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Abstract: Gully erosion is a form of natural disaster and one of the land loss mechanisms causing
severe problems worldwide. This study aims to delineate the areas with the most severe gully erosion
susceptibility (GES) using the machine learning techniques Random Forest (RF), Gradient Boosted
Regression Tree (GBRT), Naïve Bayes Tree (NBT), and Tree Ensemble (TE). The gully inventory map
(GIM) consists of 120 gullies. Of the 120 gullies, 84 gullies (70%) were used for training and 36 gullies
(30%) were used to validate the models. Fourteen gully conditioning factors (GCFs) were used for
GES modeling and the relationships between the GCFs and gully erosion was assessed using the
weight-of-evidence (WofE) model. The GES maps were prepared using RF, GBRT, NBT, and TE and
were validated using area under the receiver operating characteristic (AUROC) curve, the seed cell
area index (SCAI) and five statistical measures including precision (PPV), false discovery rate (FDR),
accuracy, mean absolute error (MAE), and root mean squared error (RMSE). Nearly 7% of the basin
has high to very high susceptibility for gully erosion. Validation results proved the excellent ability
of these models to predict the GES. Of the analyzed models, the RF (AUROC = 0.96, PPV = 1.00,
FDR = 0.00, accuracy = 0.87, MAE = 0.11, RMSE = 0.19 for validation dataset) is accurate enough
for modeling and better suited for GES modeling than the other models. Therefore, the RF model
can be used to model the GES areas not only in this river basin but also in other areas with the same
geo-environmental conditions.

Keywords: random forest (RF); gradient boosted regression tree (GBRT); tree ensemble (TE); Naïve
Bayes tree (NBT); R programming language; geographical information system (GIS)

1. Introduction

One of the major problems in modern societies in the last decade is the degradation of natural
resources, especially soil and water [1]. The rapid population growth and careless use of natural
resources lead to soil and water degradation, which in turn threatens human lives and property [2,3].

Soil erosion by water, such as in the form of gully erosion, is one of the most common soil
degradation processes worldwide [4,5]. Gully erosion typically features a deep channel eroded
by running surface water that removes and transports the eroded surface soil particles and other
materials [6]. Gully erosion causes various environmental problems like desertification, inundation,
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and sedimentation in lakes [6,7], as well as reducing the soil fertility and agricultural productivity,
which negatively affects the economy [8,9]. When water erosion or sediment formation exceeds the
geomorphological threshold value of an area, then the process of gully erosion occurs [10]. Gully erosion
mapping is essential for implementing soil conservation initiatives [6]. Geo-environmental factors
such as precipitation, altitude, slope, aspect, curvature of the plane, lithology [11], soil physio-chemical
properties [12], and land use/land cover (LULC) [13] have a strong influence on gully erosion.

A gully erosion susceptibility map (GESM) is obtained using the relationship between gully
occurrence and geo-environmental gully conditioning factors [11]. To calculate the rate of soil erosion,
various numerical and conventional methods were applied, such as the universal soil loss equation
(USLE) [1,14], the potential erosion process, the Modified Southwest Interagency Committee Model
(MPSIAC), the water erosion project (WEEP) [15], the European Soil Erosion Model (EUROSEM) [16]
etc. In the last two decades, the use of remote sensing data to predict gully susceptibility has
increased enormously [17]. Presently, combined with remote sensing and GIS, different probabilistic,
knowledge-driven and machine learning methods are being used to generate GESM, such as bivariate
statistics (BS) [1], weights-of-evidence (WoE) [18–20], logistic regression (LR) [21–24], information
value (IV) [22], random forest (RF) [25], bivariate statistical models [26], maximum entropy (ME) [27],
frequency ratio (FR) [26,28], analytical hierarchy processes (AHP) [29], artificial neural network
(ANN) [11,27], Functional tree (FT), Naïve Bayes tree (NBTree) [12], support vector machine (SVM) [27]
and boosted regression trees (BRT) [11]. In the present research, tree-based machine learning algorithms,
namely the Random Forest (RF), Gradient Boosted Regression Tree (GBRT), Naïve Bayes Tree (NBTree),
and Tree Ensemble (TE) models were used to model the gully erosion susceptibility. The RF model is
controlled by machine learning algorithms that use multiple trees in the classification [17]. The RF
method uses large numbers of decision trees to consider the factors or variables affecting the target
variable. The RF algorithm then combines all the trees to make decisions [17]. Tree-based machine
learning methods have been used for gully erosion modeling by various researchers who have stated
that the RF, BRT, naïve Bayes tree (NBTree), and Functional trees (FT) have shown better performance
and precision for gully erosion susceptibility GES modeling than conventional methods [12,30]. The
overfitting problem in such tree-based machine learning methods is very low compared with the
numerical models [31,32].

The integration of GIS and the R programming language has provided the best platform for
preparing more accurate susceptibility models. Arabameri et al. [30], Hosseinalizadeh et al. [12] used
GIS and the R programming language in spatial gully erosion modeling, and they found the combined
method to be more accurate than conventional methods. R programming language-based machine
learning methods are more reliable and accurate [12,13,27,30]. Viewing the better accuracy of the
machine learning models used in other fields than the conventional, knowledge-driven, probabilistic
models as per the previous literature, we selected the four trees-based machine learning techniques for
predicting the spatial susceptibility of gully erosion in the Hinglo River basin in eastern India. The Tree
Ensemble (TE) method, which we have selected for gully erosion prediction, is a new method and has
previously not been used for hazard mapping. The selected machine learning methods were used to
prepare gully erosion susceptibility maps of the study area and the results were compared.

In the upper and upper-middle catchment areas, the Hinglo River basin is currently subject to
gully erosion. For this reason, it is necessary to address the problem of soil erosion in the study
area. Therefore, the main objective of this study is to ascertain which areas are susceptible to gully
erosion using machine learning ensemble techniques, namely RF, GBRT, Tree Ensemble (TE), and
Naïve Bayes Tree (NBT), and compare the results. These gully erosion susceptibility models will help
the agricultural planners to predict the probability of soil erosion for better land management.
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2. Materials and Methods

2.1. Description of The Study Area

The Hinglo River basin geographically extends from 23◦42′7.09” N to 24◦0′56.78” N latitude
and 86◦59′32.68” E to 87◦23′31.91” E longitude (Figure 1). The total catchment area is 442.95 km2.
The Hinglo River basin, which is a major tributary of the Ajay river basin, encompasses part of
the Jamtra district and the Birbhum district in India. The length of the primary river is 66 km.
Physiographically, most of this basin is part of the Chota Nagpur plateau fringe region. The study
area is subjected to the Indian monsoon climate, with an average annual rainfall of 1316–1361 mm.
This basin encompasses five geological formations, namely granite-gneiss, barker, ironstone shale,
newer alluvium, and quartzite [33]. The alluvium thickness of the eastern part of the basin varies
between 12 and 20 m [34]. The depth of the groundwater table of this region varies between 5 and 10 m
b.g.l [35]. The area has seven soil texture classes, namely sand, clay, clay loam, haplustepts, sandy loam,
loam, and fine loamy [36], whereby haplustepts covers most of the basin. The maximum elevation
of the study is 284 m a.s.l. The north and middle-western parts of this study area are subjected to
gully erosion [37]. A precise gully erosion susceptibility map is essential for this region to manage the
erosion-prone areas.
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2.2. Methodology

Different types of data were collected from various sources to fulfill the intent of our research
(Table 1). The gully locations were identified from field investigation using a handheld global
positioning system (GPS) and Google Earth image. Table 1 details the data used in this study.

The present study was carried out in the following five main steps (Figure 2): (1) Gully inventory
map (GIM) and GCFs data layers were prepared; (2) a multi-collinearity analysis was carried out to
select the gully erosion conditioning factors (GCFs); (3) the weight-of-evidence (WofE) method was
used to examine the relationship between gully erosion and GCFs; (4) the machine learning models RF,
NBT, GBRT, and TE models were applied to prepare the GESMs, and (5) the performance of each of the
ensemble models was evaluated using the area under the receiver operating characteristic (AUROC)
and SCAI methods and a few statistical measures.

Table 1. Data sources.

Data Types Sources Scale Year

Open series topographical map
(73 M/1, 73M/5, 73M/6, 73P/4,
73L/13 and 73L/16)

Survey of India (SOI) 1:50,000 2011

Geological map (73/m) Geological Survey of India (GSI) 1:50,000 1985

Soil type map National Bureau of Soil Survey and Land
Use Planning, Kolkata, collected in 1:50,000 2018

ASTER DEM Earthexplor.usgs.gov, path = 139, Row = 43 30 × 30 m 2016
Landsat 8OLI/TIRS Earthexplor.usgs.gov, path = 139, Row = 43 30 × 30 m 2018
Google Earth image Data SIO, NOAA, U.S Navy, NGA, GEBCO 30 × 30 m 2018
Rainfall Indian Meteorological Department (IMD) Weather station data Last three year

2.3. Database

2.3.1. Preparing the Gully Inventory Map (GIM)

The GIM is essential for preparing the GESMs by various predictive models [27] and was
considered as the dependent variable in this study area. To prepare the GIM, first, gully locations
and dimensions were measured using the remotely sensed data through Google Earth. Then, a field
investigation was conducted in the study area to update and ground truth check the data. Gully
locations were geolocated with handheld GPS. A total of 120 gullies were identified in the study area.
Of the 120 gullies, 84 (70%) gullies were randomly selected for model preparation, and the remaining
36 (30%) gullies were used for model validation (Figure 3) based on previous literature [20,23,24].
Representative gully images are shown in Figure 1.

2.3.2. Preparing the Gully Conditioning Factors (GCFs)

Selecting geo-environmental factors is an important step in preparing the GESMs using various
methods [11]. In this study, 14 GCFs, namely elevation, slope, aspect, monsoonal rainfall, soil type,
geology, LULC, NDVI, distance to river, distance to lineament, Lof, TWI, STI, STI were used for spatial
gully erosion modeling while considering the previous literature and multi-collinearity analysis.
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Figure 3. Field photographs of gullies of fallow land and vegetation-covered areas (a) Charakmara
(24◦00′36” N, 86◦54′48” E), (b) Dhainghati (23◦57′56” N, 87◦00′34” E), (c) Agaia (23◦57′15” N,
87◦10′14” E), (d) Bamombhuin (23◦56′41” N, 87◦12′07” E), (e) Hesaltanr (23◦56′13” N, 87◦07′31” E), (f)
Prasadpur (23◦57′03” N, 87◦12′36” E)

The digital elevation model (DEM), collected from USGS, was used as the elevation data layer
(Figure 4a). The altitude of the study area was categorized into five classes, namely 64 m–96 m,
96 m–118 m, 118 m–138 m, 138 m–162 m, 162 m–284 m (Figure 4a). The slope affects gully erosion
significantly [26]. The slope map was prepared in GIS from a recorded DEM (Figure 4b) and was
classified into the five classes of 0–0.96, 0.96–1.83, 1.83–5.70, 5.70–12.85, 12.85–24.65 (Figure 4b). Like
the slope map, the aspect map was derived from the DEM (Figure 4c) and divided into nine subgroups:
flat (−1), north (0–22.5, 337.5–360), north-east (22.5–67.5), east (67.5–112.5), south-east (112.5–157.5),
south (157.5–202.5), south-west (202.5–247.5), west (247.5–292.5), north-west (292.5–337.5) (Figure 4c).
The sediment transportation index (STI) was calculated using Equation (Equation (1)) suggested by
Moore and Burch [38], and it was also derived from the DEM.

STI =(M + 1) × (As/22.13)m
× sin(B/0.0986)n (1)

where “As” is the area of a specific catchment; “B” is the slope gradient in degrees; m is constant,
i.e., 0.4, “n” is constant, i.e., 0.0896. The STI was classified into the five classes of 0–1.75, 1.75–7.60,
7.60–19.59, 19.59–39.48, 39.48–74.59 (Figure 4d). The SPI reflects the discharge, carrying capacity, and
runoff erosion power, which determines the gully erosion susceptibility [22,39,40]. The SPI was derived
from DEM using the following Equation (2).

SPI = AS × tanβ (2)

where AS is the upstream contributing area andβ is slope gradient (in degrees). The SPI was categorized
into the five classes of −1.470 to −0.889, −0.889 to −0.391, −0.391 to −0.108, −0.108 to −0.034 and −0.034
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to 0.427 (Figure 4e). Using GEOMATICA and ENVI 4.7 software, the lineament of the study area was
derived from the Landsat 8 OLI / TIRS panchromatic band. The distance to lineament map was built
using the (Figure 4f) EDB tool in GIS. The lineament buffer was classified into the classes of 0–0.18 km,
0.18–0.42 km, 0.42–0.69 km, 0.69–0.99 km, and 0.99–1.65 km distance (Figure 4f).
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Figure 4. The topographical factors: (a) elevation, (b) slope, (c) aspect, (d) sediment transportation
index (STI), (e) stream power index (SPI), (f) distance from lineament.

The study area’s average monsoonal rainfall map was prepared using the kriging method based
on the rainfall data of the last three years measured at different stations. The monsoonal rainfall
was categorized into the five sub-classes of 738–748, 748–757, 757–767, 767–781, 781–797 (Figure 5a).
The TWI was defined by Beven and Kirkby [41]. It is commonly used to evaluate a region’s hydrological
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features [42]. The TWI is considered to be an important gully erosion determining factor [39]. The TWI
was derived from DEM imagery using the following Equation (3).

TWI = In (A S / tanβ) (3)

where AS is the upstream contributing area and β is the slope gradient (in degrees). The TWI was
classified into five sub-categories, namely 2.92–7.35, 7.35–8.57, 8.57–10.05, 10.05–12.23, and 12.23–19.30
(Figure 5b). The distance from the river map was prepared by applying the Euclidian distance buffer
(EDB) tool in GIS (Figure 5c). It was categorized into five sub-classes, namely 0–0.18 km, 0.18–0.42 km,
0.42–0.73 km, 0.73–1.17 km, and 1.17–2.10 km distance (Figure 5c).
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The measured length of the overland flow (Lof) was introduced by Horton [43] and is calculated
using Equation (4).

Lof =
1

2Dd
(4)

where Dd is the drainage density. Drainage density is the total length of stream per unit area. The Lof
was categorized into five sub-classes, namely 0–1.42 km2, 1.42–1.92 km2, 1.92–2.27 km2, 2.27–2.58 km2,
and 2.58–2.89 km2 (Figure 5d).

The LULC map was extracted from Landsat 8OLI/TIRS imagery based on the maximum likelihood
classification method in GIS (Figure 6a). Water bodies, fallow land, agricultural land, settlement,
and natural vegetation are the land use types found in the basin (Figure 6a). Using the digitization
process in GIS environment, the geological map was generated for the study area (Figure 6b).
Geologically, the study area consists of five geological formations, i.e., iron shale, barakar formation
(comprises several meters of thick pebbly or conglomeratic succeeded by heterolithic cross-stratified
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sandstone–mudstone–carbonaceous shale–coal beds), quartzite, granite-gneiss, and newer alluvium
(Figure 6b). The NDVI map was prepared using the Landsat 8OLI/TIRS imagery in a GIS environment
(Figure 6c) with the help of Equation (5).

NDVI =
IR−R
IR + R

(5)

where IR is the electromagnetic spectrum’s infrared portion, and R is the electromagnetic spectrum’s
red portion. The NDVI was classified into five classes, namely −0.15 to 0.16, 0.16 to 0.20, 0.20 to 0.23,
0.23 to 0.28, and 0.28 to 0.43 (Figure 6c). The soil type map was prepared using the district’s registered
soil type map in GIS (Figure 6d). Pedologically, the study area is composed of seven soil texture classes
namely clay, fine loamy mixed (Haplustepts), clay loam, loam, fine loamy mixed type palustepts,
sand and sandy loam (Figure 6d).Sensors 2020, 20, x FOR PEER REVIEW 10 of 28 
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In this study, the elevation, slope, rainfall, distance from river, distance from lineament, NDVI,
TWI, SPI, and STI were used as numerical variables and reclassified into five sub-categories using the
NBM in GIS. The aspect, geology, soil type, land use/land cover were used as categorical variables.
The presence and absence of gullies were used as target variables.

2.4. Multi-Collinearity Analysis of Effective Factors

The multi-collinearity test is an important way to judge the linear dependency among the selected
independent factors in the statistical modeling [44]. In the case of the machine learning models,
this technique needs to be used for better results [45–52]. Researchers have applied multi-collinearity
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analysis for gully erosion susceptibility mapping [53], groundwater potentiality mapping [54], landslide
susceptibility mapping [48] etc. The multi-collinearity was tested using the tolerance (TOL) and variance
inflation factor (VIF). The TOL was calculated using Equation (6), where R2 is obtained by the regression
of each variable for the remaining variables in the multivariate regression [55].

TOL = 1−R2
j (6)

VIF =
1

TOL
(7)

where R2j is the regression value of explanatory j on all other independent variables. A tolerance of
less than 0.10 and a VIF value of 10 and above indicate a multi-collinearity problem [56].

2.5. Assessment of The Relationship between Gully Erosion and Effective Factors using Weight-of-Evidence
(WofE) Model

The WofE is an important bivariate statistical method, which calculates the relative importance of
effective factors by statistical means using the log-linear form of the Bayesian probability model [57].
In this analysis, the WofE model was used to demonstrate the relationship between gully occurrence
and gully conditioning factors [51] obtained using the regression of each variable [55].

X+
i = loge

[
(Bpix1/(Bpix1 + Bpix2))/(Bpix3/(Bpix3 + Bpix4))

]
(8)

Y−i = loge

[
(Bpix2/(Bpix1 + Bpix2))/(Bpix4/(Bpix3 + Bpix4))

]
(9)

where Bpix1 is the number of pixels of gully erosion in a particular class, Bpix2 is the total number of
pixels of gully erosion on a map, Bpix3 is the number of pixels in a specific class of GCF, and Bpix4 is the
total number of pixels in a map. A is positive weight X+

i indicates the existence of a gully pixel and
a positive relationship between the presence of the gully pixel and GCF and vice versa. Finally, the
weight was calculated using Equation (10) [26,58].

F =

(
P

Q(P)

)
(10)

where, F is the weight, and P is the differential weight between positive and negative. P is negative for
a negative correlation and positive for a positive correlation between GCFs and gully erosion [59]. Q
(P) is the standard deviation (SD) of the weight contrast.

2.6. Models for Spatial Gully Erosion Mapping

2.6.1. Random Forest (RF) Model

Decision trees were used to generate subset training datasets for the preparation of the final model
based on the random sampling method [60]. The T (number of trees) and m (number of variables) are
the important features of the RF model and are defined by the user. Micheletti et al. [60] concluded
that a calibration set is not essential for defining the parameters. Calle and Urrea [61] noted that the RF
model could be used for analyzing the importance of the factors. In this analysis, the RF model consists
of the two trees (presence and absence of gullies) that are evaluated by the 14 random independent
variables. For the RF algorithm, the generalization error is measured as follows [62].

GE = Px,y(mg(x, y) < 0) (11)

mg(x, y) = avkI(hk(x) = y) −max j,kavkI(hk(x) = j)) (12)
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where x and y represent the contributing factors to gully erosion displaying probabilities over x and
the margin function, and the indicator function are represented by y space, mg and I (*) [63].

2.6.2. Naïve Bayes Tree (NBT) Model

Kohavi [64] suggested the use of the Naïve Bayes tree (NBT) method, a hybrid algorithm of
decision tree and Naïve Bayes. The NBT model uses very little training data to evaluate the most
important modeling and classification parameters [65]. The NBT was used as the reference classifier
to evaluate the vulnerability to gully erosion in an ensemble framework [66]. The NBT operates as
follows [67].

tNB = argmaxZiPP(ti)
m∏

i=1

1
√

2πε
e
−(ri−σ)

2

2ε2 (13)

where pp(ti) is the earlier variables output probability ti = (1,0), σ and ε indicate the average and SD of
ri respectively

2.6.3. Gradient Boosting Regression Tree (GBRT)

The GBRT was introduced by Friedman [32] and is an important machine learning technique.
Boosting is a popular learning approach that was specifically designed to overcome categorization
issues but has also been effectively extended to regression. The impetus for boosting is to unite a
powerful committee with the output of many weekly learners [68]. The works of Hastie et al. [68],
Ridgeway [69] and Scikit-learn [70] provide an in-depth description of gradient boosting and gradient
boosted regression trees (Algorithm 1).

Algorithm 1. Gradient Boosting Regression Tree (GBRT).

1. F0(x) = argminp
∑N

i=1 L
(
yi,ρ

)
2. For m = 1 to M do;

3. y i = −
[
∂L(yi,F(xi))
∂F(xi)

]
F(x)=Fm−1(x)

, i = 1, N

4. am = argminaβ
∑N

i

[
yi − βh(xi; a)

]2

5 . ρm = argminρ
∑N

i=1 L(yi,Fm−1(xi) + ρh(xi; am))

6. Fm(x) = Fm−1(x) + ρmh(x; am)

7. end Forr
8. end Algorithm

These algorithms have been considered for different prediction purposes as found in the literature
of Persson et al. [31], Friedman [32], Hastie et al. [61], Ridgeway [69], and Scikit-learn [70].

2.6.4. Tree Ensemble (TE) Model

The Tree Ensemble method combines various decision tree models to produce a more suitable and
accurate predictive model than using a single tree model. The TE method consists of two decision tree
methods, such as bagging and boosting. The random forest model uses the bagging and the gradient
boosted regression tree model uses the boosting method. Therefore, the TE method is the sum of
the ensemble of all tree models [71]. A sum-ensemble of trees model f : R2

→ R consists of a
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is a binary tree where each
internal node n ∈ t.nodes bears a rational predicate over the feature variables. The prediction of tree T
is the leaf value of the prediction path. Finally, the signed margin prediction f(x) of the ensemble model
is the sum of predictions of all individual trees, and the predicted label is acquired by the threshold
value generally set at zero:c(x) = 1⇔ f (x) > 0 .

In this study, we consider the case of single-feature threshold predicates of the form xi < T or
equivalently xi > T where 0 ≤ i < n and T ∈ R fixed model parameters. This restriction keeps out
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oblique decision trees where predicates concurrently engage numerous feature variables. However,
we note that oblique trees are seldom used in ensemble classifiers, partially because of their relatively
high construction cost and complexity [72]. Kantchelian et al. [71] have used the equation and technique
of the TE model for evasion and hardening of tree ensemble classifiers. Xiao et al. [73] have also used
the tree ensemble classifier technique for identifying the different transportation nodes.

2.7. Validation Methods

In the present study, we used five statistical measures, namely precision (PPV), false discovery
rate (FDR), accuracy, mean absolute error (MAE), and root mean squared error (RMSE) to evaluate
the robustness of the used machine learning ensemble models. PPV is the proportion of units with
an expected positive outcome that is positive for the true condition (Equation (14)). FDR is the
proportion of the units with a predicted positive condition for which the true condition is negative
(Equation (15)). The accuracy represents the maximum proportion of accurately estimated or defined
units (Equation (16)). The MAE (Equation (17)) and RMSE (Equation (18)) were used to measure the
variation between observed and predicted data. The robustness of models is good when PPV and
accuracy are high, and FDR, MAE, and MRSE are low [74–76].

PPV =
A

(A + B)
(14)

FDR =
B

(A + B)
(15)

Accuracy =
A + D

(A + B + C + D)
(16)

MAE =
1
n

n∑
i=1

∣∣∣Xpredicted −Xactual
∣∣∣ (17)

RMSE =

√√
1
n

n∑
i=1

(
Xpredicted −Xactual

)2
(18)

A standard tool for evaluating the model performance is area under the receiver operating
characteristic (AUROC) curve [77,78]. ROC is plotted on the x- and y-axis based on the sensitivity
and 10-specificity. The model output was assessed using the AUC (area under the curve) of ROC
(Equation (19)) [77,78]. In the previous studies [79], the mathematical theory and equation of this
approach are fully described. The sensitivity (i.e., probability detection) addresses the question of
which part of the detected gullies is labeled accurately and its optimal value is 1 [80]. The specificity
(i.e., negative predictive value) addresses the question of which part of the non-gullies is categorized
correctly, and its optimal value is 1. The AUC values below 0.6, 0.6–0.7, 07–0.8, 0.8–0.9, and above 0.9
indicate a bad, medium, decent, very good, and excellent quality of the model. The training data set’s
ROC indicates the model’s success rate and tests the model’s suitability [81]. The test dataset’s ROC
reveals the model’s predictive value and shows how good or bad the predictive model [79] is. The
seed cell area index (SCAI) is an important method for judging the robustness of the models [24,82]
and was used in this study.

AUROC =

∑
A+

∑
D

A + D + B + C
(19)

where A is the true positive rate, B is the false positive, C is the false negative, D is the true negative.
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3. Results

3.1. Analysis of Muti-Collinearity of GCFs

The multi-collinearity indicates the intra-correlation among the gully conditioning factors.
The multi-collinearity test was carried out by the SPSS software. The outcomes of the multi-collinearity
between the 14 GCFs are presented in Table 2. The results of the multi-collinearity show that
the tolerance and VIF values of gully conditioning factors are less than 0.1 and 4.5, indicating no
multi-collinearity problems among the gully conditioning factors, which means that they can be used
for predicting the gully erosion.

Table 2. Multi-collinearity analysis of the gully conditioning factors.

Conditioning Factors
Collinearity Statistics

Tolerance VIF

Elevation 0.220 4.544
Slope 0.835 1.197

Aspect 0.899 1.112
Monsoonal rainfall 0.226 4.430

Geology 0.585 1.710
Soil type 0.492 2.034

Distance from River 0.621 1.609
Distance from Lineament 0.952 1.050

LULC 0.842 1.187
NDVI 0.793 1.260
TWI 0.844 1.185
STI 0.770 1.299
SPI 0.778 1.286

Length of overland flow (Lof) 0.608 1.644

3.2. Analysis of Factor Importance using the Weight-of-Evidence (WofE) Model

The statistical calculation of the WofE model is shown in Table 3. The WofE values of independent
factors represent their effect on gully development. The topographic factors like elevation, slope,
and aspect are strongly related to gully erosion. When the WofE value is >1 the control of the effective
factor on gully occurrence is high and vice versa. A WofE value of 13.95 was found in the elevation
factor sub-class of >161m, which indicates a strong positive correlation between elevation and gully
occurrence. The 0.96–1.83 slope subgroup has the maximum WofE value (6.101), which indicates a high
positive correlation with the occurrence of gully erosion. In terms of the slope aspect, a high probability
of gully occurrence is suggested by the north-east aspect with the WofE value of 4.8. The rainfall class
of 781–797 mm with a value of 8.016 shows a strong relationship with gully erosion. The distance from
river and lineament classes of 0–0.18 km and 0.19–0.43 km, with the WofE values of 4.054 and 3.703,
demonstrate a strong inverse relationship with the occurrence of gullies. In the case of the geology and
soil type, most of the gullies were found in the granite-gneiss geological formation and the fine loamy,
mixed hyperthermic haplustepts soil type class. The WofE values of these classes are 3.408 and 11.625,
indicating a high probability of gully occurrence. Generally, the LULC types strongly determine the
development of gullies in a region [14]. For the LULC, the fallow land with the WofE value of 18.167
shows a strong correlation with the gully occurrence. The NDVI class of 0.16 to 0.20 with WofE value
of 4.809, the TWI class of 9.73–11.85 with a WofE value of 3.55, the SPI class of 0.39–0.10 with a WofE
value of 6.807, the STI class of 2.04–8.48 with a WofE value of 2.165 and the length of overland flow
(lof) class of 1.92–2.27 with a WofE value of 7.861 represent strong and positive correlation with the
occurrence of gullies.
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Table 3. Relationship between gully erosion and gully condition factors using the WofE model.

Factors X+ Y− p Q2X+ Q2Y− Q(P) P
Q(P)

Elevation(m)

64–95 0.00 0.513 0.0 0.000 0.006 0.000 0.000
95–118 −2.44 0.402 −2.84 0.200 0.006 0.454 −6.255
118–138 0.733 −0.24 0.973 0.018 0.009 0.166 5.868
138–161 1.997 −0.34 2.337 0.020 0.009 0.171 13.698
161–284 2.082 −0.32 2.409 0.021 0.009 0.173 13.955

Aspect

F 0.020 0.000 0.021 0.493 0.006 0.707 0.029
N −1.16 0.02 −1.19 0.492 0.006 0.706 −1.690

NW 0.961 −0.10 1.064 0.042 0.007 0.221 4.818
E 0.245 −0.03 0.283 0.041 0.007 0.220 1.285

SE −0.12 0.019 −0.14 0.049 0.007 0.238 −0.591
S −0.13 0.024 −0.16 0.045 0.007 0.228 −0.704

SW 0.567 −0.11 0.686 0.028 0.008 0.189 3.637
W −0.01 0.002 −0.01 0.045 0.007 0.228 −0.066

NW −1.17 0.091 −1.26 0.164 0.006 0.413 −3.067

Slope (Degree)

0–0.96 −0.49 0.340 −0.83 0.020 0.009 0.169 −4.907
0.96–1.83 0.583 −0.37 0.960 0.012 0.013 0.157 6.101
1.83–5.70 0.317 −0.05 0.374 0.035 0.008 0.206 1.819

5.73–12.85 0.000 0.073 0.000 0.000 0.006 0.000 0.000
12.85–24.65 0.000 0.005 0.000 0.000 0.006 0.000 0.000

Monsoonal Rainfall (mm)

781–797 0.833 −0.42 1.262 0.013 0.012 0.157 8.016
767–781 0.489 −0.16 0.653 0.020 0.009 0.169 3.857
757–767 −0.28 0.078 −0.36 0.033 0.008 0.203 −1.803
748–757 −2.66 0.195 −2.85 0.466 0.006 0.688 −4.153
738–748 0.000 0.176 0.000 0.000 0.006 0.000 0.000

Soil Texture

Sandy 0.000 0.062 0.000 0.000 0.006 0.000 0.000
Sandy Loam 0.001 0.000 0.001 0.388 0.006 0.628 0.002

Clay loam 0.000 0.971 0.000 0.000 0.006 0.000 0.000
Clay 0.000 0.018 0.000 0.000 0.006 0.000 0.000
Loam 0.000 0.037 0.000 0.000 0.006 0.000 0.000

Hapalustepts 1.903 −3.29 5.197 0.007 0.193 0.447 11.625
Paleustepts −1.88 0.095 −1.98 0.387 0.006 0.627 −3.160

Geology

Barakar formation −1.69 0.028 −1.72 1.001 0.006 1.004 −1.720
Ironstone Shale 0.000 0.006 0.000 0.000 0.006 0.000 0.000

Quartzite 0.000 0.002 0.000 0.000 0.006 0.000 0.000
Granite 0.167 −3.25 3.419 0.006 1.000 1.003 3.408

Newer Alluvium 0.000 0.124 0.000 0.000 0.006 0.000 0.000

Land Use/Land Cover

Water bodies 0.000 0.020 0.000 0.000 0.006 0.000 0.000
Settlement 0.000 0.044 0.000 0.000 0.006 0.000 0.000

Natural Vegetation 0.000 0.107 0.000 0.000 0.006 0.000 0.000
Fallow land 2.375 −0.54 2.916 0.015 0.011 0.161 18.167

Agricultural land −0.35 0.767 −1.12 0.011 0.014 0.158 −7.073

NDVI

0.15–0.16 −0.88 0.169 −1.05 0.062 0.007 0.263 −4.002
0.16–0.20 0.524 −0.24 0.770 0.015 0.010 0.160 4.809
0.20–0.23 0.598 −0.19 0.794 0.019 0.009 0.168 4.727
0.23–0.28 0.039 −0.00 0.045 0.043 0.007 0.223 0.202
0.28–0.43 −2.08 0.201 −2.29 0.245 0.006 0.501 −4.568

Distance from River (km)

0–0.18 0.312 −0.33 0.650 0.010 0.015 0.160 4.054
0.18–0.42 0.182 −0.08 0.269 0.017 0.010 0.164 1.638
0.42–0.72 −1.25 0.129 −1.38 0.133 0.006 0.374 −3.696
0.72–1.16 0.000 0.089 0.000 0.000 0.006 0.000 0.000
1.16–2.08 0.000 0.020 0.000 0.000 0.006 0.000 0.000
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Table 3. Cont.

Factors X+ Y− p Q2X+ Q2Y− Q(P) P
Q(P)

Distance from Lineament (km)

0–0.19 −0.34 0.184 −0.52 0.021 0.009 0.173 −3.037
0.19–0.43 0.346 −0.23 0.583 0.013 0.012 0.157 3.703
0.43–0.69 0.278 −0.06 0.342 0.029 0.008 0.191 1.789
0.69–0.99 −1.48 0.055 −1.53 0.399 0.006 0.637 −2.415
0.99–1.65 0.000 0.021 0.000 0.000 0.006 0.000 0.000

Sediment Transport Index (STI)

0–2.04 0.010 −0.09 0.100 0.007 0.068 0.273 0.365
2.04–8.48 0.551 −0.04 0.593 0.068 0.007 0.274 2.165
8.48–20.76 0.000 0.041 0.000 0.000 0.006 0.000 0.000

20.76–42.99 0.000 0.006 0.000 0.000 0.006 0.000 0.000
42.99–74.59 0.000 0.001 0.000 0.000 0.006 0.000 0.000

Topographic Wetness Index (TWI)

2.92–7.35 −0.42 0.076 −0.49 0.051 0.007 0.240 −2.078
7.35–8.38 −0.23 0.120 −0.35 0.021 0.009 0.172 −2.071
8.38–9.73 0.112 −0.05 0.162 0.019 0.009 0.168 0.962
9.73–11.85 0.567 −0.11 0.680 0.029 0.008 0.191 3.555

11.85–19.30 0.478 −0.01 0.494 0.153 0.006 0.399 1.240
1.47–0.88 0.000 0.002 0.000 0.000 0.006 0.000 0.000
0.88–0.39 0.000 0.003 0.000 0.000 0.006 0.000 0.000
0.39–0.10 1.339 −0.13 1.470 0.039 0.007 0.216 6.807
0.10–0.03 −0.07 0.020 −0.09 0.029 0.008 0.191 −0.473
0.03–0.42 −0.14 0.299 −0.44 0.010 0.017 0.162 −2.729

Length of Overland Flow (sq. km)

0–1.42 1.182 −0.08 1.269 0.054 0.007 0.247 5.146
1.42–1.92 0.838 −0.10 0.938 0.040 0.007 0.217 4.320
1.92–2.27 0.964 −0.31 1.280 0.017 0.010 0.163 7.861
2.27–2.58 −0.08 0.035 −0.11 0.022 0.009 0.175 −0.677
2.58–2.89 −1.83 0.520 −2.35 0.086 0.007 0.304 −7.741

3.3. Spatial Gully Erosion Susceptibility Analysis

The gully erosion models were built using ensemble machine learning algorithm-based training
datasets to predict the spatial susceptibility to gully erosion. The gully erosion susceptibility (GES)
indices produced by the machine learning techniques RF, GBRT, NBTree, and TE have been classified
into four classes with respect to gully erosion susceptibility, namely low, medium, high, and very high,
based on the natural break classification method. The Figure 7a–d show the GESMs produced by the
four ensemble machine learning frameworks.

The GESM produced by the RF model (Figure 7a) found that 2.29% (10.15 km2) of the basin
area has a very high GES. The high and moderate GES zones cover 4.59% (20.34 km2) and 15.44%
(68.38 km2) of the watershed, respectively (Table 4), while the remaining 344.07 km2 (77.68%) falls into
the low gully erosion susceptibility class. The relative importance of the gully conditioning factors
has also been assessed using the random forest method. According to this model, the elevation and
rainfall are the most important contributing factors for gully erosion (Table 5), while the geology plays
less of a role for gully erosion.

The GESM generated by the NBT (Figure 7d) shows that 70.45% (312.05 km2) of the study area
has a low GES. The high and very high GES classes make up 11.13% and 5.21% of the watershed,
respectively (Table 4 and Figure 8). The medium susceptibility class covers 58.49 km2 (13.20%) of
the basin.

Based on the results of GBRT (Figure 7b), the research area has 315.85 km2 (71.31%) that falls
into the low susceptibility class, followed by 78.47 km2 (17.71%) in the medium susceptibility class,
35.60 km2 (8.04%) in the high susceptibility class and 13.03 km2 (2.94%) in the very high GES classes
(Table 4) In case of the TN model (Figure 7c), the results show that the study area has 338.66 km2 (76.46%)
area in the low susceptibility class, followed by 71.76 km2 (16.20%) in the medium susceptibility class,
21.67 km2 (4.89%) in the high susceptibility class, and 10.86 km2 (2.45%) in the very high GES class out
of the total area of 442.95 km2 (Table 4, Figure 8a,b). The relative importance of the GCFs was also
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assessed by the GBRT as like RF model. Similarly, elevation and rainfall are the most important factors
while the geology is the least important factor contributing to gully occurrence (Table 5).

Fallow and barren land are extensively open to soil depletion by flowing water because of the
absence of vegetation cover. Despite the complexities of gully formation, the main reason for it in this
region is the intense monsoonal rainwater runoff. The region experiences a short rainy season with
high-intensity precipitation events after hot and dry summers, which are ideal gully forming conditions.
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Table 4. Seed cell area index (SCAI) values of RF, NBT, GBRT, and TE models.

Models Classes
Total Area (km2) Testing Gullies (km2) Validation Gullies (km2)

SUM SCAI
Area (km2) % of Area Area (km2) % of Area Area (km2) % of Area

RF

Low 344.07 77.68 0.05 3.66 0.00 0.00 3.66 21.23
Medium 68.38 15.44 0.05 3.66 0.00 0.00 3.66 4.22

High 20.34 4.59 0.19 14.63 0.05 6.25 20.88 0.22
Very High 10.15 2.29 0.99 78.05 0.73 93.75 171.80 0.01

TN

Low 338.66 76.46 0.00 0.00 0.00 0.00 0.00 0.00
Medium 71.76 16.20 0.05 3.90 0.00 0.00 3.90 4.16

High 21.67 4.89 0.13 10.39 0.07 8.93 19.32 0.25
Very High 10.86 2.45 1.09 85.71 0.71 91.07 176.79 0.01

GBT

Low 315.85 71.31 0.03 2.60 0.04 5.36 7.95 8.96
Medium 78.47 17.71 0.25 19.48 0.11 14.29 33.77 0.52

High 35.60 8.04 0.36 28.57 0.30 39.29 67.86 0.12
Very High 13.03 2.94 0.63 49.35 0.32 41.07 90.42 0.03

NB

Low 312.05 70.45 0.06 4.88 0.02 2.08 6.96 10.12
Medium 58.49 13.20 0.09 7.32 0.06 8.33 15.65 0.84

High 49.32 11.13 0.29 23.17 0.15 18.75 41.92 0.27
Very High 23.10 5.21 0.82 64.63 0.55 70.83 135.47 0.04
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Table 5. Relative influence of effective conditioning factors.

Effective Factors Relative Influence by GBRT Mean Decrease Accuracy by RF

Elevation 14.41 203.52
Monsoonal Rainfall 11.87 137.67

NDVI 7.13 136.52
LULC 6.87 123.95
Slope 5.07 100.28
SPI 4.01 99.39

Aspect 3.39 97.96
Length of overland flow (Lof) 2.14 82.60

Distance from lineament 1.96 75.24
TWI 1.96 65.49

Distance from River 1.59 57.54
STI 0.92 55.71

Soil type 0.68 42.93
Geology 0.23 4.61
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Figure 8. Graphs showing (a) areal distribution of RF, NBT, GBRT, and TE models, (b) distribution of
the percentage of area of RF, NBT, GBRT, and TE models.

3.4. Validation of Models

The validation of the GESMs using AUROC, SCAI, and eleven statistical measures are shown in
Figure 9, Figure 10 and Table 6. In this research, we used some validation techniques that are rarely
used in hazard modeling. To judge the capabilities of the models, we considered both the training
and testing datasets. We found a good similarity between the data collected during fieldwork and the
predicted results. Some field photos of gullies are presented in the methodology section. The success
rates and predictive rates of the RF, TE, GBRT, and NBT models are 0.94, 0.90, 0.84, and 0.82 and 0.96,
0.91, 0.88, and 0.84, respectively. The AUCs of the AUROC indicate a very good to excellent prediction
accuracy of the models for the GESMs (Table 6).
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The precision values for the training and validation datasets of the RF, TE, GBRT, and NBTree
models are 0.98, 0.98, 0.80, and 0.93 and 1.00, 0.96, 0.43 and 0.85, respectively. The accuracy values for
the training and validation datasets of the RF, TE, GBRT, and NBTree models are 0.87, 0.82, 0.80, 0.81
and 0.87, 0.91, 0.37, and 0.83, respectively. The MAE and RMSE values of the RF, TE, GBRT and NBTree
models are 0.07, 0.23, 0.16, 0.18 and 0.15, 0.28, 0.29, and 0.33, respectively, for the training datasets.
The MAE and MRSE values for the validation datasets for the RF, TE, GBRT, and NBTree models
are 0.11, 0.25, 0.19, 0.23 and 0.19, 0.33, 0.31, and 0.35, respectively. The SCAI values decrease from
low susceptibility classes to very high susceptibility classes, which indicates the more accurate and
significant results (Table 6). The results of the seed cell area index (SCAI) for the very high susceptibility
classes are 0.01 (RF), 0.03 (GBRT), 0.04 (NBT), and 0.01 (TE), which indicates that these are very good
models (Table 6). All the machine learning methods used in this study are well suited for modeling the
gully erosion susceptibility. According to the AUROC curve, the SCAI and all the statistical measures,
the RF model is the most accurate and robust model for gully erosion prediction.
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Table 6. Performances of RF, GBRT, NBT, and TE models.

MODEL
Training Datasets Validation Data Sets

RF TE GBRT NBTree RF TE GBRT NBTree

Precision (PPV) 0.98 0.98 0.80 0.93 1.00 0.96 0.43 0.85
False discovery

rate (FDR) 0.02 0.02 0.20 0.07 0.00 0.204 0.63 0.15

Accuracy 0.87 0.82 0.80 0.81 0.87 0.91 0.37 0.83
AUROC 0.94 0.90 0.84 0.82 0.96 0.91 0.88 0.84

MAE 0.07 0.23 0.16 0.18 0.11 0.25 0.19 0.23
RMSE 0.15 0.28 0.29 0.33 0.19 0.33 0.31 0.35

4. Discussion

Gully erosion risk assessment based on GESMs and effective geo-environmental factors is the
first step for managing gully erosion. Although different approaches and procedures for the spatial
prediction of environmental hazards have been developed and implemented around the world,
the aims of all these methods are the same. A controversial issue among environmental researchers
is the preparation of a logical and reliable susceptibility map of natural hazards. In the past decade,
machine learning techniques are being developed. The important applications of the machine learning
techniques are prediction, categorization, clustering, and elaboration of data [83,84]. Different sources
were used to prepare the input dataset. Because some of the factors considered in the GESM were
derived from a digital elevation model (DEM), the resolution of the DEM greatly affects the precision
of the results [85,86]. In this study, we used RF, GBRT, NBT, and TE tree-based machine learning
algorithms for producing the gully erosion susceptibility maps based on training and validation
datasets and 14 GCFs. These factors were tested for collinearity by TOL and VIF. The results indicate
that no GCF has a multi-collinearity problem. The outcomes of the WofE showed that the effective
parameters and gully erosion datasets have a strong positive correlation. The positive values of the
effective parameters indicate a strong correlation with the probability of gully erosion. As per the RF
and GBRT, the most effective factors are elevation, rainfall, NDVI, LULC, and slope, while the geology,
soil type and distance from the river have little control over gully erosion. In this basin, the geology,
and soil type are almost uniform, which may be the cause of them having less impact on gully erosion.
The GESMs based on machine learning ensemble techniques, namely the RF, NBTree, GBRT, and TE
models, were created using GIS and R programming language. In the upper parts of Hinglo River
basin, we identified a very high susceptibility class of GES. Geologically, the upper catchment consists
of the granite-gneiss geological formation. The soil type of the upper catchment is the fine loamy mixed
type soil textural. Topographically, the upper catchment is rugged and badland topography. The study
area covers the two topographical regions of the Chhoto nagpur plateau and the Rar lateritic region.

The AUROC, SCAI, and five statistical measures were used for validating the GESMs produced
by the selected machine learning techniques and showed excellent accuracy in the prediction of gully
erosion. For a number of reasons, it is not possible to completely eradicate or avoid some causes of
errors, such as that the gully samples were chosen in an area where the gully erosion area is small in
comparison to the non-gully area. We divided the sample data in a 70:30 ratio based on the suggestions
in previous literature without testing the sample accuracy. A different ratio may yield better results, and
that should be the subject of our future research. Noise in the selected gully conditioning factor data
exists after the collinearity test and need other methods need to be applied to eradicate this problem.
But the main advantage of the tree-based machine learning algorithms is in the collection of important
information because they automate the process of investigating multiple datasets. The effective analysis
of the non-gully area ratio, evaluation of sample division, considering the method for selecting the
features, and use of ensemble approaches is useful in enhancing the accuracy of the GES models.

Models Comparisons

In this study the results of these four models i.e., RF, GBRT, NBT, and TE were categorized into
low, medium, high, and very high GES zones (Figure 7). The division of the area into different GES
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classes is shown in Figure 8a,b. Among these models, the Naïve Bayes tree (NBT) model shows the
largest area of the very high susceptibility zone. According to the validation results, these models
have proved the excellent prediction accuracy. But the results of these models vary slightly in terms of
the values of the AUROC curve, SCAI and the eleven statistical measures (Table 6). The AUC of the
RF model is 96%, which indicates this to be the most accurate, followed by 91% of TE, 88% of GBRT,
84% of NBT model based on the validation dataset. Therefore, the RF model is a better model for the
prediction of GES (Table 6) for this basin compared to the other models. The findings also showed that
the result of the tree-based ensemble methods has a better accuracy than the statistical models used in
this region [23,24,87]. Our results are rational as the tree-based machine learning algorithms minimized
bias, variance, and overfitting issues in GES modeling. This is confirmed by Arabameri et al. [88],
Pourghasemi et al. [89], Hembram et al. [87], and Gayen et al. [90].

5. Conclusions

The purpose of this study is not only to investigate the capability of a machine learning model to
predict the susceptibility to gully erosion, but also to compare its capability and robustness among the
implemented models, i.e. GBRT, RF, NBT, and TE. Therefore, 14 geo-environmental factors were used
and the significance of all GCFs was explored using the WofE, RF, and GBRT models. The findings
underlined that the understanding of the strengths and limitations remains somewhat challenging
for model selection, even when performing model comparisons with some clear objectives, such as
prediction accuracy and robustness. Based on six threshold-dependent and -independent assessment
criteria, the RF obtained the most outstanding performance as per the achievements. The GBRT,
NBT, and TE have a slightly lower precision when compared to the RF in terms of pure prediction
performance. The results of all the models show that the upper portion of the basin has the highest
susceptibility to gully erosion in the whole basin. Therefore, immediate suitable planning is needed to
prevent further gully and soil erosion in the Hinglo River basin. The outcome of variable significance
showed that the elevation is the most significant GCF followed by the influences of rainfall and the
NDVI. On the other hand, the geology, soil type, and STI influences are the least important. The
results of this research could be helpful for land resource management to cope with the current
uncertain situation and more accurately understand the different factors that influence gully erosion.
Additionally, this approach could be used as a guideline for future research to analyze the vulnerability
of gully erosion to land use change i.e., as a tool for regional soil resource analysis.

Author Contributions: Methodology, S.S., J.R., and A.A.; formal analysis, S.S., J.R., and A.A.; investigation, S.S.,
J.R., and A.A.; writing—original draft preparation, S.S., J.R., and A.A.; writing—review and editing, D.T.B., T.B.,
S.S., J.R., and A.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partly funded by the Austrian Science Fund (FWF) through the Doctoral College
GIScience (DK W 1237-N23) at the University of Salzburg.

Acknowledgments: Open Access Funding by the Austrian Science Fund (FWF).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Magliulo, P. Assessing the susceptibility to water-induced soil erosion using a geomorphological, bivariate
statistics-based approach. Environ. Earth Sci. 2012, 67, 1801–1820. [CrossRef]

2. UNEP. The Emissions Gap Report. United Nations Environment Programme (UNEP) Nairobi. 2017.
Available online: www.unenvironment.org/resources/emissions-gap-report (accessed on 13 January 2018).

3. Haregeweyn, N.; Tsunekawa, A.; Poesen, J.; Tsubo, M.; Meshesha, D.T.; Fenta, A.A.; Nyssen, J.; Adgo, E.
Comprehensive assessment of soil erosion risk for better land use planning in river basins: Case study of the
Upper Blue Nile River. Sci. Total Environ. 2017, 574, 95–108. [CrossRef] [PubMed]

4. Nampak, H.; Pradhan, B.; Mojaddadi Rizeei, H.; Park, H.J. Assessment of Land Cover and Land Use Change
Impact on Soil Loss in a Tropical Catchment by Using Multi-Temporal SPOT-5 Satellite Images and RUSLE
model. Land Degrad. Dev. 2018. [CrossRef]

http://dx.doi.org/10.1007/s12665-012-1634-y
www.unenvironment.org/resources/emissions-gap-report
http://dx.doi.org/10.1016/j.scitotenv.2016.09.019
http://www.ncbi.nlm.nih.gov/pubmed/27623531
http://dx.doi.org/10.1002/ldr.3112


Sensors 2020, 20, 1313 21 of 25

5. Amiri, M.; Pourghasemi, H.R.; Ghanbarian, G.A.; Afzali, S.F. Assessment of the importance of gully erosion
e_ective factors using Boruta algorithm and its spatial modeling and mapping using three machine learning
algorithms. Geoderma 2019, 340, 55–69. [CrossRef]

6. Kirkby, M.; Bracken, L. Gully processes and gully dynamics. Earth Surf. Process. Landf. J. Br. Geomorphol. Res.
Group. 2009, 34, 1841–1851. [CrossRef]

7. Torri, D.; Poesen, J.; Borselli, L.; Bryan, R.; Rossi, M. Spatial variation of bed roughness in eroding rills and
gullies. Catena 2012, 90, 76–86. [CrossRef]

8. Zhang, X.; Fan, J.; Liu, Q.; Xiong, D. The contribution of gully erosion to total sediment production in a small
watershed in Southwest China. Phys. Geogr. 2018, 39, 246–263. [CrossRef]

9. Zabihi, M.; Mirchooli, F.; Motevalli, A.; Darvishan, A.K.; Pourghasemi, H.R.; Zakeri, M.A.; Sadighi, F. Spatial
modelling of gully erosion in Mazandaran Province, northern Iran. Catena 2018, 161, 1–13. [CrossRef]

10. Mccloskey, G.; Wasson, R.; Boggs, G.; Douglas, M. Timing and causes of gully erosion in the riparian zone of
the semi-arid tropical Victoria River, Australia: Management implications. Geomorphology 2016, 266, 96–104.
[CrossRef]

11. Rahmati, O.; Tahmasebipour, N.; Haghizadeh, A.; Pourghasemi, H.R.; Feizizadeh, B. Evaluation of different
machine learning models for predicting and mapping the susceptibility of gully erosion. Geomorphology 2017,
298, 118–137. [CrossRef]

12. Hosseinalizadeh, M.; Kariminejad, N.; Chen, W.; Pourghasemi, H.R.; Alinejad, M.; Behbahani, A.M.;
Tiefenbacher, J.P. Gully headcut susceptibility modeling using functional trees, naïve Bayes tree, and random
forest models. Geoderma 2019, 342, 1–11. [CrossRef]

13. Zakerinejad, R.; Maerker, M. An integrated assessment of soil erosion dynamics with special emphasis on
gully erosion in the Mazayjan basin, southwestern Iran. Nat. Hazards 2015, 79, 25–50. [CrossRef]

14. Pham, T.G.; Degener, J.; Kappas, M. Integrated universal soil loss equation (USLE) and Geographical
Information System (GIS) for soil erosion estimation in A Sap basin: Central Vietnam. Int. Soil Water Conserv.
Res. 2018, 6, 99–110. [CrossRef]

15. Althuwaynee, O.F.; Pradhan, B.; Par, H.J.; Lee, J.H. A novel ensemble bivariate statistical evidential belief
function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression
for landslide susceptibility mapping. Catena 2014, 114, 21–36. [CrossRef]

16. Morgan, R.; Quinton, J.; Smith, R.; Govers, G.; Poesen, J.; Auerswald, K.; Chisci, G.; Torri, D.; Styczen, M. The
European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment transport from
fields and small catchments. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group. 1998, 23, 527–544.
[CrossRef]

17. Liaw, A.; Breiman, W.M. Cutler’s Random Forests for Classification and Regression. 2018. Available online:
https://www.rdocumentation.org/packages/randomForest (accessed on 1 April 2018).

18. Ding, Q.; Chen, W.; Hong, H. Application of frequency ratio, weights of evidence and evidential belief
function models in landslide susceptibility mapping. Geocarto Int. 2016, 1–21. [CrossRef]

19. Dube, F.; Nhapi, I.; Murwira, A.; Gumindoga, W.; Goldin, J.; Mashauri, D. Potential of weight of evidence
modelling for gully erosion hazard assessment in Mbire District–Zimbabwe. Phys. Chem. Earth Part A/B/C
2014, 67, 145–152. [CrossRef]

20. Gayen, A.; Saha, S. Application of weights-of-evidence (WoE) and evidential belief function (EBF) models for
the delineation of soil erosion vulnerable zones: A study on Pathro river basin, Jharkhand, India, Model.
Earth Syst. Environ. 2017. [CrossRef]

21. Conoscenti, C.; Angileri, S.; Cappadonia, C.; Rotigliano, E.; Agnesi, V.; Marker, M. Gully erosion susceptibility
assessment by means of GIS-based logistic regression: A case of Sicily (Italy). Geomorphology 2014, 204,
399–411. [CrossRef]

22. Conforti, M.; Aucelli, P.P.; Robustelli, G.; Scarciglia, F. Geomorphology and GIS analysis formapping gully
erosion susceptibility in the Turbolo streamcatchment (Northern Calabria, Italy). Nat. Hazards 2010, 56,
881–898. [CrossRef]

23. Hembram, T.K.; Saha, S.; Paul, G.C. Spatial prediction of susceptibility to gully erosion in Jainti River basin,
Eastern India: A comparison of information value and logistic regression models. Model. Earth Syst. Environ.
2018. [CrossRef]

http://dx.doi.org/10.1016/j.geoderma.2018.12.042
http://dx.doi.org/10.1002/esp.1866
http://dx.doi.org/10.1016/j.catena.2011.10.004
http://dx.doi.org/10.1080/02723646.2017.1356114
http://dx.doi.org/10.1016/j.catena.2017.10.010
http://dx.doi.org/10.1016/j.geomorph.2016.05.009
http://dx.doi.org/10.1016/j.geomorph.2017.09.006
http://dx.doi.org/10.1016/j.geoderma.2019.01.050
http://dx.doi.org/10.1007/s11069-015-1700-3
http://dx.doi.org/10.1016/j.iswcr.2018.01.001
http://dx.doi.org/10.1016/j.catena.2013.10.011
http://dx.doi.org/10.1002/(SICI)1096-9837(199806)23:6&lt;527::AID-ESP868&gt;3.0.CO;2-5
https://www.rdocumentation.org/packages/randomForest
http://dx.doi.org/10.1080/10106049.2016.1165294
http://dx.doi.org/10.1016/j.pce.2014.02.002
http://dx.doi.org/10.1007/s40808-017-0362-4
http://dx.doi.org/10.1016/j.geomorph.2013.08.021
http://dx.doi.org/10.1007/s11069-010-9598-2
http://dx.doi.org/10.1007/s40808-018-0560-8


Sensors 2020, 20, 1313 22 of 25

24. Roy, J.; Saha, S. GIS-based Gully Erosion Susceptibility Evaluation Using Frequency Ratio, Cosine Amplitude
and Logistic Regression Ensembled with fuzzy logic in Hinglo River Basin, India. Remote Sens. Appl. Soc.
Environ. 2019. [CrossRef]

25. Kuhnert, P.M.; Henderson, A.K.; Bartley, R.; Herr, A. Incorporating uncertainty in gully erosion calculations
using the random forests modelling approach. Environmetrics 2010, 21, 493–509. [CrossRef]

26. Rahmati, O.; Haghizadeh, A.; Pourghasemi, H.R.; Noormohamadi, F. Gully erosion susceptibility mapping:
The role of GIS based bivariate statistical models and their comparison. Nat. Hazards 2016, 82, 1231–1258.
[CrossRef]

27. Pourghasemi, H.R.; Yousefi, S.; Kornejady, A.; Cerdà, A. Performance assessment of individual and ensemble
data-mining techniques for gully erosion modeling. Sci. Total Environ. 2017, 609, 764–775. [CrossRef]
[PubMed]

28. Gayen, A.; Saha, S.; Pourghasemi, H.R. Soil erosion assessment using RUSLE model and its validation by FR
probability model. Geocarto Int. 2019. [CrossRef]

29. Roy, J.; Saha, S. Assessment of land suitability for the paddy cultivation using analytical hierarchical process
(AHP): A study on Hinglo river basin, Eastern India. Modeling Earth Syst. Environ. 2018, 4, 601–618.
[CrossRef]

30. Arabameri, A.; Pradhan, B.; Pourghasemi, H.R.; Rezaei, K.; Kerle, N. Spatial Modelling of Gully Erosion
Using GIS and R Programing: A Comparison among Three Data Mining Algorithms. Appl. Sci. 2018, 8, 1369.
[CrossRef]

31. Persson, C.; Bacher, P.; Shiga, T.; Madsen, H. Multi-site solar power forecasting using gradient boosted
regression trees. Sol. Energy 2017, 150, 423–436. [CrossRef]

32. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 1189–1232.
[CrossRef]

33. GSI. Geological quadrangle map, Bardhhaman Quadrangle (73M), West Bengal Bihar; Geological Survey of India,
Printing Div: Hyderabad, India, 1985.

34. Ray, A.; Shekhar, S. Ground water issues and development strategies in west Bengal. Bhu Jal News 2009, 24,
1–17.

35. Mukherjee, A.; Fryer, A.E.; Howell, P. Regional hydro-stratigraphy and ground waterflow modeling of the
arsenic contaminated aquifers of the western Bengal basin, West Bengal, India. Hydrol. J. 2007, 15, 1397–1418.
[CrossRef]

36. NATMO. National Atlas and Thematic Mapping Organization, District Planning Map Series (DST); Digital
Mapping and Printed Division: Kolkata, India, 2001.

37. Ghosh, K.G.; Shah, S. Identification of soil erosion susceptible areas in Hinglo River Basin, Eastern India
based on Geo-Statistics. Univers. J. Environ. R Technol. 2015, 5, 152–164.

38. Moore, I.D.; Burch, G.J. Physical Basis of the Length Slope Factor in the Universal Soil Loss Equation. Soil Sci.
Soc. Am. 1986, 50, 1294–1298. [CrossRef]

39. Gómez-Gutiérrez, A.; Conoscenti, C.; Angileri, S.E.; Rotigliano, E.; Schnabel, S. Using topographical attributes
to evaluate gully erosion proneness (susceptibility) in two mediterranean basins: Advantages and limitations.
Nat. Hazards 2015, 79, 291–314.

40. Tahmassebipoor, N.; Rahmati, O.; Noormohamadi, F.; Lee, S. Spatial analysis of groundwater potential using
weights-of-evidence and evidential belief function models and remote sensing. Arab. J. Geosci. 2016, 9, 79.
[CrossRef]

41. Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology.
Hydrol. Sci. Bull. 1979, 24, 43–69. [CrossRef]

42. Moore, I.D.; Grayson, R.B.; Ladson, A.R. Digital terrain modeling: A review of hydrological,
geomorphological, and biological applications. Hydrol. Process. 1991, 5, 3–30. [CrossRef]

43. Horton, R.E. Erosional Development of Streams and Their Drainage Basins; Hydrophysical Approach to
Quantitative Morphology. Geol. Soc. Am. Bull. 1945, 56, 275. [CrossRef]

44. Pradhan, B.; Seeni, M.I. Manifestation of SVM-based rectified linear unit (ReLU) kernel function in landslide
modelling. Space Sci. Commun. Sustain. 2018, 85–195. [CrossRef]

45. Arabameri, A.; Pradhan, B.; Rezaei, K.; Yamani, M.; Pourghasemi, H.R.; Lombardo, L. Spatial modeling of
gully erosion using evidential belief function, logistic regression, and a new ensemble of evidential belief
function–logistic regression algorithm. Land Degrad Dev. 2018, 1–15. [CrossRef]

http://dx.doi.org/10.1016/j.rsase.2019.100247
http://dx.doi.org/10.1002/env.999
http://dx.doi.org/10.1007/s11069-016-2239-7
http://dx.doi.org/10.1016/j.scitotenv.2017.07.198
http://www.ncbi.nlm.nih.gov/pubmed/28763673
http://dx.doi.org/10.1080/10106049.2019.1581272
http://dx.doi.org/10.1007/s40808-018-0467-4
http://dx.doi.org/10.3390/app8081369
http://dx.doi.org/10.1016/j.solener.2017.04.066
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1007/s10040-007-0208-7
http://dx.doi.org/10.2136/sssaj1986.03615995005000050042x
http://dx.doi.org/10.1007/s12517-015-2166-z
http://dx.doi.org/10.1080/02626667909491834
http://dx.doi.org/10.1002/hyp.3360050103
http://dx.doi.org/10.1130/0016-7606(1945)56[275:EDOSAT]2.0.CO;2
http://dx.doi.org/10.1007/978-981-10-6574-3_16
http://dx.doi.org/10.1002/ldr.3151


Sensors 2020, 20, 1313 23 of 25

46. Arabameri, A.; Blaschke, T.; Pradhan, B.; Pourghasemi, H.R.; Tiefenbacher, J.P.; Bui, D.T. Evaluation of Recent
Advanced Soft Computing Techniques for Gully Erosion Susceptibility Mapping: A Comparative Study.
Sensors 2020, 20, 335. [CrossRef] [PubMed]

47. Arabameri, A.; Chen, W.; Lombardo, L.; Blaschke, T.; Tien Bui, D. Hybrid Computational Intelligence Models
for Improvement Gully Erosion Assessment. Remote Sens. 2020, 12, 140. [CrossRef]

48. Arabameri, A.; Pradhan, B.; Rezaei, K. Gully erosion zonation mapping using integrated geographically
weighted regression with certainty factor and random forest models in GIS. J. Environ. Manag. 2019, 232,
928–942. [CrossRef]

49. Arabameri, A.; Pourghasemi, H.R. Spatial Modeling of Gully Erosion Using Linear and Quadratic
Discriminant Analyses in GIS and R. In Spatial Modeling in GIS and R for Earth and Environmental Sciences,
1st ed.; Pourghasemi, H.R., Gokceoglu, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; p. 796.

50. Arabameri, A.; Pradhan, B.; Rezaei, K. Spatial prediction of gully erosion using ALOS PALSAR data and
ensemble bivariate and data mining models. Geosci. J. 2019, 24, 669–686. [CrossRef]

51. Arabameri, A.; Pradhan, B.; Rezaei, K.; Sohrabi, M.; Kalantari, Z. GIS-based landslide susceptibility mapping
using numerical risk factor bivariate model and its ensemble with linear multivariate regression and boosted
regression tree algorithms. J. Mt. Sci. 2019, 16, 595–618. [CrossRef]

52. Arabameri, A.; Lee, S.; Tiefenbacher, J.P.; Ngo, P.T.T. Novel Ensemble of MCDM-Artificial Intelligence
Techniques for Groundwater-Potential Mapping in Arid and Semi-Arid Regions (Iran). Remote Sens. 2020,
12, 490. [CrossRef]

53. Arabameri, A.; Rezaei, K.; Pourghasemi, H.R.; Lee, S.; Yamani, M. GIS-based gully erosion susceptibility
mapping: A comparison among three data-driven models and AHP knowledge-based technique.
Environ. Earth Sci. 2018, 77. [CrossRef]

54. Saha, S. Groundwater potential mapping using analytical hierarchical process: A study on Md. Bazar Block
of Birbhum District, West Bengal. Spat. Inf. Res. 2017, 25, 615–626. [CrossRef]

55. Holloway, J.; Rudy, A.; Lamoureux, S.; Treitz, P. Determining the terrain characteristics related to the surface
expression of subsurface water pressurization in permafrost landscapes using susceptibility modeling.
Cryosphere 2017, 11, 1403–1415. [CrossRef]

56. Du, G.; Zhang, Y.; Iqbal, J.; Yang, Z.; Yao, X. Landslide susceptibility mapping using an integrated model of
information value method and logistic regression in the Bailongjiang watershed, Gansu Province, China.
J. Mt. Sci. 2017, 14, 249–268. [CrossRef]

57. Xie, Z.; Chen, G.; Meng, X.; Zhang, Y.; Qiao, L.; Tan, L. A comparative study of landslide susceptibility
mapping using weight of evidence, logistic regression and support vector machine and evaluated by
SBAS-InSAR monitoring: Zhouqu to Wudu segment in Bailong River Basin, China. Environ. Earth Sci. 2017,
76, 313. [CrossRef]

58. Razavizadeh, S.; Solaiman, K.; Massironi, M.; Kavian, A. Mapping landslide susceptibility with frequency
ratio, statistical index, and weights of evidence models: A case study in northern Iran. Environ. Earth Sci.
2017, 76, 499. [CrossRef]

59. Pourghasemi, H.R.; Pradhan, B.; Gokceoglu, C.; Moezzi, K.D. A comparative assessment of prediction
capabilities of Dempster-Shafer and Weights-of-evidence models in landslide susceptibility mapping using
GIS. Geomatic. Nat. Hazards Risk. 2013, 4, 93–118. [CrossRef]

60. Micheletti, N.; Foresti, L.; Robert, S.; Leuenberger, M.; Pedrazzini, A.; Jaboyedoff, M.; Kanevski, M. Machine
learning feature selection methods for landslide susceptibility mapping. Math. Geosci. 2014, 46, 33–57.
[CrossRef]

61. Calle, M.L.; Urrea, V. Letter to the editor: Stability of random forest importance measures. Brief. Bioinform.
2010, 12, 86–89. [CrossRef]

62. Masetic, Z.; Subasi, A. Congestive heart failure detection using random forest classifier. Comput. Methods
Prog. Biomed. 2016, 130, 54–64. [CrossRef]

63. Chen, W.; Zhang, S.; Li, R.; Shahabi, H. Performance evaluation of the GIS-based data mining techniques
of best-first decision tree, random forest, and naïve Bayes tree for landslide susceptibility modeling.
Sci. Total Environ. 2018, 644, 1006–1018. [CrossRef]

64. Kohavi, R. Scaling up the Accuracy of Naive-Bayes Classifiers: A Decision-tree Hybrid. In Proceedings of
the KDD, Portland, OR, USA, 2–4 August 1996; pp. 202–207.

http://dx.doi.org/10.3390/s20020335
http://www.ncbi.nlm.nih.gov/pubmed/31936038
http://dx.doi.org/10.3390/rs12010140
http://dx.doi.org/10.1016/j.jenvman.2018.11.110
http://dx.doi.org/10.1007/s12303-018-0067-3
http://dx.doi.org/10.1007/s11629-018-5168-y
http://dx.doi.org/10.3390/rs12030490
http://dx.doi.org/10.1007/s12665-018-7808-5
http://dx.doi.org/10.1007/s41324-017-0127-1
http://dx.doi.org/10.5194/tc-11-1403-2017
http://dx.doi.org/10.1007/s11629-016-4126-9
http://dx.doi.org/10.1007/s12665-017-6640-7
http://dx.doi.org/10.1007/s12665-017-6839-7
http://dx.doi.org/10.1080/19475705.2012.662915
http://dx.doi.org/10.1007/s11004-013-9511-0
http://dx.doi.org/10.1093/bib/bbq011
http://dx.doi.org/10.1016/j.cmpb.2016.03.020
http://dx.doi.org/10.1016/j.scitotenv.2018.06.389


Sensors 2020, 20, 1313 24 of 25

65. Pham, B.T.; Bui, D.T.; Pourghasemi, H.R.; Indra, P.; Dholakia, M.B. Landslide susceptibility assessment in the
Uttarakhand area (India) using GIS: A comparison study of prediction capability of naïve Bayes, multilayer
perceptron neural networks, and functional trees methods. Appl. Clim. 2017, 128, 255–273. [CrossRef]

66. Pham, B.T.; Prakash, I. A novel hybrid model of bagging-based Naïve Bayes trees for landslide susceptibility
assessment. Bull. Eng. Geol. Environ. 2017, 1–15. [CrossRef]

67. Murphy, K.P. Naive Bayes Classifiers; University of British Columbia: Vancouver, BC, Canada, 2006.
68. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer: Berlin/Heidelberg,

Germany, 2011.
69. Ridgeway, G. Generalized Boosted Models: A Guide to the GBM Package. Update 1 (1). 2007. Available

online: http://cran/web/packages/gbm/vignettes/gbm.pdf (accessed on 15 July 2019).
70. Scikit-learn. Scikit-learn 0.17 Documentation: Ensemble Methods. Last update: 2015. Available online: http:

//scikit-learn.org/stable/modules/ensemble.html#gradient-tree-boosting (accessed on 30 December 2015).
71. Kantchelian, A.; Tygar, J.D.; Joseph, A. Evasion and hardening of tree ensemble classifiers. In Proceedings of

the International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 2387–2396.
72. Norouzi, M.; Collins, M.; Johnson, M.A.; Fleet, D.J.; Kohli, P. Efficient non-greedy optimization of decision

trees. In Proceedings of the Advances in Neural Information rocessing Systems (NIPS), Montreal, QC,
Canada, 7–12 December 2015; pp. 1720–1728.

73. Xiao, Z.; Wang, Y.; Fu, K.; Wu, F. Identifying Different Transportation Modes from Trajectory Data Using
Tree-Based Ensemble Classifiers. ISPRS Int. J. Geo-Inf. 2017, 6, 57. [CrossRef]

74. Dao, D.V.; Trinh, S.H.; Ly, H.-B.; Pham, B.T. Prediction of Compressive Strength of Geopolymer Concrete
Using Entirely Steel Slag Aggregates: Novel Hybrid Artificial Intelligence Approaches. Appl. Sci. 2019,
9, 1113. [CrossRef]

75. Dao, D.V.; Ly, H.-B.; Trinh, S.H.; Le, T.-T.; Pham, B.T. rtificial Intelligence Approaches for Prediction of
Compressive Strength of Geopolymer Concrete. Materials 2019, 12, 983. [CrossRef] [PubMed]

76. Pham, B.T.; Nguyen, M.D.; Bui, K.-T.T.; Prakash, I.; Chapi, K.; Bui, D.T. A novel artificial intelligence approach
based on Multi-layer Perceptron Neural Network and Biogeography-based Optimization for predicting
coefficient of consolidation of soil. Catena 2019, 173, 302–311. [CrossRef]

77. Arabameri, A.; Cerda, A.; Tiefenbacher, J.P. Spatial pattern analysis and prediction of gully erosion using
novel hybrid model of entropy-weight of evidence. Water 2019, 11, 1129. [CrossRef]

78. Arabameri, A.; Cerda, A.; Rodrigo-Comino, J.; Pradhan, B.; Sohrabi, M.; Blaschke, T.; Tien Bui, D. Proposing
a Novel Predictive Technique for Gully Erosion Susceptibility Mapping in Arid and Semi-arid Regions (Iran).
Remote Sens. 2019, 11, 2577. [CrossRef]

79. Tien Bui, D.; Shahabi, H.; Omidvar, E.; Shirzadi, A.; Geertsema, M.; Clague, J.J.; Khosravi, K.; Pradhan, B.;
Pham, B.T.; Chapi, K.; et al. Shallow Landslide Prediction Using a Novel Hybrid Functional Machine
Learning Algorithm. Remote Sens. 2019, 11, 931. [CrossRef]

80. Pham, B.T.; Prakash, I. Evaluation and comparison of LogitBoost Ensemble, Fisher’s Linear Discriminant
Analysis, logistic regression and support vector machines methods for landslide susceptibility mapping.
Geocarto Int. 2017, 1–18. [CrossRef]

81. Dou, J.; Yunus, A.P.; Tien Bui, D.; Sahana, M.; Chen, C.-W.; Zhu, Z.; Wang, W.; Thai Pham, B. Evaluating
GIS-Based Multiple Statistical Models and Data Mining for Earthquake and Rainfall-Induced Landslide
Susceptibility Using the LiDAR DEM. Remote Sens. 2019, 11, 638. [CrossRef]

82. Roy, J.; Saha, S.; Arabameri, A.; Blaschke, T.; Bui, D.T. A Novel Ensemble Approach for Landslide Susceptibility
Mapping (LSM) in Darjeeling and Kalimpong Districts, West Bengal, India. Remote Sens. 2019, 11, 2866.
[CrossRef]

83. Mezaal, M.R.; Pradhan, B.; Shafri, H.; Mojaddadi, H.; Yusoff, Z. Optimized Hierarchical Rule-Based
Classification for Differentiating Shallow and Deep-Seated Landslide Using High-Resolution LiDAR Data.
In Global Civil Engineering Conference; Springer: Berlin, Germany, 2017.

84. Rizeei, H.M.; Saharkhiz, M.A.; Pradhan, B.; Ahmad, N. Soil erosion prediction based on land cover dynamics
at the Semenyih watershed in Malaysia using LTM and USLE models. Geocarto Int. 2016, 31, 1158–1177.
[CrossRef]

85. Erasmi, S.; Rosenbauer, R.; Buchbach, R.; Busche, T.; Rutishauser, S. Evaluating the quality and accuracy of
TanDEM-X digital elevation models at archaeological sites in the Cilician Plain, Turkey. Remote Sens. 2014, 6,
9475–9493. [CrossRef]

http://dx.doi.org/10.1007/s00704-015-1702-9
http://dx.doi.org/10.1007/s10064-017-1202-5
http://cran/web/packages/gbm/vignettes/gbm.pdf
http://scikit-learn.org/stable/modules/ensemble.html#gradient-tree-boosting
http://scikit-learn.org/stable/modules/ensemble.html#gradient-tree-boosting
http://dx.doi.org/10.3390/ijgi6020057
http://dx.doi.org/10.3390/app9061113
http://dx.doi.org/10.3390/ma12060983
http://www.ncbi.nlm.nih.gov/pubmed/30934566
http://dx.doi.org/10.1016/j.catena.2018.10.004
http://dx.doi.org/10.3390/w11061129
http://dx.doi.org/10.3390/rs11212577
http://dx.doi.org/10.3390/rs11080931
http://dx.doi.org/10.1080/10106049.2017.1404141
http://dx.doi.org/10.3390/rs11060638
http://dx.doi.org/10.3390/rs11232866
http://dx.doi.org/10.1080/10106049.2015.1120354
http://dx.doi.org/10.3390/rs6109475


Sensors 2020, 20, 1313 25 of 25

86. Pope, A.; Murray, T.; Luckman, A. DEM quality assessment for quantification of mlacier surface change.
Ann. Glaciol. 2014, 46, 189–194. [CrossRef]

87. Hembram, T.K.; Paul, G.C.; Saha, S. Comparative Analysis between Morphometry and Geo-Environmental
Factor Based Soil Erosion Risk Assessment Using Weight of Evidence Model: A Study on Jainti River Basin,
Eastern India. Environ. Process. 2019, 6, 883–913. [CrossRef]

88. Arabameri, A.; Chen, W.; Blaschke, T.; Tiefenbacher, J.P.; Pradhan, B.; Tien Bui, D. Gully Head-Cut Distribution
Modeling Using Machine Learning Methods—A Case Study of N.W. Iran. Water 2020, 12, 16. [CrossRef]

89. Pourghasemi, H.R.; Gayen, A.; Haque, S.M.; Bai, S. Gully Erosion Susceptibility Assessment Through the
SVM Machine Learning Algorithm (SVM-MLA). In Gully Erosion Studies from India and Surrounding Regions;
Springer: Cham, Germany, 2020; pp. 415–425.

90. Gayen, A.; Pourghasemi, H.R.; Saha, S.; Keesstra, S.; Bai, S. Gully erosion susceptibility assessment and
management of hazard-prone areas in India using different machine learning algorithms. Sci. Total Environ.
2019, 668, 124–138. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3189/172756407782871792
http://dx.doi.org/10.1007/s40710-019-00388-5
http://dx.doi.org/10.3390/w12010016
http://dx.doi.org/10.1016/j.scitotenv.2019.02.436
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Description of The Study Area 
	Methodology 
	Database 
	Preparing the Gully Inventory Map (GIM) 
	Preparing the Gully Conditioning Factors (GCFs) 

	Multi-Collinearity Analysis of Effective Factors 
	Assessment of The Relationship between Gully Erosion and Effective Factors using Weight-of-Evidence (WofE) Model 
	Models for Spatial Gully Erosion Mapping 
	Random Forest (RF) Model 
	Naïve Bayes Tree (NBT) Model 
	Gradient Boosting Regression Tree (GBRT) 
	Tree Ensemble (TE) Model 

	Validation Methods 

	Results 
	Analysis of Muti-Collinearity of GCFs 
	Analysis of Factor Importance using the Weight-of-Evidence (WofE) Model 
	Spatial Gully Erosion Susceptibility Analysis 
	Validation of Models 

	Discussion 
	Conclusions 
	References

