degradation during somatic cell division. Telomeric

DNA in humans naturally shortens with age, and therefore TL represents a sensitive indicator of tis-

sue-specific cellular aging (Puterman et al., 2016). As TL decreases along with proliferation in each

cell division, telomere shortening can be considered a measure of biological aging (Sahin and

DePinho, 2010; Blackburn, 2005). A variety of influences such as distress (Epel et al., 2004;

Epel et al., 2010), childhood adversity (Puterman et al., 2016), interpersonal instability

(Drury et al., 2014), social disadvantages and deprivation (Theall et al., 2013), and social isolation

(Aydinonat et al., 2014) have been shown to be correlated with TL erosion. TL has also been shown

to be positively associated with psychosocial factors, such as conscientiousness (Edmonds et al.,

2015), optimism (Schutte et al., 2016), social support (Uchino et al., 2012), and social-pair mate

choice (Johnsen et al., 2017).

It appears that females generally have longer telomeres than males (Gardner et al., 2014;

Barrett and Richardson, 2011), and shorter telomeres in males are correlated with reduced social

support (Zalli et al., 2014). This has led to the speculation that social experiences possibly make

females more susceptible to telomere elongation than males, a lifestyle-dependent process that, in

concert with sex-specific hormonal correlates results in longevity gender gaps (Merrill et al., 2017).

Also, females show facilitated social learning compared to males (Ervin et al., 2015), along with

estrogenic control of OT and OT receptor activity (Anacker and Beery, 2013). Accordingly, we have

recently shown that prolonged social experiences change brain structure and behaviours in a sexu-

ally dimorphic manner in rats (Faraji et al., 2018).

Here, we investigated whether social experiences modulate genetic and behavioural repertoires

through OT in male and female rats. Whereas OT facilitates novelty-seeking behaviour and TL, the

OT antagonist (OT ANT) L-366,509 in socially raised male and female rats intermittently reduced OT

secretion. The results suggest that extended social experiences modulate novelty seeking and TL

through OT in a sex-dependent manner, with females being more susceptible than males.

Results

Experiment 1
Social experience increased plasma OT concentration in females
Figure 1A shows changes in plasma OT concentrations across different groups as a function of hous-

ing condition (standard, males: n = 23, females: n = 21; social, males: n = 22, females: n = 22). A sig-

nificant effect of housing condition was observed in terms of circulating OT concentration (social vs.

standard; F1,86=24.85, p � 0.001) and Group (social males and females vs. standard males and

females; F3,84=13.69, p � 0.001), suggesting that long-term social experiences had a significant

impact on plasma OT in socially raised animals (98.82 ± 3.94 vs. 71.00 ± 3.94 pmol/L). Post-hoc

Tukey comparisons also indicated that social females showed higher OT concentration than standard

females (108.55 ± 5.25 vs. 80.65 ± 5.37 pmol/L; p � 0.002). Furthermore, a marginal difference was

observed between social males and females (89.09 ± 5.25 vs. 108.55 ± 5.25 pmol/L; p = 0.05; Post-

hoc Tukey). No effect was found in terms of litter.

Social experience increased telomere length (TL) in females but not males
Examination of TL in ear notch skin cells showed that socially raised rats (males: n = 31, females:

n = 23) had greater telomere length than standard animals (males: n = 28, females: n = 27;

F1,107 = 24.91, p � 0.001). Also, a significant effect of group was observed (F3,105 = 65.84,

p � 0.001) while social female rats displayed greater TL than standard rats and their social male
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counterparts (all p � 0.001; Post-hoc Tukey). No difference was found between social males and

standard males and females (all p � 0.05; Post-hoc Tukey; Figure 1B). No effect was found in terms

of litter.

Novelty-seeking behaviour in females was significantly influenced by social
experiences
An illustration of the corridor field task (CFT) with and without central object along with paths taken

by rats in standard and social groups is shown in Figure 2A and B. No-central object CFT: panel (C)

compares the exploratory behaviour in both groups (standard: n = 33; social: n = 39) within different

zones of the no-central object CFT. There was a significant main effect of housing condition (two lev-

els) in terms of the time spent in each zone (corridor: F1,70 = 39.60, p � 0.001; open: F1,70 = 20.88,

p � 0.001; central: F1,70 = 16.43, p � 0.001). When compared with the standard group, social rats

spent less time in the corridor zone (243.02 ± 8.8 s vs. 325.60 ± 9.6 s) and more time in the open

(177.76 ± 7.9 s vs. 123.84 ± 8.6 s) and central zones (59.20 ± 4.7 s vs. 30.54 ± 5.2 s). No effect was

found in terms of litter, and no significant interactions between factors were found, except for

Figure 1. Housing conditions influence plasma OT and telomere length. (A) Social enrichment altered plasma OT levels in socially raised animals.

Social females showed higher OT concentration than social males (n = 21–23/group). (B) Social experience increased telomere length only in females

(n = 23) when compared with standard rats (n = 27–28) and their social male counterparts (n = 31). Asterisks indicate significant differences: *p � 0.05;

**p � 0.01; one-way ANOVA. Filled circles: mean OT concentrations in individual rats. Horizontal bars: mean OT concentrations in each group. pM:

picoMolar, OT: oxytocin, Tel: telomere, bp: basepair.

DOI: https://doi.org/10.7554/eLife.40262.002

The following source data is available for figure 1:

Source data 1. Housing conditions influence plasma OT and telomere length.

DOI: https://doi.org/10.7554/eLife.40262.003

Source data 2. Housing conditions influence plasma OT and telomere length.

DOI: https://doi.org/10.7554/eLife.40262.004
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sex � litter (p � 0.03). Furthermore, between-subjects analysis indicated a significant effect of Group

(four levels) for all zones (three levels; all p = 0.000) showing that social females spent significantly

less times in the corridor zone than any other group (all p � 0.02; Post-hoc Tukey) and made more

visits to the open zone than standard rats (all p � 0.05; Post-hoc Tukey). No significant difference

was found between social males and females in open zone exploration (p � 0.6; Post-hoc Tukey).

Social females also spent more time in the central zone when compared with standard housed ani-

mals and their male counterparts (all p � 0.01; Post-hoc Tukey).

Central-object CFT: A significant effect of housing condition was observed in terms of the time

spent in corridor (F1,70 = 154.88, p � 0.001), open (F1,70 = 112.75, p � 0.001) and central zones

(F1,70 = 65.65, p � 0.001) of the CFT with central object (Figure 2D). Again, social animals explored

the corridor zone less than standard rats (175.23 ± 8 s vs. 322.93 ± 8.7 s) and spent more exploration

time in the open (196.23 ± 5.27 s vs. 113.51 ± 5.7 s) and central zones (108.53 ± 5.4 s vs. 43.54 ± 5.9

s) when compared with standard rats. Also, a significant effect of group was found for the corridor

(F3,68 = 115.42, p � 0.001), open (F3,68 = 42.31, p � 0.001), and central zones (F3,68 = 17.01,

p � 0.001), indicating that social females explored the corridor zone less and other zones more than

any other group, even their male counterparts (all p � 0.001; Post-hoc Tukey). No effect was found

in terms of litter or interaction between factors (all p � 0.05). Thus, social experience appeared to

affect novelty-seeking explorative behaviours in the CFT in a sexually dimorphic manner, by which

socially reared females explored the open and central zones more than social males and standard

females. This behavioural flexibility was also supported by additional ROC analysis showing that

social females experienced greater changes in novelty-seeking behaviours than other groups from

no-central object to central-object versions of the CFT in the open and central zones (Figure 2E and

F).

Simple linear regression analyses were conducted to predict novelty-seeking behaviour and TL

based on plasma OT concentration. Plasma OT concentration and exploratory behaviour in no-

Figure 2. Social experience alters novelty-seeking behaviour in the corridor field task (CFT). (A and B) Illustration of the no-central and central-object

CFT protocol along with samples of paths taken by rats in standard and social groups. (C and D) Social life affected novelty-seeking behaviour in a

sexually dimorphic manner. Socially reared females (n = 22) explored the open and central zones more than their social male counterparts (n = 17) or

standard group (n = 16 and 17). (E and F) The rate of changes (ROC) indicated the most profound impact on social females than any other group from

no-central object to central-object versions of the CFT in the open and central zones. Also, a significant regression equation was found only in social

females (n = 22) where OT concentration significantly predicts the exploration in the corridor and central zones (G) when central object was not

presented. (H) Analysis of linear regression indicated significant regression equations for the time spent in open and central zones only in social females

(n = 22) by which the increased plasma OT levels significantly predicted exploration time in CFT when the central object was presented. (I) The TL

elongation, also, was significantly associated with an increase in plasma OT level only in social females (n = 22).

DOI: https://doi.org/10.7554/eLife.40262.005

The following source data is available for figure 2:

Source data 1. Social experience alters novelty-seeking behaviour.

DOI: https://doi.org/10.7554/eLife.40262.006
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central object CFT: a significant regression equation was found (F1,20 = 11.92, p � 0.003) only in

social females (n = 22) with an R2 = 0.373, through which the OT concentration significantly predicts

the exploration in the corridor zone (420.34 + �1.84). The observed regression equation for explora-

tion in the central zone was also significant (F1,20 = 9.08, p � 0.007; R2 = 0.312; Figure 2G). There-

fore, only in social females does plasma OT concentration predict a particular profile of CFT

exploration through which in the presence of enhanced OT concentration, the corridor zone was less

explored whereas the central zone was more explored in social females when compared to other

groups.

Plasma OT concentration and exploratory behaviour in central object CFT: analysis of linear

regression indicated significant regression equations for the time spent in open (F1,20 = 17.33,

p � 0.000; R2 = 0.464) and central (F1,20 = 30.01, p � 0.000; R2 = 0.60) zones by which the increased

plasma OT levels only in social females significantly predicted exploration time (Figure 2H). No sig-

nificant changes were observed for the time spent in the corridor zone (p = 0.07; R2 = 0.148).

Plasma OT concentration and TL: a significant regression equation was found (F1,20 = 18.88,

p � 0.000; R2 = 0.486) only in social females through which the predicted TL was equal to

3816.88 + 8.53 (OT concentration) bp when OT concentration was measured in pM (Figure 2I).

Thus, TL elongation was associated with higher plasma OT level only in social females.

Experiment 2
The OT antagonist L-366,509 reduced circulating plasma OT levels
Circulating OT concentration showed a significant effect of group (n = 10–13/group, F7,83 = 14.64,

p � 0.001), whereas injection of the OT antagonist L-366,509 resulted in a significant decrease in all

ANT groups (all p � 0.05, Post-hoc Tukey) except for standard OT ANT males (p = 0.475, Post-hoc

Tukey; Figure 3A and B). Also, a significant effect of housing condition (n = 45 and 46, F1,89 = 9.72,

p � 0.002) was observed suggesting that social rats still had greater concentration of the plasma OT

when compared with standard animals (80.55 ± 2.72 vs. 68.43±2.75 pmol/L). A significant effect of

sex (n = 44 and 47, F1,89 = 11.08, p � 0.001) indicated greater levels of OT in females than males

(81.17 ± 2.76 vs. 68.36±2.67 pmol/L).

Social control females displayed higher plasma OT concentration than any other group (all

p � 0.05, Post-hoc Tukey) except for social control males (p = 0.07, Post-hoc Tukey). There were

also significant differences in plasma OT with social control males having significantly higher OT con-

centration than other groups (p � 0.05, Post-hoc Tukey) except for standard control females and

social OT ANT females (all p � 0.05, Post-hoc Tukey). A significant effect of litter was also found in

terms of OT concentration (F10,81 = 11.46, p � 0.03), in which litters 4 and 7 displayed higher OT lev-

els than other litters (all p � 0.05, Post-hoc Tukey). Thus, the OT antagonist administration had a sig-

nificant impact on the plasma OT concentration in OT ANT groups, particularly in females regardless

of their housing condition.

OT antagonist in social females significantly reduced telomere length
Despite significant effects of housing condition (n = 48 and 45/group, F1,91 = 4.80, p � 0.03), sex

(n = 47 and 46/group, F1,91 = 14.63, p � 0.001), and group (n = 10–13/group, F7,85 = 7.06,

p � 0.001), the administration of the OT antagonist L-366,509 had no significant effect on the TL in

OT ANT groups, except for social OT ANT females (Figure 3C and D). Only social females had

greater TL than other groups (all p � 0.05, Post-hoc Tukey), replicating the results of Experiment 1.

In turn, the OT antagonist abolished the benefits of social housing by reducing circulating OT and

reducing TL in females only. No effect of litter was found.

OT antagonist significantly influenced novelty-seeking behaviour in all
groups
Figure 4A and C compare novelty-seeking behaviour in the CFT in animals with and without OT

antagonist L-366,509 treatment. No-central object CFT: administration of L-366,509 affected nov-

elty-seeking behaviour within all zones of the CFT across groups. A significant effect of housing con-

dition (F1,53 = 11.63, p � 0.001) indicated that socially raised rats (n = 27) still explored the corridor

zone less than standard animals (n = 28; 276.77 ± 8.99 s vs. 319.75 ± 8.82 s). However, when com-

pared with standard rats, social rats explored open and central zones of the CFT more frequently
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Figure 3. OT antagonist L-366,509 blocks the social experience phenotype in plasma OT concentration and telomere length. (A and B) OT antagonist

administration reduced plasma OT concentration in all OT ANT groups, except for standard OT ANT males (n = 10–13/group). Social control females

displayed higher concentration of plasma OT than any other group. No difference was found between social control females and males. (C and D) OT

antagonist L-366,509 reduced telomere length in social females. Asterisks indicate significant differences: *p � 0.05; **p � 0.01; one-way ANOVA. Filled

Figure 3 continued on next page
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(open: 153.66 ± 6.48 s vs. 119.10 ± 6.3 s; central: 49.55 ± 5.19 s vs. 41.14 ± 5.10 s). The group effect

was also significant for all three zones of the CFT (all p � 0.01). Only social rats, however, were sig-

nificantly impacted by the OT antagonist in terms of exploratory behaviour. Essentially, social control

females significantly explored the central zone more than standard control females, whereas their

corridor time diminished (all p � 0.01, Post-hoc Tukey). Social control females also spent less time in

the corridor and more time in the open and central zones when compared with standard OT ANT

females (all p � 0.01, Post-hoc Tukey). Moreover, when compared with social OT ANT females, the

social control females explored the corridor zone less and spent more time in the central zone (all

Figure 3 continued

circles: mean OT concentrations in individual rats. Horizontal bars: mean OT concentrations in each group. ANT: antagonist, bp: basepair, OT: oxytocin,

pM: picoMolar, Tel: telomere.

DOI: https://doi.org/10.7554/eLife.40262.007

The following source data is available for figure 3:

Source data 1. OT antagonist blocks phenotype.

DOI: https://doi.org/10.7554/eLife.40262.008

Source data 2. OT antagonost blocks social experience phenotype.

DOI: https://doi.org/10.7554/eLife.40262.009

Figure 4. Behavioural consequences of the administration of OT antagonist L-366,509 in the corridor field task (CFT). (A and B) The OT antagonist

affected novelty-seeking behaviour in all zones of the no-central object CFT (standard: n = 28; social: n = 27). (C and D) The OT antagonist had a

significant impact on the social females’ exploration in the central-object CFT. Novelty-seeking behaviour in socially raised females was more influenced

by reduced OT levels than any other group (standard: n = 27; social: n = 27). (E–H) Rate of changes (ROC) within no-central and central-object CFT in

response to OT antagonist. Note that social OT ANT females experienced the fewest changes in novelty-seeking behaviour from no-central object to

central-object versions of the CFT. Asterisk indicates significant differences: p � 0.05; MANOVA. Symbols denote comparisons: social control females: *

relative to standard control females, # relative to standard OT ANT females, $ relative to social OT ANT females; social control males: * relative to

standard control males, # relative to standard OT ANT males. Error bars show ± SEM. OT: oxytocin, ANT: antagonist.

DOI: https://doi.org/10.7554/eLife.40262.010

The following source data is available for figure 4:

Source data 1. Behavioural consequences of OT antagonist.

DOI: https://doi.org/10.7554/eLife.40262.011
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p � 0.05, Post-hoc Tukey). Thus, the OT antagonist L-366,509 changed the exploration pattern par-

ticularly in social females. There was no difference between social control males and females in terms

of CFT exploration (all p � 0.05, Post-hoc Tukey). When compared to standard control males, how-

ever, the social control males spent more time in the open zone (p � 0.05, Post-hoc Tukey). The

social control males also spent less time in the corridor zone but explored the open zone more than

standard OT ANT males (all p � 0.05, Post-hoc Tukey). No difference was observed between social

control and social OT ANT males (all p � 0.05, Post-hoc Tukey). All interactions between factors

were insignificant, except for sex � litter and sex � litter � housing condition (all p � 0.05). Thus,

although exploration in the no-central object CFT version was somehow affected by L-366,509, CFT

exploration in social females was more impacted by the OT antagonist than any other group.

Central-object CFT: Figure 4C and D illustrates novelty-seeking behaviour within the CFT with

and without OT antagonist L-366,509. Again, a significant effect of housing condition indicated a dif-

ferent profile of novelty-seeking behaviour in social rats (n = 27). Socially raised rats explored the

corridor zone less than standard animals (n = 27, F1,52 = 5.45, p � 0.02). Social animals, however,

explored the open zone more than standard rats (F1,52 = 10.97, p � 0.002), whereas they showed no

difference in the central zone (p � 0.05). Also, significant effects of group for all zones (all p � 0.05)

showed that the OT antagonist L-366,509 had a greater impact on social female exploration (all

p � 0.05, Post-hoc Tukey). The inhibitory effect of L-366,509 on OT concentration, and consequently

the novelty-seeking behaviour in socially raised males did not reach the levels of social females (all

p � 0.05, Post-hoc Tukey). No effect of litter, and no interactions between factors were found,

except for litter � sex (p � 0.04). Therefore, novelty-seeking behaviour in socially raised females was

significantly more influenced by reduced OT levels than any other group. Further analysis of explor-

atory behaviour through the ROC also indicated that L-366,509 had greater impact on the novelty-

seeking behaviour in social females in both no-central and central-object CFT (Figure 4E–H).

Discussion
The present rodent study indicates that persistent social experience is causally associated with

increased OT level, elevated exploratory behaviour, and telomere elongation. These changes

occurred in a sex-dependent manner to support three main conclusions: (i) social experience

increases plasma OT levels, (ii) enhanced novelty-seeking behaviour and TL in socially housed

females is mediated by higher OT levels, and (iii) social females respond to interrupted endogenous

OT secretion with TL erosion and novelty-seeking deficit. Thus, OT is arguably involved in mediating

beneficial effects of social experience on behaviour and TL. The findings reveal a dynamic interplay

between social interactions and OT hormone to promote genetic and behavioural resiliency in

female rats (Figure 5).

Prolonged social experiences increase OT in a sex-specific manner
The pivotal role of OT in social behaviour has become a target of many experimental efforts

(Churchland and Winkielman, 2012). However, the majority of data linking OT to social behaviours

represent correlational conclusions (Barraza and Zak, 2009), or depict a hormone-to-behaviour

approach in which subjects were exposed to OT, and then were monitored for OT-induced behav-

ioural alterations (Bernaerts et al., 2017). Using a causal, behaviour-to-hormone approach in the

present experiments, we examined the direct impact of prolonged social interactions across devel-

opment upon OT-mediated effects. In previous discussions (Cerulo, 2009; Schilbach et al., 2013;

Hari et al., 2015) social interaction was regarded as a critical contributor to health and longevity

(Umberson and Montez, 2010; Yang et al., 2016) and it was assumed that OT is involved in social

behaviours and social memory (Gamer et al., 2010; Bernaerts et al., 2017; Kirsch et al., 2005;

Baumgartner et al., 2008; Kosfeld et al., 2005; Auyeung et al., 2015). The present findings

expand these earlier studies by demonstrating that social rearing elevates plasma OT concentration,

and this hormonal response to social experience appears more prominent in females than males.

Experiment 2 replicated these findings from Experiment 1.

There are two possible mechanisms that may underlie the dynamic interaction between social

experience and OT. First, social interaction is associated with persistent sensory stimulation during

development which may promote hypothalamic-pituitary-adrenal (HPA) axis function and brain plas-

ticity (Zucchi et al., 2014). This assumption is supported by a recently published report
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Figure 5. Representation of the experimental design and hypothetical mechanisms of social experience in rats. Male and female rats were raised in

either (a) standard- or (b) social-housing units for 84–90 d. (b1) Prolonged social housing (b2) increased telomere length in females (TL) while enhancing

plasma oxytocin (OT) in both sexes. Novelty-seeking behaviour in females more than males was responsive to social housing. (b3) Higher OT levels

amplify social bonding and interaction through enhanced sociality. (c) Social interaction modulates novelty-seeking behaviours, OT, and TL along with

HPA axis activity as a function of sex hormone status. Other hypothetical mechanisms to modulate social experience-dependent behaviour and

neuroplasticity may include neurotrophic factors, such as brain-derived neurotrophic factor (BDNF).

DOI: https://doi.org/10.7554/eLife.40262.012
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(Zheng et al., 2014) in which sensory experiences in mice promoted cortical development by up-

regulation of synthesis and secretion of OT. Second, ongoing emotional sharing and social support

foster prolonged social relationships (Beery and Kaufer, 2015) along with activation of the brain’s

dopamine reward system (Rilling et al., 2002). Both, regulating stress responses and rewarding

social interaction, are vital corollaries in OT-mediated social engagement.

While OT is produced both centrally and peripherally, social cues generally cause OT releases

centrally in the brain, which in turn modulates OT-receptor activities in the socially relevant circuitry.

Sex-specific differences (Joel et al., 2015) in cortical regions including mPFC revealed higher OT

receptor density and signaling in females (Smith et al., 2017; Nakajima et al., 2014). Accordingly,

compared with males, vertebrate females appear sensitized to social support and interactions

(Beery and Kaufer, 2015; Ozbay et al., 2007) in terms of emotional expressions (Kring and Gor-

don, 1998) and enhanced social cognition (Gur et al., 2012). The neurophysiological sequelae

(including changes in cardiovascular, neuroendocrine, and immune function) (Cohen and Wills,

1985; House et al., 1988; Lincoln et al., 2000) via providing social supports, reduce the impact of

stress responses to promote stress resiliency, especially in females (Uchino, 2006; Charney, 2004).

Social behaviours and OT are linked to stress regulation through contextual (e.g., the duration of

social life or presence of a familiar individual) and inter-individual factors (e.g., sex) (Bartz et al.,

2011). The present changes after social experience for 3 mo address both types of intervening fac-

tors resulting in sex-specific regulation of social behaviour and exacerbated hormonal responses in

female.

Social experiences promote novelty-seeking behaviour
The present experiments provide evidence for the involvement of OT in exploratory and novelty-

seeking behaviour (Kazlauckas et al., 2005) encouraged by the novel central object in the CFT. In

agreement with our previous findings, female rats that experienced social enrichment across devel-

opment showed extended exploration of the central areas in the CFT, thus increasing the radius of

exploratory activity (Faraji et al., 2014). The latter indicates lowered stress response (Faraji et al.,

2014), which agrees with the finding that socially raised female rats display lower HPA axis response

and reduced anxiety-related behaviours (Faraji et al., 2018). Accordingly, intensified OT action

through social enrichment enhances social bonding and reduces stress responses (Swain et al.,

2014). Because OT may mediate sexual dimorphisms in regional neuroplasticity (Hillerer et al.,

2014) and exert anxiolytic effects (Ayers et al., 2011), social experiences may affect brain anatomy

and novelty-seeking behaviours especially in females.

OT-mediated enhancement in novelty-seeking behaviour may stem from the close relationship

between OT receptors and central dopamine reward systems in mediating incentive response to

novelty (Bardo et al., 1996). Although it has been suggested that females display generally lower

levels of novelty seeking than males (Hughes, 1968), the present findings suggest that early life

experiences and the endocrine consequences of social bonding may determine sex-dependent dif-

ferences in novelty-seeking behaviours. Moreover, social relationships play key roles in the formation

of emotional and social responsiveness that reduce aversive outcomes (e.g. fear and anger) in social

interactions (Ozbay et al., 2007; Averbeck, 2010; Sippel et al., 2015). It appears that OT recipro-

cally influences the perceived social cues in a sex-dependent manner through these behavioural phe-

notypes (Olff et al., 2013).

Social experiences increase TL in females via OT enhancement
Telomeres act to protect the ends of chromosomes from degradation, and consequently, control

chromosomal stability and cellular senescence (Mitchell et al., 2017; Drury et al., 2012). Here,

socially reared female rats, in addition to increased plasma OT concentration, had significantly lon-

ger TL than social males (~638.01 bp). By contrast, interruption of endogenous OT release induced

TL attrition (~442.66 bp) in social females only. Despite females appearing to have longer TL than

males (Merrill et al., 2017), TL elongation in social females offers a potential predictor for extended

lifespan in humans (Holt-Lunstad et al., 2010) and rodents such as rats (Yee et al., 2008), who typi-

cally engage in social relationships. Interestingly, TL was recently shown to positively correlate with

the number of surviving children born to a woman (Fagan et al., 2017), suggesting a possible paral-

lel link between reproductive success and longevity in females.
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The pathways through which telomere elongation is influenced by peripheral OT enhancement or

inhibition are not yet fully understood. For the present results, axo-vasal contacts for endocrine neu-

rosecretion (Knobloch and Grinevich, 2014), a prominent central-peripheral axis which releases OT,

vasopressin (VP), and their homologues into systemic blood circulation, may explain how alterations

in peripheral OT can influence TL measured in the samples collected from ear. Axonal release of OT

in the brain and in the circulatory system seem to be coordinated as central OT and peripheral OT in

animals can be released simultaneously (Wotjak et al., 1998). In humans, a correlation was shown

between plasma and brain OT indicating that peripheral OT represents a suitable proxy of central

OT (Lefevre et al., 2017). It is also important to consider that, as they share a common ontogenetic

origin from ectoderm, both brain and skin tissues contain similar collagenous proteins, reticulin, vas-

culature, and connective tissues such as fibroblasts and adipocytes. Therefore, changes in peripheral

TL in general, and skin cells in particular, predict TL alterations found in brain tissue (Hehar and

Mychasiuk, 2016).

The present results revealed that exposure to the OT antagonist across development and during

social experiences accelerates TL attrition only in females. A causal explanation of how social and

neurohormonal processes interact to induce a sex-dependent effect on TL was beyond the scope of

the experiments. Three lines of evidence, however, support the observation of TL alteration in

socially enriched females: (1) correlation between OT and social behaviours in females is stronger

than males (Barraza and Zak, 2009); (2) both social experiences and OT hormone blunt HPA axis

activity (Sippel et al., 2015; Ditzen et al., 2009); and more importantly, (3) TL shortening is associ-

ated with dysregulation of HPA axis activity and abnormal levels of cortisol (Schutte et al., 2016).

Hence, the pathways involved in social experience-induced OT responses may contribute to sex dif-

ferences in TL in close interaction with the HPA system. Notably, social experiences in our previous

findings (Faraji et al., 2018) reduced HPA axis activity in F0 female rats and the F1 non-social hous-

ing offspring born to social mothers, which suggests an intergenerational impact of social rearing

history through regulation of the HPA response in female rats. Various other genetic mechanisms

not investigated here may also determine social behaviours. Immediate-early genes, such as zif268

mRNA expression in the dorsal and ventral medial mPFC in rats, appear to be sexually dimorphic

(Stack et al., 2010). Because zif268 expression can activate specific signaling pathways, it may lead

to long-lasting synaptic changes in the brain. For example, rats show sexual dimorphism in neuronal

firing rates in the barrel cortex in response to social interaction components (Jurek and Neumann,

2018).

Taken together, the present results suggest that a socially stimulating environment is especially

critical to female health trajectories. Even short periods of OT inhibition make females vulnerable to

TL shortening via OT-mediated dysregulation of HPA system activity. Although influenced by sex

and gender (Mather et al., 2011), TL measurement may be a useful tool in future studies to under-

stand and predict health and longevity particularly in females.

Conclusion
Social experiences provide a source of psychoneurophysiological empowerment in both humans and

animals and promote healthy development and successful aging (Yang et al., 2016). The present

data causally associate social stimulation with genetic and behavioural improvements possibly as a

function of endogenous OT. The findings indicate that early social experiences may last far into

adulthood and manifest in TL elongation and novelty-seeking enhancement as a function of sex. The

impact on cortical neuroplasticity, neurohormonal and behavioural outcome may be transmitted to

the F1 non-social offspring in a sexually dimorphic manner. Thus, a socially stimulating environment

may promote stress resiliency and mental health not only in exposed individuals, but also in their

intergenerationally programmed descendants. Social enrichment may therefore provide a therapeu-

tic avenue to promote stress resiliency and chances of healthy aging across generations.

Materials and methods

Animals
Male and female Wistar rats (222–430 g), bred and raised at the local vivarium were used in the pres-

ent experiments. All animals were housed in a constant-temperature (21–24˚C) room on a 12 h light/
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dark cycle (lights on at 7:30 am) with ad libitum access to food and water. Rats were handled for

approximately 3 min daily for 5 consecutive d prior to any experimental manipulations. Also, body

weight in all animals was recorded every 4 d. The behavioural testing was performed during the light

phase of the cycle, at the same time of day by three experimenters blind to the experimental

groups. All procedures in this study were carried out in accordance with the National Institutes of

Health Guide to the Care and Use of Laboratory Animals, and were approved by the institutional ani-

mal care committee (Protocol No. 004674BGH; Avicenna Institute of Neuroscience-AINS).

Experimental design
Experiment 1: pups and their mothers were left undisturbed from postnatal day (PND) 1–21. After

weaning at PND 21, 48 pups (five to six rats per litter) gathered from nine different litters were ran-

domly assigned to four experimental groups in two housing conditions: (1) standard housing (males,

n = 12), (2) standard housing (females, n = 12), (3) social housing (males, n = 12), and (4) social hous-

ing (females, n = 12). Novelty-seeking behaviour analysis included seven standard animals (four

males, three females) and six social animals (three males, three females) from a previous experiment

(Barrett and Richardson, 2011) to increase sample size. After living in either standard- or social-

housing conditions for 86–89 d, all animals were subjected to blood sampling (days 83–86) and

behavioural assessment (days 85–90). Animals were euthanized when behavioural assessments were

completed. Experiment 2: at weaning, pups from 14 litters were randomly selected for Experiment

2. To accommodate OT antagonist (OT ANT) administration, animals were split into eight groups

(n = 10–11/group): (1,2) standard housing: male and female (CONTROL), (3,4) standard housing:

male and female (OT ANT), (5,6) social housing: male and female (CONTROL), and (7,8) social hous-

ing: male and female (OT ANT). All animals were housed in either standard- or social-housing units

for 84–90 d and were subjected to blood sampling on days 80–83 and behavioural assessments on

days 84–89. Rats were euthanized when behavioural testing was completed on days 88–91.

Housing condition
A complete description of the housing condition was previously reported by this team (Faraji et al.,

2018). Briefly, animals assigned to the social housing condition were housed and raised in groups of

10–11 within two separate social housing units (86 cm � 86 cm � 41 cm) with no additional environ-

mental enrichment provided. Animals were constantly living in the same units until completion of the

experiment. In contrast, rats assigned to standard housing conditions were housed and raised in

non-sibling groups of two or three within Makrolon shoebox cages (86 cm � 86 cm � 41 cm). Ani-

mals were briefly removed from their environments when bedding material was changed. Animals in

social and standard housing conditions were raised separated by sex.

Blood sampling and oxytocin (OT) assay
Peripheral levels of OT (OTp) are assumed to reflect central releases of OT (OTc) in rats

(Wotjak et al., 1998) and humans (Lefevre et al., 2017) with some procedural exceptions. Blood

samples (0.5–0.7 mL) were taken 1–2 d prior to behavioural assessments (Faraji et al., 2014)

to measure plasma concentration of OT using solid phase radioimmunoassay (RIA) (Alburges et al.,

2000). Blood sample tubes containing aprotinin (500 kallikrein inactivation units/mL blood) were cen-

trifuged at 3000 rpm (1700 g) for 15 min at 4˚C. Plasma was stored at –70˚C until analysis. Sample

extraction and concentration were performed according to the manufacturer’s manual provided with

the kits (Phoenix Pharmaceuticals, Burlingame, CA), and a method previously described by Kobaya-

shi et al. (Kobayashi et al., 1999). Intra- and inter-assay variability was 7% and 15%, respectively, as

reported by the manufacturer. No behavioural testing was performed on blood sampling days.

Oxytocin (OT) inhibition
The non-peptidyl OT antagonist (OT ANT) L-366,509 (MedKoo Biosciences, Inc., Morrisville, USA)

(Evans et al., 1992; Pettibone et al., 1993) was administered (50 mg/kg) subcutaneously into the

scruff of the neck in the OT ANT groups in Experiment 2. Administration occurred every other day

(between 11:00 am and 12:00 noon) for 42–43 d (in total, 42–43 doses/rat) to intermittently inhibit

or reduce OT secretion. Administration of L-366,509 started within the first week of the experiment

(day 5) and ended 14 h before perfusion. The L-366,509 dosage used in Experiment 2 was chosen
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based on the results in two pilot experiments (each n = 3–5) that were found to significantly reduce

plasma OT levels, and a previous report (Kobayashi et al., 1999). Physiologic saline solution was

injected subcutaneously in control groups (42–43 doses/rat) to avoid the confounding differential

effect of stress resulting from repeated OT ANT injections.

Although there is no information available on the penetration of L-366,509 into the blood-brain

barrier (BBB) in the literature, a new generation of spiroindenylpiperidine camphor-sulfinamide OT

antagonist (i.e. L-368,899, (Williams et al., 1994)) which readily crosses the BBB (Smith et al., 2010)

was developed from L-366,509 with the same structural and lipophilic molecular characteristics.

Thus, it is likely that antagonist L-366,509 crossed the BBB.

Corridor field task (CFT)
Novelty-seeking exploratory behaviour in the CFT was assessed according to the method of Faraji

et al. (Faraji et al., 2018). Briefly, the floor of the CFT was divided into three zones: (1) corridor zone

comprising the zone between external and internal walls; (2) open zone comprising the area within

the task excluding corridor and the central zones; and (3) central zone comprising the middle area of

the arena. Both variations of the CFT (plain CFT without a central object, and CFT with a central

object) were used in the present study to assess locomotor aspects of free exploration. All rats were

individually allowed to freely explore the environment for 8 min. Animals’ performance was recorded

under dim illumination by a ceiling-mounted camera (CCTV Auto tracking PTZ; SONY, Tokyo, Japan)

and analyzed by a computer tracking system (SINA motiongraph, Ayers et al., 2011), Tabriz, Iran)

through analysis of the time spent in each zone. The apparatus was cleaned with 70% alcohol

between test sessions.

Telomere measurement
Assuming that OT receptors are expressed in rat ear (Kitano et al., 1997) and human skin

(Deing et al., 2013), genomic DNA from ear notch samples was extracted by a commercial kit

(Sigma-Aldrich, Tokyo, Japan) based on the manufacturer’s protocol (Hehar and Mychasiuk, 2016).

Telomere length (TL) was measured using a modified protocol for a quantitative Real-Time Polymer-

ase Chain Reaction (qRT-PCR) assay based on previous reports (Hehar and Mychasiuk, 2016; Caw-

thon, 2002). The protocol enabled calculation of the ratio of telomere copy repeats to a single-copy

reference gene (36B4) to determine relative TL. Accordingly, when the ratio was found equal to

1.00, the unknown DNA was assumed to be identical to the reference DNA, whereas the ratios

greater to, or less than one, were - respectively - considered increased or decreased telomere

repeat numbers. A pipetting robot was used for all assay runs to avoid pipetting errors and inconsis-

tency in reactions, and PCR assays were performed by two independent technicians. The relative TL

was determined based on the linear regression equation reported by Cawthon (Cawthon, 2002).

Statistical analysis
Effects of main factors (housing condition; two levels, group; four and eight levels, sex; two levels,

Zone; three levels, litter; nine and 11 levels) were analyzed separately for the time spent in CFT, with

and without central object by repeated-measure and one-way ANOVA, and multivariate analysis of

variance (MANOVA). Also, post-hoc test (Tukey) was used to adjust for multiple comparisons. Fam-

ilywise error was considered prior to the multiple post-hoc analyses if necessary. Data for OT levels

and TL were also analyzed by separate ANOVA analyses with the main between-subject factors of

group and sex. Linear regression analysis was performed in Experiment 1 to predict the outcome

(dependent) variables (the novelty-seeking behaviour in the CFT and telomere length) through the

predictor (independent) variable (OT levels). Dependent and independent sample t-tests were con-

ducted when necessary. In all statistical analyses (SPSS 16.0, SPSS Inc., USA), a p-value of less than

0.05 was considered statistically significant. Values represent mean ±SEM.
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