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Understanding how the precise interactions of nerves, immune cells, and adipose tissue
account for cardiovascular and metabolic biology is a central aim of biomedical research at
present. A long standing paradigm holds that the vascular wall is composed of three con-
centric tissue coats (tunicae): intima, media, and adventitia. However, large- and medium-
sized arteries, where usually atherosclerotic lesions develop, are consistently surrounded
by periadventitial adipose tissue (PAAT), we recently designated tunica adiposa (in brief,
adiposa like intima, media, and adventitia).Today, atherosclerosis is considered an immune-
mediated inflammatory disease featured by endothelial dysfunction/intimal thickening,
medial atrophy, and adventitial lesions associated with adipose dysfunction, whereas hyper-
tension is characterized by hyperinnervation-associated medial thickening due to smooth
muscle cell hypertrophy/hyperplasia. PAAT expansion is associated with increased infiltra-
tion of immune cells, both adipocytes and immunocytes secreting pro-inflammatory and
anti-inflammatory (metabotrophic) signaling proteins collectively dubbed adipokines. How-
ever, the role of vascular nerves and their interactions with immune cells and paracrine
adipose tissue is not yet evaluated in such an integrated way.The present review attempts
to briefly highlight the findings in basic and translational sciences in this area focusing on
neuro–immune–adipose interactions, herein referred to as triactome. Triactome-targeted
pharmacology may provide a novel therapeutic approach in cardiovascular disease.
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Today I want to tell you three stories from my life. That’s it. No big
deal. Just three stories. The first story is about connecting the dots.

Steve Jobs, from his Commencement address delivered on June 12,
2005 at the Stanford University, Stanford, CA, USA.

PROLOG
At the beginning of this century the Human Genome Project was
finalized estimating over 30,000 genes encoding more than 100,000
functionally distinct proteins. As happened usually, one solved
problem delivered many unsolved ones. Thus in the postgenome
time, many “-ome” projects have emerged including proteome,
transcriptome, interactome, metabolome, adipokinome, secre-
tome, exposome, connectome so much numerous to be listed.
Perhaps, this prompted Jeff Lichtman and Joshua Sanes to enti-
tle one of their connectome articles Ome sweet ome [Curr Opin
Neurobiol (2008) 18:346–53].

The present review is about connecting the dots from neuroim-
munology, adipobiology, and vascular biology into the hypoth-
esis of neuro–immune–adipose interactions, herein designated
triactome.

VASCULAR WALL
Traditional view considers that the arterial wall is composed
of three concentric tissue coats (tunicae): intima, media, and
adventitia. However, in 1991, Soltis and Cassis studying rat
aorta contractility wrote: “Virtually every blood vessel in the
(human) body is surrounded to some degree by adipose tis-
sue” (1). Forgotten, periadventitial adipose tissue (PAAT) has
emerged again in the beginning of the 2000s (2–6). Indeed, large-
and medium-sized arteries, where usually atherosclerotic lesions
develop, are consistently surrounded by PAAT, recently conceptu-
alized as fourth, outermost vascular coat, that is, tunica adiposa
(hereafter also termed adiposa, like intima, media, and adven-
titia) (7, 8). Like epicardial adipose tissue (EAT) (9) and that
around other internal organs (10), adiposa is not separated by
a fascia from the underlying tissue, thus a bidirectional pathway
between adiposa and other vascular coats is available for diffusible
signals.

As depicted in Figure 1, the perivascular nerves are positioned
at the media–adventitia border. Vascular as well as adipose tis-
sue are extensively innervated by sympathetic nerves (11, 12), and
their density correlates with the presence of nerve growth factor
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FIGURE 1 | Schematic presentation of vascular wall composed of four
tissue coats (tunicae): intima, media, adventitia, and adiposa. Arrows
show that tunica media is a target for at least two vasorelaxing factors,
endothelium-derived relaxing factor (EDRF) and adipocyte-derived relaxing
factor (ADRF), respectively. Discontinuous black line positioned at the
adventitia–media border illustrates perivascular nerves. Small-sized
discontinuous black lines located in tunica adiposa indicate adipose nerves.
Black granules (except those linked to arrows) illustrate immune
cells – their association with nerves and adipocytes is also depicted.
Modified from Ref. (14).

(NGF) (see below). The artery wall has the capacity to undergo
remodeling in response to long-term changes or injuries. This is
a process of structural rearrangement that involves cell growth,
death, migration, phenotypic modulation, and secretion of extra-
cellular matrix molecules by secretory phenotype smooth muscle
cells (SMCs) (13).

VASCULAR DISEASE
Cardiovascular disease (CVD) is the number one cause of death
globally, and the major CVD’s phenotypes are atherosclerosis and
hypertension. The raised (occlusive) intimal lesions are classically
referred to as atherosclerotic plaques.

The inflammatory nature of atherosclerotic plaques was first
described by Rudolf Virchow in 1858. Onward, since 1933 Niko-
lai Anitchkov’s lipid deposition and the 1970s Russell Ross’
proliferation of SMC in response to endothelial injury (15)
were dominant concepts explaining the origin and development
of atherosclerosis. However, in the mid 1980s, Göran Hans-
son has discovered immune cells (T cells and macrophages)
in the human atherosclerotic plaque, hence created a para-
digm shift in atherosclerosis research – the process of athero-
genesis is governed by immune-mediated inflammatory mecha-
nisms (16).

In brief, atherosclerosis is a progressive chronic lipid- and
insulin resistance-driven inflammatory disease (15–19). This view

however is mainly intima-centered, hence traditional pathologi-
cal observations have given insight preferentially to the develop-
ment of intimal lesions/luminal loss and respectively atheroscle-
rotic plaque vulnerability, leading to myocardial infarction, stroke,
and/or lower limb ischemia. In effect, the intima has been – for
more than a century – considered the most important vascular area
involved in atherogenesis. As a sequela, the intima–media thick-
ness became an accepted measure of structural arterial remodeling
and a strong predictor of atherosclerosis. However, it is unlikely
that such one-direction road may solely travel the whole mul-
tiplex network like that of atherogenesis. Arguably, an interac-
tive hypothesis was proposed, which appreciated the significance
of all structural components of the artery wall including PAAT
(2–4, 7).

Nowadays, paradigms defining the cell biology of vascular dis-
eases are the following: (i) the hypertensive vascular wall is char-
acterized by hyperinnervation-associated medial thickening due
to SMC hypertrophy/hyperplasia, whereas (ii) the atherosclerotic
vascular wall is characterized by intimal thickening, medial atro-
phy, and adventitial and adipose remodeling including the reduced
expression of perivascular nerves (20, 21). Of note, a significant
increase in the presence of links between perivascular nerves and
adventitial mast cells was demonstrated in atherosclerotic coro-
nary vessels (22, 23); whether this may be the case with adipose
nerves and mast cells remain to be examined.

This brief description will be followed by a story about four dots
and finally by their connection resulting in triactome hypothesis
in vascular biology.

DOT 1
NEUROIMMUNOLOGY: NEUROTROPHINS ARE NOT SOLELY FOR
NEURONS
Life at the cellular level requires growth-promoting trophic sup-
port and immune sensing. One of the biggest recent achieve-
ments of neurobiology is the study on neurotrophic factors. The
neurotrophins are exciting examples of these factors.

At the end of the nineteenth century it was envisaged by Santi-
ago Ramon y Cajal but has not been proved that the nerves require
trophic support. By a rare combination of scientific reasoning and
intuition, the proof was obtained by Rita Levi-Montalcini, Viktor
Hamburger, and Stanley Cohen in the early 1950s in Saint Louis,
MO, USA, where the first cell growth factor, namely NGF, was
discovered (24). This was embodied in a conceptual framework
well known now as neurotrophic (nerve–effector interaction) the-
ory. It reveals a pivotal role of effector (target) cells in the control
of neuronal differentiation, survival and function via production
of NGF, and other neurotrophic factors. Around 15 years ago,
one more component, the immune cell, was incorporated into
the heart of nerve–effector interactions (biactome) to become
neural–immune–effector (NIE) interactions (25, 26). The present
triactome may thus be considered a variation on general theme
of NIE.

The neurotrophin family of proteins consisted of NGF, brain-
derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), NT-
4/5, NT-6, and NT-7. Neurotrophins mediate their effects via
ligation of: (i) pan-neurotrophin receptor, p75NTR, and (ii) recep-
tor tyrosine kinase (tropomyosin-related kinase) (Trk), namely,
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Table 1 | Cellular targets and sources for neurotrophins as potentially

related to atherogenesisa.

Immune cells Other cells

Mast cells Endothelial cells

Lymphocytes Vascular smooth muscle cells

Macrophages Fibroblasts/myofibroblasts

Dendritic cells Platelets

Neutrophils Adipocytes

Perivascular nerves

aFrom Ref. (34).

TrkA (for NGF), Trk B (for BDNF and NT-4), and TrkC (for NT-3)
(27, 28).

As often occurs, the framework of an initial concept of the
physiological role of a newly discovered molecules extends in the
light of emerging findings. This was also the case with NGF. Dur-
ing some 30 years after its discovery, there have been few reasons
given to indicate that NGF acts on non-neuronal cells. Thus, it was
remarkable to discover that treatment of newborn rats with NGF
caused a systemic increase in the number of mast cells (29). This
seminal finding paved the road of new research field, neuroim-
munology (30, 31). Moreover, NGF and BDNF are synthesized,
stored, and released not only by directly innervated cells but also
by immune cells (32, 33) as well as other cell types (Table 1).

Taken together, NGF and its relative molecules are mediators
of multiple biological phenomena in health and disease, rang-
ing from the neurotrophic through immunotrophic and epithe-
liotrophic to metabotrophic effects. The evidence indicates that
not only at neuroimmune, but also at cardiometabolic level life
requires metabotrophic factors (those improving glucose, lipid,
and adipokine metabolism) such as NGF and BDNF (35, 36).

Furthermore, hypertension has recently been recognized as
an immune disorder and accumulating evidence suggests that
interactions between the sympathetic nerves, renin–angiotensin
system, and immune cells play a role in blood pressure regulation
(37, 38).

DOT 2
ADIPOIMMUNOLOGY: ADIPOSE TISSUE-ASSOCIATED IMMUNE CELLS
Lymphocytes, macrophages, and mast cells
The evaluation of interactions of adipose tissue with a variety of
immune cells is becoming one of the challenging topics of current
biomedical research. This may elevate our knowledge about vari-
ous physiological and pathological processes such as inflammation
and metabolism and related disorders (34, 39–47).

White blood cells are able to home in extralymphoid periph-
eral tissues, including adipose tissue – here, chemokines and their
receptors are critical factors in such a trafficking process, the
accumulation of lymphocytes and macrophages around dying
adipocytes forming “crown-like structure,” a histological signature
of white adipose tissue (WAT) in obesity (45, 46).

Mast cells were first described in 1878 by Paul Ehrlich (1854–
1915) in his doctoral thesis “Contribution to the Theory and
Practice of Histological Staining” [see Ref. (48)]. Ehrlich named
these cells Mastzellen, meaning “well-fed cells,” because they had

high numbers of cytoplasmic granules. He observed that mast
cells were commonly located in connective tissue near blood ves-
sels and nerves, as well as in inflammatory and tumor lesions.
Mast cells are phenotypically and functionally versatile effector
cells that have been traditionally associated with the immunoglob-
ulin E-mediated allergic response. However, recent studies impli-
cate these cells in the regulation of multiple processes such as
inflammation, fibrosis, angiogenesis, fibrinolysis, hemostasis, and
neuroimmune interactions, which could be associated with var-
ious immune inflammatory diseases (40, 49–51), hence being
metaphorically dubbed master cells by Steve Galli (52). Suppor-
tively, Cromolyn and Ketotifen, two common mast cell stabilizers
used in human allergic diseases, reversed pre-established obesity
and diabetes in mice (53). In ob/ob mice (leptin deficiency-induced
obesity) compared to lean controls, adipose mast cells are distrib-
uted differentially (54). Excitingly, a genetic connection between
mast cells and blood lipids was recently established (17). Data of
vascular and adipose mast cells are further discussed below.

Note that pioneering findings for the importance of paracrine
interactions between adipose tissue and immune cells were pro-
vided by Caroline Pond and her colleagues in the 1990s (55), thus
opening a new research field, adipoimmunology.

DOT 3
VASCULAR BIOLOGY: DO NOT IGNORE PERIVASCULAR NERVES AND
ADVENTITIAL IMMUNE CELLS
In 1962, Schwartz (56) wrote with respect to the presence of
adventitial mononuclear cell infiltration: “It is perhaps surprising
that such prominent cellular accumulation should have received
so little attention. Nevertheless, since cellular infiltration of the
adventitia shows such a constant relationship to the presence and
degree of plaque formation, it should not be disregarded.” This
and other related works (56) have been largely ignored, and the
atherosclerosis research for a long time has been, as mentioned
above, focused on the intimal lesion (just one more example of
epistemological paralysis). However, the observation that adventi-
tial injury (including that of perivascular nerves) alone can lead
to intimal thickening is an evidence for the dynamic interaction
between adventitia and intima (20, 21); this is also the case with
adiposa–media–intima interactions (see below).

CORONARY RESTENOSIS
In 1983, at the seminar organized by Dr. George Pappas (Depart-
ment of Anatomy, Medical School, University of Illinois, Chicago,
IL, USA), one of us (George Nikov Chaldakov) delivered a lecture
entitled “The fine structure of secretory-state SMC and their pos-
sible role in occlusive arterial diseases.” During the discussion, the
question whether some adventitial fibroblasts may migrate to the
intima was raised. The answer of the author was “I do not know.
It seems impossible.” However, what seemed “impossible” in 1983
was proven possible in 1996 when Shi et al. [Ref. (57), also see Ref.
(58)] and Wilcox and Scott (56) summarized their results indicat-
ing that the adventitial fibroblasts proliferate and modulate their
phenotype to myofibroblasts migrating to the intima of balloon-
injured coronary arteries, thus contributing to the neointimal
formation. Further, it was recently suggested that neoadventitial
formation, consisted of fibrotic tissue and immune cells, could
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play an important role in coronary restenosis by circumferential
scar-like contraction, which may cause luminal narrowing (59).
These data suggest an important role of adventitial fibroblasts and
immune cells, and bring into question the sole contribution of
SMC to neointimal thickening in coronary restenosis.

NGF, p75NTR AND MAST CELLS IN HUMAN CORONARY
ATHEROSCLEROSIS
In 2001, the first results about altered amount of NGF in the
human coronary vascular wall affected by advanced atheroscle-
rosis have been published [Ref. (35, 60), also see Ref. (14, 30,
34, 61)]. The expression of NGF and its receptor p75NTR in the
surrounding subEAT (coronary tunica adiposa) has been exam-
ined simultaneously [Ref. (34, 60), also see Ref. (62)]. It was
found that the reduced NGF level was accompanied by an ele-
vated amount NGF both in subEAT and the adjacent myocardium
(Figure 2). Immunohistochemical analyses of coronaries revealed
that coronary vascular wall,particularly the adventitia and subEAT,
expressed a stronger p75NTR immunoreactivity in atherosclerotic
compared to control arteries (60).

Since mast cells are known to be a cellular component of
the coronary artery and, as indicated above, these cells not only
respond to NGF action (29), but also produce and release NGF
(32), the presence and distribution of mast cells in atherosclerotic
and control coronaries have been also examined. In atherosclerotic
vessels, mast cells (number/millimeter square) were significantly
increased both in adventitia and subEAT (Figure 2). Whether these
mast cell populations, via their potential to synthesize and release
NGF, attempt to compensate the reduced NGF in the coronary
wall, remains to further be studied.

Although “many roads lead to atheroma,” the prevailing
hypothesis at present is the Russell Ross’ response-to-injury

FIGURE 2 | Nerve growth factor, mast cell, and vasa vasorum changes
in selected human atherosclerotic cardiac tissues expressed as
percentage of controls. Modified from Ref. (34).

hypothesis (15), which states that atherosclerosis is an inflam-
matory disease that involves several aspects of wound healing.
Importantly, at cell biological level wound healing may be con-
sidered one of the most remarkable conceptual contributions
of Russell Ross (his pre-atherogenesis studies were namely on
skin biology). Therefore one may envisage atherosclerotic intimal
lesions as vascular wound. Of note, one of us (Luigi Aloe) pro-
vided clinical results of therapeutic contribution of NGF in skin
and corneal wound healing (63) and thus raises a pressing ques-
tion of whether this may also be the case with vascular wound,
that is, the atherosclerotic plaque (15).

DOT 4
ADIPOBIOLOGY: WAT IS SECRETORY WHEREAS BAT THERMOGENIC
ORGAN
Accumulation of adipose tissue in the visceral and subcutaneous
abdominal tissue,also around internal organs (Figure 3), is a major
risk factor for the development of numerous disorders including
cardiovascular and metabolic diseases. Recently, metaflammation
(metabolically induced inflammation) has emerged as a pivotal
process involved in the clustering of those disorders (64, 65).

Adipose tissue is very plastic tissue, being constantly remodeled
along with weight gain and weight loss. It is a dynamic multicel-
lular and matrix assemble composed of adipocytes, fibroblasts,
immune cells, blood vessels, stem cells, and sympathetic nerve
fibers (11, 12). There are two major subtypes of adipose tissue,
WAT and brown adipose tissue (BAT).

By sending and receiving different types of protein and non-
protein signals, adipose tissue communicates with many organs
in the body, including the brain, thus contributing to the control
of energy, lipid, and glucose homeostasis as well as inflammation,
immunity, learning, and memory among many other biological
functions (10). Fat mapping (adipotopography) is an emerging
biomedical field dealing with localization and amount of adipose

FIGURE 3 | Schematic illustration of large adipose depot (visceral and
subcutaneous adipose tissue) and small adipose depots (organ-
associated adipose tissue). Dual action of adipokines, via endocrine
pathway (long arrows) and via paracrine pathway (short arrows) on the
adipose tissue-associated organs, is depicted. Modified from Ref. (66).
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tissue in the human body – fat on the outside and fat on the
inside. Jeffrey Bell and colleagues (67) have scanned nearly 800
people with magnetic resonance imaging (MRI) technique, aimed
at obtaining map of WAT. The authors demonstrated that as many
as 45% of women and nearly 60% of men scanned have normal
scores of the body mass index (BMI, 20–25 kg/m2). These peo-
ple are thin outside (TO), while actually have excessive levels of
internal adipose tissue – they are fat inside (FI), hence TOFI phe-
notype of body fatness. Noteworthy, TOFI phenotype was also
found among people who are professional models. TOFI may thus
be considered a specific,“invisible”expression of Homo obesus (68)
and recently introduced Homo diabesus (69).

In human body, while WAT stores energy, BAT has the ability
to dissipate energy by producing heat. BAT-mediated increase in
energy expenditure is realized by uncoupling respiration from ATP
synthesis, via uncoupling protein 1 (UCP1), which is expressed
in brown adipocytes, thus generating heat, a process known as
adaptive thermogenesis (70, 71). Animal studies have shown that
activation of BAT counteracts diet-induced weight gain and related
disorders such as type 2 diabetes mellitus and metabolic syn-
drome (70, 71). Recently, the knowledge about WAT and BAT was
enriched with their relatives, namely brite (brown in white) and
bruscle (brown in skeletal muscle) adipocytes (72). Hence, brown
adipobiology is emerging as a new challenge in biomedicine.

ADIPOPARACRINOLOGY
In 1933, Smith and Willius (73) found that “in most instances,
a definite relationship between the excess of epicardial fat and
the degree of general obesity occurred,” suggesting a functional
relationship between EAT and atherosclerosis of left anterior
descending (LAD) coronary artery (73).

One of the biggest recent achievements in studying cardiometa-
bolic diseases is associated with the “rediscovery” of an ignored
tissue, the adipose tissue. Adipose tissue considered as a passive
storage-releaser of lipids and heat by most cell biologists and
pathologists for a long period of time, can no longer be neglected
in almost any biomedical field. The last 19–20 years, that is, the
time after Jeffrey Friedman’s discovery of leptin, have seen it rise
above the horizon to become the root cause of a plethora of syn-
dromes and diseases (66, 74–76). Such an adipocentric approach
has revealed that while BAT is major thermogenic organ, WAT
is the body’s largest endocrine and paracrine organ producing a
dazzling number of adipokines, with NGF and BDNF being also
produced from adipose tissue (62, 77–79).

Obese phenotype of WAT is featured by adipocyte hypertrophy
and/or hyperplasia leading to hypoxia and invasion of immune
cells, resulting in an increased production of pro-inflammatory
adipokines (80). By contrast, the secretion of adiponectin, an
adipokine with anti-inflammatory, anti-obesity, insulin sensitiz-
ing, and vasorelaxing, that is, metabotrophic activity (68, 69), is
decreased in obesity and related vascular diseases (81–86).

One aspect of the role of tunica adiposa, also EAT, is whether
they facilitate or inhibit the process of atherogenesis. It is know
that the proximal segments of coronary arteries are surrounded
by subEAT, and these are atherosclerosis-prone as compared to the
distal, intramyocardial, adipose-free, and atherosclerosis-resistant
coronaries (34, 73). However, when EAT is totally absent, as in

congenital generalized lipodystrophy, coronary atherosclerosis can
still occur, suggesting that a homeostatic presence of adipose tis-
sue is required for coronary artery health, reminding the maxim
“A little fat is good” or “Fatter is better?” (84). On the same vein: (i)
the removal of PAAT enhances neointima formation after injury,
which is attenuated by transplantation of subcutaneous adipose
tissue (81), whereas (ii) the excision of LAD coronary EAT (adipec-
tomy) decreases the progression of atherosclerosis, suggesting a
positive correlation between coronary EAT and atherosclerosis (9).
Obviously, there is very much more to learn about the biology of
this fascinating tissue.

Whatever changes occur in tunica adiposa, little is known of
whether they can be causally associated with atherogenesis or
whether they are a paracrine reaction to the injury developing
within other layers of the artery wall, particularly the adventitia.
Given the key role of inflammation in the development of athero-
sclerotic lesions, what role might then adiposa play in the process
of atherogenesis? As indicated above, the expansion of adipose tis-
sue seen in obesity is associated with adipose inflammation leading
to an imbalanced secretion including: (i) an enhanced release of
pro-inflammatory adipokines, and (ii) a decreased release of anti-
inflammatory (metabotrophic) adipokines (Table 2) as well as
(iii) a disbalance in contractile and relaxing factors released from
adiposa (Table 3). Such a yin-and-yang pattern of cell secretion
requires a research aiming at: (i) the inhibition of secretion and/or
receptor sensitivity of pro-inflammatory and vasocontractile

Table 2 | Selected list of pro- and anti-inflammatory adipose-derived

signals relevant to cardiovascular disease.

Pro-inflammatory signals Anti-inflammatory signals

Tumor necrosis factor-α Adiponectin

Interleukin-1β, -18/inflammasome Interleukin-10

Hypoxia-inducible factor 1α Nerve growth factor

MIP-1 (CCL2) Interleukin-1 receptor antagonist

Leptin Brain-derived neurotrophic factor

RANTES (CCL5) Humanina

Fractalkine (CX3CL1) Irisin

Interleukin-8 (CXCL8) Apelin, Otopetrin 1

Resistin Omentin, Chemerin

ROS Resolvin D1

Acylation stimulating protein

Netrin-1

Profilin-1

aHumanin is not (yet) adipose-derived product; it is a peptide produced by

mitochondria (89).

MIP-1 (CCL2), monocyte chemoattractant protein (CCL2, cysteine–cysteine mod-

ified chemokine ligand 2); RANTES, regulated on activated normalT cell expressed

and secreted; ROS, reactive oxygen species.

For references see the text, also Ref. (89–108). Connecting references (63, 92,

93), NGF might be implicated in the therapy of atherosclerotic lesion viewed as

vascular wound (15).
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Table 3 | Adipose tissue-derived mediators controlling vascular tonea.

Vasodilators

Nitric oxide (NO), adipocyte-derived relaxing factor, hydrogen sulfide (H2S),

adiponectin, cardiac natriuretic peptide, adrenomedullin, visfatin, omentin

Vasoconstrictors

Superoxide anion, angiotensin II, endothelin-1, tumor necrosis factor-α

aAll components of renin–angiotensin system are also expressed in periadventi-

tial adipose tissue, suggesting their paracrine involvement in the pathogenesis of

atherosclerosis and hypertension (37, 87). Whether adipose-derived contractile

mediators may contribute to the so-called “adventitial shrinkage” due to myofi-

broblast contraction in postangioplasty coronary restenosis (59), remains to be

studied. For other mediators see Ref. (109–118).

adipose-derived mediators, and (ii) the stimulation of secretion
and/or receptor sensitivity of anti-inflammatory (metabotrophic)
and vasorelaxing adipose-derived mediators (87, 88).

Arguably, adipoparacrine activity is increasingly implicated
in the pathogenesis of CVD. “So what does it mean if” (119)
adipoparacrinology (10) and adipoimmunology (74) are indeed
a biological rationale in vascular biology? First, in basic research,
we should no longer disregard adventitia and adiposa, but pre-
serve them in place and subject to a thorough examination; in
other words, we need to keep open minds on all vascular coats.
Second, echocardiography, computer tomography, MRI, and other
non-invasive imaging of heart- and artery-associated adipose tis-
sue may identify high-risk population susceptible to CVD (120,
121). Third, “non-touch harvesting technique” is an example of
appreciation of adipoparacrinology in coronary artery bypass
surgery (109, 110). Fourth, tunica adipose like adventitia (59) may
represent a new target for in situ therapeutic applications.

CONNECTING THE DOTS: VASCULAR TRIACTOME
A central aim of neuroadipoimmunology is to map molecular
interactions, in order to learn how they account for cardiovas-
cular and metabolic biology and how alterations in them lead to
disorders, including atherosclerosis and hypertension. However,
until now we have paid less attention to the possible interactive
talk in the vascular wall. When connecting the dots described
above we may better understand which are the mediators in
the suggested interactions between perivascular nerves, adventi-
tial/adipose immune cells, and paracrine adipose tissue, herein
designated vascular triactome. As indicated in Tables 2 and 3, the
adipose-derived signaling molecules might be among the major
players in the triactome. In effect, we may integrate the traditional
“inside-out” (intimal) to an “outside-in” (adventitial and adipose)
pathway in the pathogenesis of CVD. The present hypothesis may
thus provide new insights into the therapy of these diseases.

That’s it. No big deal. Just a triactome (Figure 1). The future
challenge is therefore to cultivate integrative thinking about how
we can make triactome work for the benefit of cardiometabolic
health.

ACKNOWLEDGMENTS
None of this review would have been possible without the staunch
support and creative collaboration over the years of our brain-
and-heart friends (BHF) Anna Kadar,Yasuo Uehara,Yukio Yamori,

Takashi Fujiwara, Anton B. Tonchev, Francesco Angelucci, Feder-
ica Sornelli, Mariyana G. Hristova, Vesselka Nikolova, Stanislav
Yanev, and many other too numerous to name. We apologize to
the authors of many relevant articles that were not quoted here for
reasons of brevity.
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