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Abstract
Connections between mammalian circadian and cell division cycles have been
postulated since the early 20th century, and epidemiological and genetic
studies have linked disruption of circadian clock function to increased risk of
several types of cancer. In the past decade, it has become clear that circadian
clock components influence cell growth and transformation in a
cell-autonomous manner. Furthermore, several molecular mechanistic
connections have been described in which clock proteins participate in sensing
DNA damage, modulating DNA repair, and influencing the ubiquitination and
degradation of key players in oncogenesis (c-MYC) and tumor suppression
(p53).
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Introduction
Connections between mammalian cell division cycles and time 
of day have been postulated since the early 20th century when  
Mrs. C.E. Droogleever Fortuyn-van Leijden demonstrated that the 
difficulty of observing mitosis in growing tissues stemmed from 
its propensity to occur late at night1. Similar daytime-dependent 
changes in the mitotic indices of several rodent tissues were 
reported by 19502,3. By the 1960s, it became clear that many  
biological daily rhythms are driven by endogenous oscillators, 
and the term “circadian” was adopted to describe endogenous 
rhythms with a period close to that of the 24-hour day4. Halberg and  
Barnum demonstrated the existence of circadian rhythms in  
DNA synthesis and mitosis in healthy mouse tissues in vivo5.  
Circadian rhythms of cell division in human proliferating cell  
populations in vivo have also been documented6,7. Careful exami-
nations of the relationship between circadian and cell division 
cycles in individual proliferating fibroblasts in cell culture have 
demonstrated that cell division is influenced by circadian time  
but is not limited to a specific circadian phase8–10, suggesting a 
complex relationship between these two biological oscillators.  
Many epidemiological studies have demonstrated that disruption 
of circadian rhythms caused by shift work increases the risk of  
several cancers11–18, and the size of the effect is correlated with 
the duration and severity of circadian disruption. Thus, long-term  
rotating shift work confers the greatest increase in risk. Notably, 
unlike other tumor types, skin cancers were recently found to 
be reduced among night shift workers19 and this might be due to 
reduced sun exposure. Accumulated evidence for increased risk of 
several cancers in shift workers led the World Health Organization 
to declare circadian disruption a probable carcinogen14. However, 
controversy remains over the generality and robustness of these 
effects20–23, and some have raised concerns that lifestyle factors 
associated with shift work may enhance cancer risk independ-
ent of disruption of circadian rhythms per se. Conversely, several  
studies have found significant effects of genetic variants or expres-
sion level of clock genes on human cancer incidence or survival24,25 
or on the tumor burden in genetically engineered mouse mod-
els of cancer26,27. While circadian rhythms clearly influence cell  
division and tumor formation, we are only beginning to understand 
the molecular underpinnings for their interrelationship.

Mammalian circadian clocks are most widely recognized as the 
drivers of sleep cycles. Such behavioral rhythms are driven by 
secreted factors from the suprachiasmatic nucleus (SCN), a neuro-
nal master pacemaker located at the base of the anterior hypotha-
lamus, just above the optic chiasm28,29. Konopka and Benzer’s 
elucidation of the genetic basis for circadian activity rhythms in 
fruit flies provided the first evidence for genetically determined  
behavior30 and jump-started research in eukaryotic molecular 
chronobiology. Subsequent work has demonstrated that mam-
malian circadian behavior is also genetically determined31 and  
defined a transcription-translation feedback loop that drives  
cell-autonomous rhythms of gene expression in nearly all mamma-
lian cells32. The core molecular clock is driven by a heterodimer of 
the basic helix-loop-helix transcription factor BMAL1 with either 
CLOCK or NPAS2, which activates the expression of thousands of 
genes, including those encoding period (PER1-3) and cryptochrome 
(CRY1,2) proteins, which repress CLOCK/BMAL1 activity, and 

the nuclear hormone receptors REV-ERBα and REV-ERBβ, which 
repress Bmal1 expression. TIMELESS is the mammalian homolog 
of Drosophila melanogaster TIM (dTIM), which dimerizes with 
dPER and is required for circadian rhythms in flies. The mecha-
nistic role of TIMELESS in mammalian clocks is unclear, but it is 
required for maintenance of normal circadian rhythms33,34.

The state of our understanding of the connections between  
circadian rhythms and cell division today is reminiscent of the  
early days investigating connections between clocks and metabo-
lism, when there was considerable resistance to the idea that 
circadian rhythms could modulate metabolic function at the  
molecular level. Only after it was established that circadian  
rhythms in individual organs modulate metabolic physiology 
independent of behavioral and feeding rhythms35–37 has it become 
possible to dissect specific mechanisms by which clocks regulate 
metabolic pathways in a cell- and tissue-autonomous manner. 
The past decade has seen several important advances in under-
standing molecular connections between core components of  
molecular circadian clocks and cell division, including some of 
the most frequently mutated players in human cancer. Our under-
standing of the role of clocks in cancer development is still in its  
infancy and will greatly benefit from enhanced communication, 
interaction, and resource sharing among experts in circadian 
rhythms, cell division, and cancer biology.

Tumor studies in mice
Several studies in animal models support the hypothesis that  
circadian clocks control cell proliferation or transformation (or 
both) independent of other lifestyle changes (Table 1). Early  
studies found that the timing of cell division after partial hepa-
tectomy in rats displays a robust circadian rhythm antiphase to 
the rhythmic production of endogenous corticosteroids38. Later,  
Okamura and colleagues reproduced those findings in mice and 
showed that genetic disruption of circadian clock components 
altered the timing of the first cell division39. Lévi and colleagues 
demonstrated that surgical ablation of the SCN or “master clock” 
greatly enhanced the growth of implanted tumors in addition to 
abolishing circadian rhythms of behavior and body temperature40. 
Like the difficulty in separating direct cell-autonomous clock  
control of metabolic functions from effects on behavior (feeding/
activity cycles), these studies cannot distinguish between effects 
of systemic circadian control of daily fluctuations in feeding,  
hormone production, and so on that may indirectly influence cell 
growth and division. Indeed, it seems likely that the effects of  
circadian disruption on cancer risk are multi-faceted and could 
involve both cell-autonomous and systemic effects.

Several studies have examined the effect of ubiquitous deletion 
or mutation of the circadian repressors Cry1/2 and Per1/2 on  
tumor incidence. Deletion or mutation of Per2 either alone or in 
combination with deletion of Per1 has consistently been found 
to increase the incidence of tumor formation in several differ-
ent genetic or irradiation-induced tumor models26,41–45. Reported 
effects of Cry1 or Cry2 deletion (or both) on tumor formation have  
varied. While deletion of both Cry1 and Cry2 improves survival 
and decreases the tumor burden in p53−/− mice46, the same double  
deletion enhances spontaneous41 and irradiation-induced42  
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Table 1. Effects of genetic and environmental circadian disruption in mouse cancer models.

Disruption Location Impact Reference(s)

Bmal1−/− Ubiquitous Enhanced KrasG12D lung tumors 26

Bmal1 Hepatocytes Enhanced hepatocellular carcinoma (HCC) 
and prevented further increase in response to 
chronic jet lag

41

Bmal1−/− Lung epithelium Enhanced KrasG12D and p53−/−;KrasG12D lung 
tumors

26

Bmal1−/− Keratinocytes Reduced RAS-driven squamous tumors 53

Cry2−/− Ubiquitous Enhanced lymphoma in Emu-MYC 27

Cry1−/−;Cry2−/− Ubiquitous Decreased tumor formation in p53−/−; 
enhanced HCC and cholangiocarcinoma

41,42,46,47

Per2m/m Ubiquitous Enhanced tumors caused by irradiation, 
diethylnitrosamine, or mutant Kras or p53

26,43,45

Per2S662G or 
Per2S662D

Ubiquitous Enhanced tumor formation in p53R172H mice 44

Per1−/−;Per2−/− Ubiquitous Enhanced HCC 41

Chronic jet lag Environmental Enhanced tumor formation in breast, lung, 
and liver models

26,41,54–56

formation of hepatocellular carcinomas (HCCs) and increases the  
formation of cholangiocarcinomas after exposure to diethylnit-
rosamine47. These differences may be due to unique functions of 
CRY1 and CRY227,48 and differences in the molecular pathways 
targeted in each tumor model. Consistent with this hypothesis, 
deletion of Cry2 alone consistently enhances cellular transforma-
tion in cooperation with multiple different oncogenic manipula-
tions, whereas deletion of Cry1 decreases transformation only in 
the context of p53 depletion27. Furthermore, loss of Cry2 increases 
the formation of MYC-driven lymphomas in mice with wild-type 
Cry127. Additional studies of CRY1 and CRY2 are needed to under-
stand their overlapping and distinct roles in cell division and tumor 
formation. New genetic tools for tissue-specific ablation of Cry1/2 
and Per1/2/3 will enable the elucidation of their effects on cell-
autonomous growth and survival and global physiology. Additional 
studies investigating the effects of clock gene disruptions in tumor 
models driven by a variety of genetic manipulations (and in myriad 
cell types) are also needed to improve our understanding of how 
circadian disruption impacts different types of cancers.

Recently, tissue-specific ablation of clock function via Cre- 
mediated deletion of Bmal1 in lung epithelial cells, in conjunction 
with other genetic manipulations to induce local tumor forma-
tion, demonstrated that loss of the tumor-resident circadian clock 
enhanced lung tumor progression26. The hypothesis that BMAL1 
opposes cell proliferation in a cell-autonomous manner is sup-
ported by studies of normal and transformed rodent cell lines49, 
N-MYC driven glioblastoma cell lines50, and deletion of Bmal1 in 
keratinocytes in vivo51. Perhaps not surprisingly, many transformed 
cell lines exhibit altered or lost circadian rhythms52; restoration of  
clock function in B16 melanoma cells reduced proliferation both 
in culture and after implantation in mice53. However, another 
study found that keratinocyte-specific Bmal1 deletion reduced the 

incidence of RAS-driven squamous tumors54. Thus, the effect of  
Bmal1 deletion on cell growth and transformation may depend on 
the cellular or genetic context in which it occurs.

A handful of recent studies demonstrated that exposing mice 
to light cycles engineered to impose a state of “chronic jet lag”,  
mimicking the experience of rotational shift work, increased 
tumor formation in breast, lung, and liver cancer models26,41,55–57.  
Liver-specific deletion of Bmal1 prevented the increase in HCC 
caused by chronic jet lag, suggesting a tumor-autonomous  
effect of circadian disruption41. It will be interesting to further 
investigate how specific genetic manipulation of clock compo-
nents alters the impact of light cycle changes to determine the  
primary molecular mechanism(s) by which circadian disruption 
impacts tumor initiation or progression or both.

Emerging molecular connections
Several studies have demonstrated a non-random association 
between the timing of the circadian cycle and that of the cell  
cycle8–10. Although the relationship between these two oscillators 
is not well understood, some molecular connections have been 
described (Figure 1), including circadian transcriptional regula-
tion of the key cell cycle regulators Wee1, p21, Ccnb1, and Ccnd1 
(encoding CYCLINs B1 and D1)39,58–60. Wee1 transcription can be 
directly activated by CLOCK/BMAL1 and repressed by PERs or 
CRYs39. PER1 influences the transcription of Wee1 and Ccnb1 by 
a p53-dependent mechanism and of p21 independent of p53, pos-
sibly by stabilizing c-MYC58. Circadian clocks may also influence 
cell cycle regulators indirectly by modulating the activity of critical  
signal transduction cascades that alter cell cycle dynamics. A 
genome-wide screen for modulators of circadian rhythm found 
an overrepresentation of phosphatidylinositol 3-kinase effectors61, 
which is also a key pathway for modulating cell cycle and cell 
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proliferation62. In vivo, endogenous glucocorticoids exhibit high-
amplitude circadian rhythms and inhibit signaling downstream of 
the epidermal growth factor receptor (EGFR) via glucocorticoid 
receptor-induced activation of EGFR pathway inhibitors63.

Clock input to DNA damage response and repair
Consistent with observed rhythms in mitotic indices, several  
studies have demonstrated circadian rhythms of sensitivity to vari-
ous types of DNA damage. Mouse skin and hair follicles exhibit 
maximum sensitivity to DNA damage at night induced by either 
ultraviolet (UV) or ionizing radiation51,64. Rhythms in sensitivity 
to damage were lost in mice harboring genetic deletion of Bmal1 
in keratinocytes or ubiquitous deletion of Cry1 and Cry2. Interest-
ingly, both (6-4) photoproducts (64Ps) and cyclobutane pyrimidine 
dimers (CPDs) are reduced, but double-strand breaks (DSBs) are 
increased, across the circadian cycle in Bmal1-deficient skin51. 
64Ps and CPDs can be removed by nucleotide excision repair 
(NER), which exhibits circadian rhythms in mouse brain and liver 
lysates65,66. Rhythmic NER is likely due to circadian rhythms in 
mRNA and protein expression of xeroderma pigmentosum com-
plementation group A (XPA), a zinc finger nuclease that directly 
recognizes and repairs photoproducts and DNA adducts induced 

by chemical carcinogens65. Elevated XPA could contribute to  
reduced 64Ps and CPDs in Bmal1-deficient skin exposed to  
radiation without affecting the incidence of DSBs. In addition to 
demonstrating rhythms in sensitivity to damage, several studies 
have documented circadian rhythms in intracellular concentra-
tions of reactive oxygen species (ROS)51,67,68, which can be a source 
of genome insult. Those rhythms may have provided evolution-
ary impetus that favored connections between circadian clocks 
and DNA damage response and repair pathways. Oscillations in  
intracellular ROS may result from circadian control of cellular 
metabolism and may be related to recently described oscillations in 
cell and tissue oxygenation and hypoxia-responsive signaling69–71.

CRY1 and CRY2 evolved from bacterial UV-activated DNA repair 
enzymes72, and several studies suggest that they retain a functional 
role in genome protection. Although they lack catalytic DNA  
repair activity, purified human CRY2 retains the ability to  
preferentially interact with single-stranded DNA containing a 
UV photoproduct in vitro73. Furthermore, CRY2-deficient cells  
exhibit increased accumulation of DNA DSBs24,48. CRY1 and 
CRY2 are phosphorylated on unique sites following DNA damage, 
resulting in stabilization of CRY1 and degradation of CRY248,74. 

Figure 1. Molecular connections between circadian clocks, cell cycle, and cancer drivers. (a) The core mammalian circadian clock 
transcription-translation feedback loop (TTFL) involves the positive factors CLOCK and BMAL1 activating expression of their own repressors 
PERs and CRYs. This clock mechanism also drives daily rhythmic expression of so-called clock-controlled genes (ccgs), including P21 
(Cdkn1a), Wee1, Ccnb1, Ccnd1, Myc, and Xpa mRNAs. (b) PER and CRY modulate post-translational regulation of P53 and c-MYC. PER2 
blocks MDM2 ubiquitination of P53, while CRY2 stimulates ubiquitination of c-MYC by SCF(FBXL3). HAUSP removes polyubiquitin chains from 
CRY1 as well as from P53. Lightning bolts represent processes that are stimulated by DNA damage. Additional connections are described 
in the text.
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Furthermore, they play overlapping and distinct roles in modulat-
ing the transcriptional response to DNA damage48. While some of 
the transcriptional changes in Cry2−/− cells can be explained by the 
unique role of CRY2 in modulating c-MYC protein stability (see 
below), further investigation will be required to understand the 
mechanism(s) by which mammalian CRYs participate in the DNA 
damage response.

Although the precise role of TIMELESS in mammalian circadian 
clocks is not well defined, it clearly impacts clock function in  
mammals33,34 and interacts with mammalian CRY134 and CRY275. 
It also directly interacts with PARP-1 and thereby is recruited to 
sites of DNA damage76. Depletion of TIMELESS or replacement  
with a mutant that cannot interact with PARP-1 greatly reduced 
homologous recombination repair76. These recent findings likely 
explain earlier observations that depletion of TIMELESS reduced 
the activation of checkpoint kinases 1 (CHK1) and 2 (CHK2) in 
response to DNA damage75,77,78. CLOCK is also recruited to DNA 
DSBs independent of H2AX79, although no functional impact 
of CLOCK deficiency on the DNA damage response has been  
established.

Regulation of protein turnover of key cancer drivers
Several recent studies have uncovered unexpected roles for  
CRY1, CRY2, and PER2 in modulating the targeting of sub-
strates for ubiquitination, including two of the most commonly 
mutated proteins in human cancers: p53 and c-MYC. PER2 
interacts directly with p53 and prevents its ubiquitination by the 
MDM2 E3 ubiquitin ligase, resulting in stabilization of p53 in cells  
expressing high levels of PER280,81. This may explain earlier  
observations that thymocytes from Per2 mutant mice are deficient 
in p53 stabilization after irradiation43. In addition, PER2 seems to 
modulate p53 nuclear import82, perhaps via effects on p53 ubiq-
uitination. The herpes virus-associated ubiquitin-specific protease 
(HAUSP) removes polyubiquitin chains from both MDM2 and 
p5383–87. Its affinity for MDM2 is reduced and for p53 is increased 
following DNA damage, contributing to stabilization of p53. 
HAUSP also interacts with CRY1 through its C-terminal tail, 
which is not conserved in CRY2, and this interaction is increased in 
response to DNA damage, resulting in stabilization of CRY1 while 
CRY2 is destabilized48.

In response to DNA damage, the interaction between CRY2 and 
the E3 ligase substrate adaptor F-box and leucine-rich repeat  
3 (FBXL3) is increased48. FBXL3 targets both CRY1 and CRY2 
for ubiquitination by a SKP-CULLIN-Fbox (SCF) E3 ligase 
complex88, and mutation of FBXL3 alters circadian period  
length89,90. In addition to being substrates of FBXL3-mediated ubiq-
uitination, CRY1 and CRY2 influence the formation of FBXL3-
containing SCF complexes91 and CRY2 recruits phosphorylated  
c-MYC to SCF(FBXL3)27. Indeed, disruption of CRY2 or FBLX3 
stabilizes c-MYC as much as depletion of its best established 
E3 ligase FBXW727. Consistent with this, c-MYC was increased 
in lung tumors subject to genetic disruption of clock function26.  
Furthermore, c-MYC protein exhibits circadian oscillation 
in mouse thymus and is elevated throughout the day upon  

exposure to chronic jet lag42. CRY1 and CRY2 may also stimulate 
the ubiquitination of other substrates by SCF(FBXL3) or other E3 
ligases. In fruit flies, dCRY is required for ubiquitination of dTIM 
by JETLAG in response to blue light92, and mammalian CRY1 was 
recently found to be involved in MDM2-mediated ubiquitination of 
FOXO1 in mouse livers93. PER1 has also been shown to alter the 
protein stability of both p53 and c-MYC58; it is unclear whether 
these effects are indirectly caused by altered expression of PER2 
or CRY2 or both. In addition, PER1 and PER2 have been reported 
to interact with the RNA binding protein NONO and thereby  
contribute to circadian activation of p16Ink4A expression94. Thus, 
inactivation of PERs could inhibit both the retinoblastoma (Rb)  
and p53 tumor suppressors.

Looking ahead
Several studies have found that circadian rhythms tend to be  
reduced or absent in tumors, that this can be driven by acute induc-
tion of individual oncogenes50,52, and even that tumors can dampen 
circadian rhythms in remote organs95. Patients with cancer often 
experience disruption of sleep-wake cycles and other systemic 
circadian rhythms, and those disruptions are associated with  
poor outcomes96. Interventions to improve the robustness of overall 
circadian timing systems in these patients may be beneficial.

Circadian disruption in shift workers enhances the risk of sev-
eral types of cancer. Molecular connections between mammalian 
clock components and critical regulators of cell proliferation and  
survival suggest several possible underlying mechanisms that could 
explain those phenomena. Cancer is a complex disease process 
that requires overcoming several layers of protection. Thus, circa-
dian modulation of this process may occur through any of these 
layers and will also be multi-faceted and complex. Several groups 
have used the power of mathematical modeling to improve our  
understanding not only of the cellular circadian clock but of these 
complex relationships as well9,10,82,97,98. In addition to molecular 
connections between circadian clocks and pathways that influ-
ence transformation, circadian rhythms robustly influence the 
efficacy and toxicity of pharmacological compounds, including  
chemotherapy drugs99–104. Mathematical modeling of drug phar-
macokinetics and pharmacodynamics is used by pharmaceutical  
companies in preclinical studies. Although the number of variables 
is a major obstacle to generating complete models, some groups 
have begun to incorporate circadian modulation of drug distribu-
tion and metabolism into so-called multi-scale pharmacokinetics  
models104. Continued improvement of these models with the  
incorporation of new information emerging from the literature may 
lead to better pharmacological strategies.

Clocks may control many aspects related to all of the estab-
lished and emerging hallmarks of cancer105. Therefore, it is no  
wonder that results of in vivo studies have been variable depend-
ing on the method of clock disruption as well as the specific  
cancer model employed. Greater understanding of the interre-
lationship between circadian clocks, the cell cycle, and tumor  
formation and progression will enable improved lifestyle  
recommendations, occupational and public health policies, and 
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pharmacological strategies100 for the prevention and treatment of 
cancer.
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