
sensors

Article

Extracting Common Mode Errors of Regional GNSS
Position Time Series in the Presence of Missing Data
by Variational Bayesian Principal
Component Analysis

Wudong Li 1, Weiping Jiang 1,2, Zhao Li 3,*, Hua Chen 1, Qusen Chen 2 , Jian Wang 1 and
Guangbin Zhu 4,5

1 School of Geodesy and Geomatics, Wuhan University, 129 Luoyu Road, Wuhan 430079, China;
liwudong@whu.edu.cn (W.L.); wpjiang@whu.edu.cn (W.J.); ttchen@whu.edu.cn (H.C.);
winner@whu.edu.cn (J.W.)

2 GNSS Research Center, Wuhan University, Wuhan 430079, China; chenqs@whu.edu.cn
3 Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, 181 Chatham

Road South, Hung Hom, Kowloon 999077, Hong Kong, China
4 Key Laboratory of Earth Observation and Geospatial Information Science, Beijing 100039, China;

sasmac_zgb@163.com
5 Land Satellite Remote Sensing Application Center, Beijing 100048, China
* Correspondence: zhao.mm.li@polyu.edu.hk

Received: 25 February 2020; Accepted: 8 April 2020; Published: 17 April 2020
����������
�������

Abstract: Removal of the common mode error (CME) is very important for the investigation of global
navigation satellite systems’ (GNSS) error and the estimation of an accurate GNSS velocity field for
geodynamic applications. The commonly used spatiotemporal filtering methods normally process
the evenly spaced time series without missing data. In this article, we present the variational Bayesian
principal component analysis (VBPCA) to estimate and extract CME from the incomplete GNSS
position time series. The VBPCA method can naturally handle missing data in the Bayesian framework
and utilizes the variational expectation-maximization iterative algorithm to search each principal
subspace. Moreover, it could automatically select the optimal number of principal components
for data reconstruction and avoid the overfitting problem. To evaluate the performance of the
VBPCA algorithm for extracting CME, 44 continuous GNSS stations located in Southern California
were selected. Compared to previous approaches, VBPCA could achieve better performance with
lower CME relative errors when more missing data exists. Since the first principal component
(PC) extracted by VBPCA is remarkably larger than the other components, and its corresponding
spatial response presents nearly uniform distribution, we only use the first PC and its eigenvector to
reconstruct the CME for each station. After filtering out CME, the interstation correlation coefficients
are significantly reduced from 0.43, 0.46, and 0.38 to 0.11, 0.10, and 0.08, for the north, east, and up
(NEU) components, respectively. The root mean square (RMS) values of the residual time series and
the colored noise amplitudes for the NEU components are also greatly suppressed, with average
reductions of 27.11%, 28.15%, and 23.28% for the former, and 49.90%, 54.56%, and 49.75% for the
latter. Moreover, the velocity estimates are more reliable and precise after removing CME, with
average uncertainty reductions of 51.95%, 57.31%, and 49.92% for the NEU components, respectively.
All these results indicate that the VBPCA method is an alternative and efficient way to extract CME
from regional GNSS position time series in the presence of missing data. Further work is still required
to consider the effect of formal errors on the CME extraction during the VBPCA implementation.
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1. Introduction

In the last three decades, global navigation satellite system (GNSS) technology has provided
abundant, high-accuracy position information for the Earth, which allows researchers to investigate
many types of geophysical phenomena, such as geocenter motion [1,2], crustal deformation [3,4],
seismic monitoring [5,6], and glacial isostatic adjustment [7,8]. However, the GNSS observations
contain not only site-specific temporal noise, which is well quantified and described as a combination
of white noise (WN) and power-law noises (PLN) using the maximum likelihood estimation (MLE)
method [9], but also spatial correlation error known as the common mode error (CME) [10]. Interference
between temporal noise and spatial correlation error would bias the station velocity estimation,
increase velocity uncertainty, and even lead to incorrect geophysical interpretations; thus, it is highly
recommended to mitigate the interference with some effective filtering techniques to enhance the GNSS
signal-to-noise ratio.

For regional GNSS networks, strong CME, coming from the reference frame error, mis-modeling of
satellite orbits and clocks, large-scale environmental effects, etc., presents in the position time series [11].
This makes it difficult to discern weak and transient tectonic signals, such as slow slip events and aseismic
episodic tremor, from GNSS data. Until now, many methods have been proposed to filter out the CME,
and Table 1 shows the overview of each mathematical method. The stacking approach was originally
introduced to detect the seismic displacements [12]. After that, a weighted stacking method that takes
individual position error into account was proposed [13]. This kind of stacking approach is based on
the assumption of an equivalent CME for all stations; thus, it is not suitable for larger scale networks;
e.g., continental networks, wherein CME exhibits inhomogeneous behavior. To overcome this restriction,
Márquez-Azúa et al. took the length of the coordinate time series and site distance as weights to estimate
the daily CME, and then removed it from the original GNSS time series to study the large-scale deformation
of Mexico [14]. Tian et al. used the distances between neighboring sites and interstation correlations as a
weighting scheme to extract the spatially correlated transients [15,16]. Nevertheless, the aforementioned
methods are unable to identify stations with strong local effects that could affect the CME detection, and
the suitable weights for all stations at each epoch still need to be investigated.

Another way to remove the CME is to transform the solutions into a regional reference frame [17,18].
In this way, the stations located at the edge of the region may exhibit distorted signals or some remnant
CME [16]. To suppress the CME, more reliable, statistical signal decomposition techniques, such as
principal component analysis (PCA) [19–21], multi-channel singular spectrum analysis (MSSA) [22,23],
and independent component analysis (ICA) [24,25], have been introduced into GNSS time series
analyses. Based on an assumed inhomogeneous distribution of CME and a more rigorous mathematical
framework, these methods, in particular the PCA, have been widely used to eliminate CME from
regional network. Nevertheless, the traditional PCA method normally requires a complete set
of observations, indicating that interpolation should be implemented to recover the missing data
beforehand, which may cause deviations in the extracted CME. Because of the limitation, Shen et al. [26]
successfully developed an improved principal component analysis (IPCA) to extract CME from the
discontinuous time series of 27 permanent GNSS stations in China. Then Li et al. [27,28] extended this
approach by considering the formal errors as weights to extract CME. However, the IPCA approach is
incapable of handling the condition that any two time series of a regional network have no, or only a
few common epochs. Very recently, the probabilistic principal component analysis (PPCA) method
was first introduced by Gruszczynski et al. [29] to filter out CME from time series with few common
observational epochs, yet the PPCA method is sometimes sensitive to the initial parameters and prone
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to face the over-fitting problem due to the usage of maximum likelihood criterion to update model
parameters [30].

Table 1. Advantages and disadvantages of various mathematical methods used so far to filter common
mode error (CME).

Filtering Methods Advantages Disadvantages

Stacking Simple to calculate
Ability to handle missing data

Not suitable for larger scale GNSS
networks

Inability to identify stations with strong
local effects

Need to determine realistic weight values

Reference frame transformation Simple to calculate
Ability to handle missing data

Distorted signal or residual CME may
appear at the edge of the region

GNSS positions cannot reveal movement
from the global point of view

Statistical signal decomposition
techniques

Rigorous mathematical framework
Ability to identify stations with

strong local effects
Suitable for larger scale GNSS

networks

Inability to handle missing data for the
traditional methods

Any two time series need common epochs
for the modified methods

To compensate for the above shortcomings, an alternative method called variational Bayesian
principal component analysis (VBPCA) came into being [31]. The VBPCA method, as an extension of
PPCA, imposed a priori distributions on the model parameters and estimated the hyperparameters
by maximizing the evidence of observed signals instead of likelihood in the maximum-likelihood
estimation paradigm. This property makes it more resistant against the overfitting problem in
comparison with PPCA method. Moreover, the VBPCA method can recover the missing values in
GNSS time series more conveniently, since it offers automatic dimensionality selection during the
Bayesian inference procedure [30], while for other methods, i.e., PCA, IPCA, and PPCA, the appropriate
number of principal components used to reconstruct the missing signal needs to be systematically
quantified. In this paper, we utilize the VBPCA method to extract the CME from a regional GNSS
position time series with missing values, and compare its performance with the other two approaches,
PCA and IPCA. The PCA method is the most common algorithm with which to filter CME. The SOPAC
uses this method to remove the CME in the PBO GNSS network. It can only handle a continuous
residual coordinate matrix. Thus, it needs to fill the missing epoch using the spatially averaged
values derived from other stations on these days. Then, traditional PCA analysis should be performed
iteratively until convergence to refill in these missing points. In contrast, the IPCA algorithm can
directly deal with an incomplete positional time series based on minimizing the weighted quadratic
norm of principle component (PC) unknowns of an epoch. More details about PCA and IPCA
algorithms can be found in Dong et al. [19] and Shen et al. [26], respectively. The formal errors of
daily GNSS time series are not taken into account in this research, and its effect on CME extraction
should be further explored. The remainder of this paper is organized as follows. Section 2 presents the
VBPCA algorithm. Section 3 describes the data processing and demonstrates the effectiveness of this
method by numerical synthetic and real time series analysis. Variations of the noise characteristics
and the linear velocity uncertainty for the regional GNSS stations before and after removing CME are
evaluated in Section 4; conclusions are summed up in Section 5.

2. Methodology

Since the GNSS measurement is often incomplete or missing in practice, the traditional approaches
usually handle missing data by explicitly recovering them. The short-term missing data can be filled
well by interpolation, yet long-term missing data are difficult to recover [26]. Moreover, most data
interpolation methods focus only on single point time series, without regarding to the spatial correlation
among points in a region [32]. This may result in incorrect extraction of CME. Here, we put forward
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the VBPCA algorithm to characterize and mitigate the impact of CME. The VBPCA method, including
regularization, consideration of the noise term, and introduction of the a prior distribution over the
model parameters, performs well in terms of finding the intrinsic dimension and the optimal number
of clusters for the data with missing values [33].

Variational Bayesian PCA

In the context of VBPCA, the GNSS observed datum X = [x1, x2, · · · , xn] ∈ Rd×n is the stacking of
all unfiltered residual time series x j that can be formulated as:

x j = Wp j + µ+ e j, j = 1, 2, · · · , n (1)

where d indicates the number of epochs, n is the number of GNSS stations, W ∈ Rd×k denotes the
loading matrix, p j ∈ Rk×1 are the latent variables or principal components, µ ∈ Rd×1 is the bias vector,

and ei ∈ Rd×1 represents the noise term.
In addition to the assumption that the latent variables p j and noise e j are normally Gaussian

distributed, the VBPCA also imposes a Gaussian a priori distribution on the parameters of µ and W to
overcome the overfitting problem:

p(p j) = N(p j

∣∣∣∣0, I)

p(e j) = N(e j|0, εxI)
p(µ) = N(µ

∣∣∣0, εµI)

p(W) =
k∏

j=1
N(W: j|0, εW, jI)

(2)

where εx is the noise variance, εµ and εW, j represent the a priori variance for µ and W: j separately,
W: j is the j−th column of the loading matrix W, and I denotes the Identity Matrices. In the VBPCA
framework, ε= {εx, εµ, εW, j

}
is regarded as the hyperparameter set, and θ=

{
W, p, µ

}
is treated as a

hidden variable. Their values can be calculated by the variational expectation-maximum algorithm.
Since the true posterior p(θ

∣∣∣x, ε) is analytically intractable, it is usually approximated by using a simple
probabilistic density function q(θ). In this way, the calculation of the posterior p(θ

∣∣∣x, ε) is modified to
update the approximation q(θ), so as to minimize the cost function in the E-step:

C(q(θ), ε) =
∫

q(θ) log
q(θ)

p(x,θ
∣∣∣ε) dθ (3)

Then the hyperparameters ε can be optimized with the obtained q(θ) to maximize the likelihood
p(x

∣∣∣ε) in the M-step.
For the sake of calculation convenience, q(θ) is used in the following form:

q(θ) =
d∏

i=1

N(µi
∣∣∣µi, µ̃i)

d∏
i=1

N(wi
∣∣∣wi, Σwi)

n∏
j=1

N(p j

∣∣∣∣p j, Σp j
) (4)

where µi is the i th element of the bias vector µ; wi is the column vector corresponding to the i th
row of W; p j are the latent variables of the jth observations; and µi and µ̃i are the posterior mean and
variance of µ. wi and Σwi are the posterior mean and variance of wi, and p j and Σp j

are the posterior
mean and variance of p j, respectively. Thus, the cost function (Equation (3)) can be minimized by
update alternatively one factor of q(θi), while other factors are held invariant. Finally, the model
parameters and hyperparameters can be carried out by calculating the Equations (5)–(7) iteratively
until convergence. The main steps and the corresponding flowchart of this algorithm (Figure 1) are
as follows:
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Step1: Update of the latent variables:

Σp j
= εx

εxI +
∑

i∈O j

wiw
T
i + Σwi

−1

,

p j =
1
εx

Σp j

∑
i∈O j

wi(xi j − µi), j = 1, · · · , n
(5)

Step2: Estimation of the bias vector and loading matrix:

µi =
εµ

|Oi |(εµ+
εx
|Oi|

)

∑
i∈O j

[xi j −wT
i

p j],

µ̃i =
εxεµ

|Oi |(εµ+
εx
|Oi|

)
,

Σwi = εx(εxdiag(ε−1
W,i) +

∑
j∈Oi

[p jp
T
j
+ Σp j

])
−1

,

wi =
1
εx

Σwi

∑
j∈Oi

p j(xi j − µi], i = 1, · · · , d

(6)

where xi, j represents the element i, j of matrix X, O represents the set of indices i, j for which xi, j is observed,
Oi is the set of indices j for which xi, j is observed, and |Oi| denotes the number of elements in Oi.

Step3: Calculation of variance parameters:

εx = 1
N

∑
i j∈O

[(xi j −wT
i p j − µi)

2
+ µ̃i + wT

i Σp j
wi + pT

j Σwip j + tr(Σp j
Σwi)]

εµ = 1
d

d∑
i=1

(µ2
i + µ̃i)

εW,i =
1
d

d∑
i=1

(w2
ik + w̃ik)

(7)

where w̃ik stands for the kth element on the diagonal of Σwi .Sensors 2020, 20, x FOR PEER REVIEW 6 of 22 
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The VBPCA can automatically select the optimal number of principal components for data
reconstruct based on the hyperparameter εW,i, which tends to be zero if the evidence of the corresponding
principal component for reliable data modeling is weak [30]. This characteristic is called the automatic
relevance determination (ARD) and makes it easy to recover the missing values in the GNSS time
series. Furthermore, the unreliable reconstruction of missing data can also be detected since the VBPCA
method provides uncertainty information for unknown quantities.

3. Experiment and Analysis

3.1. GNSS Data Processing

We selected 44 continuous GNSS stations located in Southern California (Figure 2) to evaluate the
VBPCA algorithm, and then compare its performance with the other two methods, including PCA
and IPCA. The latest Scripps Orbit and Permanent Array Center (SOPAC) provides position time
series spanning 14-years from 2005 to 2018 for the selected GNSS stations; they are used here during
the experiment, so as to avoid the effects of mismodeling seasonal signals and noises on identifying
CME [34]. Any position value with large formal error (>10, >10, >20 mm for the north, east, and up
directions, respectively) is considered an outlier and first discarded from the raw time series. Then the
linear trend, annual and semiannual terms, and the offsets are separately modeled and subtracted to
obtain the residual position time series [35]. After that, the post-seismic displacements due to strong
earthquakes are corrected, and the residuals that exceed three interquartile range (IQR) thresholds
are also removed. Finally, we obtain the “clean” and unfiltered residual time series with an average
missing rate of 5.25% for the experiment.Sensors 2020, 20, x FOR PEER REVIEW 7 of 22 
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3.2. Comparison of CME Relative Errors from Different Methods

We first filled the data gaps of the 44 GNSS residual time series to obtain fully complete coordinate
matrix X using the regularized expectation-maximization (RegEM) algorithm [36]. Then we randomly
picked up 5–30% observations with 5% increments and removed them from the time series to simulate
the incomplete data. In this way, we can evaluate the capability of the VBPCA algorithm to extract
CMEs with different amounts of missing data. Note that the gaps in the real GNSS observations are
usually lost over a successive time span rather than a completely random absence [32]; thus, in the
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synthetic experiment, some of the deleted elements were distributed continuously, while the others
were lost completely at random. Finally, we separately employed the PCA, IPCA, and VBPCA methods
to extract the CMEs from our simulated complete and incomplete data. Since the CMEs for a regional
GNSS network should be constant over a time span no matter whether the data are missing or not,
we treat the CMEs from the simulated complete time series as the “true” reference for comparison
purpose, and then calculate the relative errors of CME as [29]:

δ =
1
E

E∑
k=1

√√√√√√√√√√√√√√√√
d∑

i=1

n∑
j=1

(CMEk
i, j −CME0

i, j)
2

d∑
i=1

n∑
j=1

(CME0
i, j)

2
× 100% (8)

where E which equals 100 here, and indicates the repeated number of every experiment; CME0 and
CMEk are the common mode errors before and after introducing gaps, respectively. Figure 3 presents
the average relative errors of CME calculated by PCA, IPCA, and VBPCA methods with different
percentages of deleted data for the north component. We can see that the relative errors of CME
computed by all the three methods become larger with increasing percentages of missing data. Within
all experiments, the performance of VBPCA in estimating the CME is better than that of PCA and IPCA.
When there is less missing data (i.e., 5%), the relative errors of CME calculated by the three methods
are not very significant with the maximum distinction of less than 1%. However, with increasing
missing data, the three results become much different. In particular, when 30% of the observations
are removed from the time series, the relative errors of CME using VBPCA reach the maximum of
only 10.9%, indicating improvements of 2.7% and 5.1% compared with IPCA (13.6%) and PCA (16.0%),
respectively. Similar results were obtained for the east and up components. Therefore, we conclude
that the VBPCA method is an alternative, effective way to obtain the CME from incomplete GNSS
position time series, especially for larger number of stations with a bigger missing data rate.
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3.3. The Performance of Missing Value Estimation

An advanced feature of VBPCA is that it can automatically select the right number of principal
components for missing data reconstruction. This property makes it convenient for GNSS missing
value imputation. In order to evaluate the performance of missing value estimation, we selected twelve
stations with missing data of less than 2% for artificial data deleting, and used the normalized root
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mean squared error (NRMSE) to assess the estimation accuracy. The introduced missing data are
ranged from 5% to 30% of the total observation data with 5% increments, and the NRMSE is defined as:

NRMSE =
1
E

E∑
k=1

√√
1
N (xest

k − xobs)
2

var(xobs)
(9)

where E is the same as Equation (5), N is the number of deleted data, xest
k represents the estimation

of the artificial deleted values, xobs indicates the real GNSS observed values corresponding to xest
k ,

and var(·) defines the variance. The NRMSE value will come to 0 when the estimation is accurate,
and 1 when the estimation is poor or the noise involved is too large. Figure 4 shows the NRMSE
results of the three algorithms for the north component with various percentages of missing data.
With rising missing data, the NRMSE values also present an increasing order for all the three methods,
among which the VBPCA algorithm provides the most accurate results, followed by the IPCA method,
while PCA exhibits the poorest. However, the difference between VBPCA and IPCA is not significant.
Similar results are obtained for the east and up components; hence, we do not show the graphs here
due to the limited space. Therefore, we conclude that the VBPCA method is more suitable to fill the
missing values for GNSS time series, especially in the case of large amount of missing data.Sensors 2020, 20, x FOR PEER REVIEW 9 of 22 
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4. Results and Discussion

4.1. Extraction of CME Using the VBPCA Method

Tables 2–4 show the a priori variance εW, j corresponding to the first five principal components of
the north, east, and up (NEU) components obtained by the VBPCA algorithm, respectively. We notice
that the εW,1 values, which separately interpret 54.71%, 60.84%, and 54.84% of the total variance for
the NEU components, are all significantly larger than the others. εW,2 contributes 10.00%, 6.43%, and
7.74% of the total variance, while the upper εW, j accounts for no higher than 5.01% for each direction.
We then scale the PCs/eigenvectors by the normalization factor similar to [19], and show the first three
scaled PCs and its normalized eigenvectors of the VBPCA solution for the NEU components in Figure 5.
It can be clearly seen that the normalized amplitudes of the first eigenvectors all have the same sign
and show a positive spatial response for all the three components with uniform distribution. The mean
responses are 89.32%, 83.34%, and 82.56% for the north, east, and up components, respectively, while
the minimum values are 70.92% at station WWMT, 62.68% at station AZU1, and 71.32% at station
GNPS. Quite different from the 1st PC, the 2nd and 3rd PCs show both positive and negative spatial
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responses in all directions, and the spatial patterns do not exhibit strong coherence over the network.
In addition, some stations, e.g., MSOB in the north, WRHS in the east, and HOLP upward, show
significantly larger responses compared with the other stations. We think that this may be due to
local effects, unmodeled signals or errors, etc., which are uncommon for the entire regional stations.
Therefore, in the following analysis, we will only use the 1st PC and its corresponding eigenvectors to
recover the CME, and then subtract the CME from our regional GNSS residual time series to eliminate
the spatial correlation of inter-stations.

Table 2. The first five εW, j obtained by VBPCA algorithm for the north component.

Principal
Component

εW,j Difference Proportion (%) Histogram

1 0.78 0.64 54.71
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Figure 5. The first three scaled principal components (PCs: top) and their corresponding spatial
responses (bottom) for the north (upper panels), east (middle panels), and up (lower panels) components
of the 44 GNSS stations. The up-black and down-red arrows represent positive and negative responses
to the scaled PCs, respectively.

4.2. Interstation Correlation Analysis

The distance correlation coefficient is applied in this research to measure the dependency of two
GNSS stations before and after reducing CME from the residual time series, due to the reason that this
method can detect both linear and nonlinear correlation between two variables, whereas the classic
Pearson’s correlation can only measure the linear relationship [37]. The values of distance correlate
to the range between 0 and 1 (0 implies independence, 1 represents similarity). Figure 6 illustrates
the interstation correlations among the 44 stations and their corresponding histograms before and
after removing CME from the NEU residual time series. We notice that the 44 GNSS stations show
a significant correlation before filtering, with average values of 0.43, 0.46, and 0.38 for the north,
east, and up components, respectively, among which the maximum correlation reaches up to 0.71
between station SBCC and SCIA (about 120 km apart) for the east component. These results confirm
that there are strong spatial correlations in the regional GNSS network, which need to be eliminated
before scientific research and application. After removing CME with VBPCA, the average correlation
coefficients are remarkably reduced to 0.11, 0.10, and 0.08, representing average interstation correlation
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reductions of 74.42%, 78.26%, and 78.95% for the NEU components, respectively. Hence, we conclude
that the VBPCA filtering is an effective technique to reconstruct the CME for regional GNSS network.Sensors 2020, 20, x FOR PEER REVIEW 12 of 22 
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Figure 6. Interstation correlation coefficients (left panels) and the histograms (right panels) before
and after filtering CME from residual time series for the north (top panels), east (middle panels),
and up (bottom panels) components. The unfiltered and filtered interstation correlation coefficients are
separately shown at the upper triangle and lower triangular of the left panels, while their corresponding
histograms are shown as red and blue colors in the right panels, respectively.

4.3. Time Series Analysis

Table 5 lists the root mean square (RMS) values of the 44 GNSS residual time series before and after
filtering CME with VBPCA for the NEU components, respectively. We can see that the RMS reduction
ranges between 7.63% and 44.00% for all stations, with an average value of 27.11%, 28.15%, and 23.28%
for the North, East, and Up components, respectively. In particular, station SBCC, PPBF and SCIA
exhibits the maximum RMS reduction of 44.00% (1.15 vs. 0.64), 42.86% (1.20 vs. 0.69), and 33.35% (3.92
vs. 2.61) for the north, east, and up component.

To further analyze the periodicity of the residual time series, we take station SCIA as an example
and calculate its power spectra using the Lomb–Scargle periodogram before and after removing CME
for the NEU components. The CME and its power spectra are plotted in the left panels of Figure 7,
while the unfiltered and filtered time series, together with their corresponding power spectra are
shown in the right panels. It can be clearly seen that the 1.04 cycle per year (cpy), which is called
the draconitic harmonic, shows high power with significant peaks for all the three components in
the CME power spectra, and the noise characteristics of the CME are proximate to pure flicker noise.
The spectrum of the unfiltered time series shows a combination of colored noise at low frequencies and
white noise at high frequencies for all three directions, while there is a clear decrease in the power
spectra at low frequencies compared with that of the high frequencies, especially for several peaks of
the draconitic harmonic frequencies after eliminating CME with VBPCA. This indicates that the CME
of the selected region contains part of flicker noise and draconitic signals, which can be significantly
reduced with VBPCA filtering.
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Table 5. RMS values of the 44 GNSS residual time series before and after removing CME (unit: mm).

No. Station
Unfiltered Filtered

No. Station
Unfiltered Filtered

N E U N E U N E U N E U

1 AZRY 1.23 1.44 4.27 0.94 1.08 3.36 23 MSOB 2.42 1.63 5.36 2.24 1.26 4.74
2 AZU1 1.45 1.55 4.96 1.09 1.36 3.96 24 MVFD 1.41 1.54 4.55 1.01 1.23 3.70
3 BKAP 1.39 1.30 4.18 1.09 0.93 3.35 25 NOCO 1.27 1.41 3.99 0.84 1.01 2.91
4 BLYT 1.36 1.38 4.65 1.04 1.01 3.77 26 OEOC 1.48 1.32 3.93 1.10 0.88 2.82
5 BRPK 1.42 1.43 4.12 1.15 1.02 3.04 27 OZST 1.31 1.62 4.61 1.04 1.15 3.56
6 BVPP 1.13 1.65 4.72 0.72 1.17 3.56 28 PKDB 1.41 1.44 5.79 1.16 1.07 4.78
7 CACT 1.21 1.36 4.25 0.88 0.96 3.23 29 PPBF 1.31 1.20 3.85 0.91 0.69 2.59
8 CAT2 1.11 1.22 3.40 0.67 0.76 2.35 30 RAAP 1.18 1.22 3.84 0.71 0.77 2.86
9 CIRX 1.32 1.35 4.28 0.88 0.92 3.13 31 RAMT 1.14 1.26 3.78 0.74 0.81 2.61

10 CNPP 1.27 1.47 4.09 0.86 1.12 3.20 32 RDMT 1.15 1.50 3.97 0.80 1.19 2.82
11 CTMS 1.28 1.41 3.91 1.00 0.99 3.11 33 SBCC 1.15 1.24 3.96 0.64 0.72 2.73
12 DHLG 1.22 1.49 4.36 0.98 1.16 3.41 34 SCIA 1.11 1.24 3.92 0.65 0.77 2.61
13 GDEC 1.33 1.18 3.79 1.07 0.83 2.72 35 SCIP 1.21 1.44 4.06 0.84 1.05 3.23
14 GMPK 1.19 1.42 4.10 0.82 1.04 3.29 36 SHOS 1.31 1.28 4.14 0.94 0.88 3.10
15 GMRC 1.52 1.33 4.14 1.26 0.93 3.34 37 SIO5 1.19 1.19 3.49 0.79 0.76 2.50
16 GNPS 1.31 1.34 3.92 0.93 0.93 3.13 38 SRS1 1.25 1.34 4.07 0.88 0.96 3.26
17 HOLP 1.41 1.47 6.48 1.13 0.97 5.97 39 THCP 1.22 1.38 4.03 0.77 0.92 2.78
18 HVYS 1.37 1.33 4.39 0.97 1.00 3.35 40 USGC 1.26 1.39 4.44 0.93 1.05 3.62
19 IMPS 1.20 1.35 3.76 0.86 0.95 2.91 41 USLO 1.29 1.50 4.69 1.01 1.19 3.75
20 ISLK 1.51 1.75 5.98 1.22 1.43 5.00 42 VNCX 1.34 1.33 4.21 0.94 0.84 3.13
21 LL01 1.43 1.42 4.38 1.11 1.11 3.30 43 WRHS 1.23 1.99 4.23 0.87 1.66 3.16
22 LNMT 1.46 1.59 3.62 1.09 1.30 2.67 44 WWMT 1.75 1.77 5.10 1.61 1.44 4.28
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Figure 7. Power spectra of CME, unfiltered and filtered residual time series of station SCIA for the
north (top panels), east (middle panels), and up (bottom panels) components. Left panels: CME and
its power spectra (blue). Right panels: unfiltered (gray) and filtered time series (red), together with
their corresponding power spectra. The vertical black-solid lines indicate harmonics of 1.0 cpy, and
brown-dash lines indicate harmonics of 1.04 cpy.

4.4. Effect of CME on Noise Amplitude and Velocity Estimation

To quantitatively analyze the effects of CME filtering on the final velocity field estimation, we
estimate the velocity together with the PLN+WN noise model using Hector software [38] for the total
44 stations. Figure 8 illustrates the variation (unfiltered minus filtered) of the amplitudes of PLN and
WN, and the velocity, after removing CME by VBPCA algorithm for the NEU components. Figure 9
presents the corresponding velocity uncertainty before and after CME filtering. We observe that the
PLN amplitudes exhibit a significant decrease after filtering out CME, with average values of 49.90%,
54.56%, and 49.75% in the NEU directions, respectively. However, the WN amplitudes only vary with
average decrease ratios of 1.8% and 5.82% for the north and east components, but an increase ratio of
27.65% for the up component. This is due to the fact that flicker noise is dominated in the CME and
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can be remarkably suppressed using VBPCA filtering, while white noise is likely related to site-specific
errors that cannot be removed by CME filtering.
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The velocity differences vary between −0.27 mm/year and 0.16 mm/year for the horizontal
components, and −0.36–0.21 mm/year for the up component (right panels of Figure 8), indicating that
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CME has a certain influence on the velocity estimation of the GNSS stations. Compared with velocity
difference, the velocity uncertainties decline obviously with averages of 51.95%, 57.31%, and 49.92%
after filtering out CME for the NEU components, among which the maximum improvement ratio
equals 79.07% at station SRS1 for the east component, while the minimum improvement is 12.02% at
station MSOB for the up component. Therefore, we conclude that CME filtering would be essential to
improve the precision of velocity estimates.

5. Conclusions

In this paper, we introduce an alternative VBPCA approach to extract CME from regional GNSS
position time series with missing values. Without establishing the covariance matrix and computing
eigenvalue decomposition, the VBPCA method considers PCA from a probabilistic point of view,
and utilizes the variational expectation-maximization iterative algorithm to search principal subspace.
Moreover, The VBPCA can automatically select the optimal number of principal components for data
reconstruction based on the hyperparameter εW,i, which makes it convenient to recover the missing
values in the GNSS time series.

The daily position time series of 44 continuous GNSS stations located in Southern California from
SOPAC are selected to simulate and investigate the performance of filtering out CME with VBPCA.
Our results show that the VBPCA algorithm achieves lower relative errors of CME compared with
the other two widely used approaches; namely, PCA and IPCA. In particular, it shows maximum
improvements of 2.7% and 5.1% compared to IPCA and PCA in the case of 30% missing data.
With respect to the performance of missing value estimation, the VBPCA algorithm always exhibits the
lowest NRMSE; thus, it is more suitable for filling the gaps of the GNSS time series, especially for a
large amount of missing data.

We then apply the VBPCA algorithm to the 44 incomplete residual time series, and successfully recover
the CME using the first PC and its eigenvector for the selected regional GNSS network. After removing
CME, both the interstation correlation coefficients and the RMS values of the residual time series show
remarkable decreases. The draconitic harmonics, especially for the top eight frequencies, also exhibit
significant reductions. Therefore, we conclude that the CME indeed exists in the regional GNSS network
and the VBPCA method performs quite well to reconstruct the CME for the selected region.

Meanwhile, the velocities of unfiltered and filtered position time series, together with their
corresponding velocity uncertainties are simultaneously estimated with the PLN+WN noise model.
We observe that after CME filtering, the PLN amplitudes are significantly reduced, with average values
of 49.90%, 54.56%, and 49.75% in the NEU directions, respectively. However, the WN amplitudes exhibit
only slight decreases in their horizontal components, but increases in the up direction. The velocity
differences can reach 0.36 mm/year, indicating that CME has a certain influence on the velocity
estimation of the GNSS stations. On the other hand, the velocity uncertainty represents an average
reduction of 51.95%, 57.31%, and 49.92% for the three components; thus, we conclude that the CME
filtering with VBPCA could not only attenuate the colored noise, but also improve the accuracy of the
estimated station velocity. Further work is still required to take the formal errors into account during
the VBPCA implementation, which may also have some effect on the CME extraction.

Finally, with the fast expansion of GNSS stations and the accumulated longer-time, or higher-rate
GNSS observations, we are facing a challenge to find an optimal and objective approach to extract
CME for regional GNSS network. The deep leaning method that is regarded as a learning technique
on artificial neural networks can provide fast and effective solutions, especially in the analysis of big
data. Considering the advantages of deep learning, its application in extracting the CME from GNSS
position time series will be further explored.
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Nomenclature

CME common mode error
GNSS global navigation satellite systems
VBPCA variational Bayesian principal component analysis
PC principal component
NEU north, east, and up
RMS root mean square
WN white noise
PLN power-law noises
MLE maximum likelihood estimation
PCA principal component analysis
IPCA improved principal component analysis
PPCA probabilistic principal component analysis
VBPCA variational Bayesian principal component analysis
MSSA multi-channel singular spectrum analysis
ICA independent component analysis
SOPAC SCRIPPS ORBIT AND PERMANENT ARRAY CENTER
IQR interquartile range
ARD automatic relevance determination
RegEM regularized expectation-maximization
NRMSE normalized root mean squared error
cpy cycle per year
d the number of epochs
n the number of GNSS stations
k the number of principal components
X d× n data matrix
x j j-th column of X
W d× k loading matrix
W: j j-th column of the loading matrix W
wi the column vector corresponding to the i th row of W
wi posterior mean of wi
Σwi posterior covariance of wi
w̃ik the k-th element on the diagonal of Σwi

P k× n matrix of principal components
p j j-th column of P
p j posterior mean of p j
Σp j

posterior covariance of p j
µ the bias vector
µi posterior mean of µ
µ̃i posterior variance of µ
e j j-th out of n noise vector
εx the noise variance

http://segal.ubi.pt/hector/
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εµ priori variance of µ
εW, j priori variance of W: j

ε the hyperparameter set (ε= {εx, εµ, εW, j
}
)

I the Identity Matrices
θ the hidden variable (θ=

{
W, p, µ

}
)

C cost function to be minimized
O the set of indices i, j for which xi, j is observed
Oi the set of indices j for which xi, j is observed
|Oi| the number of elements in Oi
N(x

∣∣∣µ, ε) Gaussian normal probability density function over variable x with mean µ and covariance ε
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