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The acquisition of higher intellectual abilities that distinguish humans from their closest
relatives correlates greatly with the expansion of the cerebral cortex. This expansion is a
consequence of an increase in neuronal cell production driven by the higher proliferative
capacity of neural progenitor cells, in particular basal radial glia (bRG). Furthermore, when
the proliferation of neural progenitor cells is impaired and the final neuronal output is
altered, severe neurodevelopmental disorders can arise. To effectively study the cell
biology of human bRG, genetically accessible human experimental models are needed.
With the pioneering success to isolate and culture pluripotent stem cells in vitro, we can
now routinely investigate the developing human cerebral cortex in a dish using three-
dimensional multicellular structures called organoids. Here, we will review the molecular
and cell biological features of bRG that have recently been elucidated using brain
organoids. We will further focus on the application of this simple model system to
study in a mechanistically actionable way the molecular and cellular events in bRG that
can lead to the onset of various neurodevelopmental diseases.
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STUDY OF HUMAN DEVELOPMENT IN A DISH

The temporal series of events that leads to the acquisition of specific structural and functional
features of different organs in the human body is a fascinating, yet not fully understood phenomenon
known as organogenesis. Heart, brain, skin and liver are all very distinct and specific organs with
their own distinct functions, yet they developmentally originate from a single cell. Unveiling the
cascade of steps leading from such a simple disordered system to an ordered complexity is not only
essential from a developmental biology perspective but also for establishing therapeutic approaches
in the context of regenerative medicine.

Whereas the classical in vivo model systems, such as Drosophila, zebrafish and mouse provided
fundamental insight into the basic animal, vertebrate and mammalian development respectively,
certain aspects of the complexity observed in humans can only be studied in the human model
system. Hence, 2D in vitro and ex vivo systems, such as organotypic cultures, have been valuable to
reveal human-specific features of organ development and pathology (Shamir and Ewald, 2014).
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However, they lack either the spatial complexity of the tissue or
the ability to study the development for prolonged time periods.
This raised the need to establish a human model system that
would mimic human organogenesis with a sufficient level of
spatio-temporal complexity.

The first step towards this goal was provided by the pioneering
work of somatic cells reprogramming into pluripotent stem cells
(PSCs) (Takahashi and Yamanaka, 2006). The subsequent ability
to grow PSCs enabled the exploitation of this technology to
generate human stem cell derived cultures (Takahashi et al.,
2007). Additionally, cultivation of PSCs in a 3D configuration
enabled the cell-cell and cell-extracellular matrix (ECM)
communication which would otherwise be absent in a 2D
culture (Blau and Miki, 2019). In 2008 a remarkable work
conducted by Eiraku and others established for the first time a
3D polarised cortical tissue from embryonic stem cells (ESCs)
(Eiraku et al., 2008). This paved the road towards the use of
organoids, as multicellular structures that exhibit the capacity to
self-organise into a complex system, to study organogenesis in a
dish. The term “organoid” was consolidated by Sato and others
who established for the first time intestinal organoids from single
adult stem cells (Sato et al., 2009). Together, these fundamental
studies led to the widespread application of organoid technology
in developmental biology (Kaluthantrige Don and Huch, 2021).

Organoids contain the genetic background along with the cell-
cell and cell-ECM interactions similar to those in vivo, however,
they are grown in a simpler and fairly controllable environment
(Shamir and Ewald, 2014). On the one hand this is a limiting
factor in recapitulating the physiological features of
organogenesis. On the other hand, this is an opportunity to
dissect in depth the biology of cells of interest within an
environment that can be readily controlled. For instance,
hepatocyte organoids, that recapitulate the spectacular ability
of the liver to regenerate upon a partial resection, can be used
as a magnifying glass to study the cell types underlying this
regeneration (Hu et al., 2018; Peng et al., 2018). In the context of
human pathologies, organoids hold potential to treat various
diseases, such as acute kidney injury or diabetes (Lancaster and
Huch, 2019). Recently, kidney organoids transplanted under the
renal capsule of mice acquired de novo vascularisation and
tubular maturation (van den Berg et al., 2018), allowing future
applications for the treatment of renal failure. Furthermore, the
use of pancreatic islet organoids as a source of β-cells in vitromay
potentially be an alternative cell therapy for diabetes (Wang et al.,
2020). Comparison between human fetal retina and retinal
organoids showed considerable similarities, thus anticipating a
potential role of retinal organoids as cell source for
transplantation in cell therapy (Sridhar et al., 2020).

A striking example of a model system that successfully
simplifies a highly complex organ, but however mimics the
key aspects of the development, is a brain organoid (see
section 1.3 for discussion on brain organoids) (Heide et al.,
2018; Benito-Kwiecinski and Lancaster, 2020; Lopez-Tobon
et al., 2020; Marton and Pașca, 2020; Velasco et al., 2020;
Sidhaye and Knoblich, 2021). Untangling the functional
dynamics of distinct brain cells using animal models is a very
tedious process due to the remarkable complexity stemming from

the interaction of the brain with the other organs and the
environment. One fundamental question is to understand how
this complexity arises during development.

BASAL RADIAL GLIA - A KEY CELL TYPE
FORHUMANNEOCORTEX DEVELOPMENT

The cerebral cortex, and its evolutionary most recent part, the
neocortex, arise from the forebrain region of the neural tube. It is
arguably considered that the higher cognitive abilities of humans
compared to other mammals are reflected by the size and the
cytoarchitectural organisation of the human neocortex (Molnár
et al., 2019; Rakic, 1988, 1995). Development of the neocortex
initiates with the proliferation of neuroepithelial cells lining the
neural tube. Transition from a proliferative state into a
neurogenic state gives rise to apical radial glia (aRG), the chief
parental progenitor cells that will initiate the neurogenesis, that is
the series of events that lead to the production of neurons (Götz
and Huttner, 2005; Taverna et al., 2014). The identity of the
progenitors is defined based on the location of their mitosis
(Taverna et al., 2014), which highlights the importance of the
microenvironment for the cell fate specification. Indeed,
proliferation of aRGs occurs on the ventricular (apical) surface
and these cells form the apical-most neocortical histological layer,
known as the ventricular zone (VZ) (Götz and Huttner, 2005).
Moving along the apicobasal axis, asymmetrical divisions of aRGs
give rise to basal progenitors that populate the second germinal
layer, the subventricular zone (SVZ). In species with an expanded
neocortex, the SVZ is divided into two distinct zones: the inner
and the outer SVZ (ISVZ and OSVZ, respectively) (Smart, 2002;
Dehay et al., 2015).

The neocortical expansion in mammals has been widely
associated with a subpopulation of basal progenitors called
basal or outer radial glia (bRG or oRG) (Fietz et al., 2010;
Hansen et al., 2010; Reillo et al., 2011). The abundance of
bRG and their proliferative capacity are strikingly increased in
species with an expanded neocortex, such as human, macaque or
ferret (Fietz et al., 2010; Hansen et al., 2010; Reillo et al., 2011;
Betizeau et al., 2013; Kalebic et al., 2019), compared to species
with a small brain, such as mouse (Wang et al., 2011; Wong et al.,
2015). This results in an increased production of neurons, which
in turn is associated with the expansion and folding of the
neocortex. Hence, bRG are considered to be a key cell type
underlying human neocortex development (Penisson et al.,
2019; Kawaguchi, 2020; Pinson and Huttner, 2021; Del-Valle-
Anton and Borrell, 2022). An additional layer of cellular
complexity within the bRGs lies in their morphological
heterogeneity (Kalebic and Huttner, 2020). We have identified
that an increasing number of basal processes within the human
bRGs coincides with an increase in their proliferative capacity
(Kalebic et al., 2019). Interestingly, such bRGs complexity and
proliferative capacity are absent in the mouse cortex, further
corroborating the role of bRGs as chief cells underlying
mammalian neocortical expansion.

As many studies have started to focus on this fascinating
population of cells, multiple outstanding questions remain to be
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addressed. For example, what is the molecular and cell biological
heterogeneity of bRG across different species and what is their
contribution to the onset of human intellectual disabilities. The
use of a reductionist system containing abundant bRGs such as
the organoids may elucidate the mechanisms that lead towards
the complexity of the neocortex organogenesis and pathogenesis.
This review will focus on the diverse modalities to generate brain
organoids and how we can exploit this technology in the context
of neocortex development and pathologies, specifically focusing
on bRGs.

FOREBRAIN ORGANOIDS

During embryogenesis, the interplay of diverse signalling
pathways leads to the differentiation into neuronal fate. Initial
inhibition of the the bone morphogenic proteins (BMP)
signalling is needed for the differentiation into the
neuroectoderm which then invaginates to give rise to the
neural tube (Muñoz-Sanjuán and Brivanlou, 2002; Sadler,
2005). Patterning of the neural tube into different regional
identities is achieved through the regulated activity of WNT,
fibroblast growth factor and retinoic acid pathways (Muñoz-
Sanjuán and Brivanlou, 2002; Molotkova et al., 2005). To
model such embryonic development in vitro and building on
the earlier pioneering work, two studies reported the generation
of brain organoids in 2013 (Kadoshima et al., 2013; Lancaster
et al., 2013). Two distinct approaches have been applied for
generating brain organoids: 1) the unguided method, which
directs the generation of organoids with multiple regional

identities; and 2) the guided method, which promotes the
acquisition of specific regional identity through a step-wise
time-dependent exogenous signalling (Table 1) (Lancaster and
Knoblich, 2014; Di Lullo and Kriegstein, 2017). Each approach
starts with the generation of 3D aggregates named embryoid
bodies (EBs), which have the potential to differentiate into all
three germ layers (Zhang et al., 2001). The first cerebral organoids
were generated from EBs following the intrinsic program of
neuroepithelial cells to differentiate into neural progenitor cells
(Lancaster et al., 2013). Such unguided protocol results in a
stochastic development of various and multiple regional
identities (Ormel et al., 2018). Alternatively, the differentiation
can be directed towards the acquisition of a specific regional
identity, such as the dorsal forebrain. The latter can be achieved
through the manipulation of the transforming growth factor-beta
(TGF-β) signalling pathway and BMPs (Chambers et al., 2009;
Kadoshima et al., 2013; Paşca et al., 2015; Qian et al., 2018, 2020;
Sloan et al., 2018). Of note, the time dependent addition of small
molecules in presence (Kadoshima et al., 2013; Lancaster et al.,
2013; Qian et al., 2018, 2020; Sloan et al., 2018) or absence
(Mariani et al., 2015) of Matrigel, a commercially available
basement membrane matrix from mouse sarcoma (Li et al.,
1987), shows a remarkable difference in the developmental
timelines, prompting a question on how it might affect the
progenitor biology (Table 1).

Although the timeline in the induction of neurogenesis is
different, all protocols partially recapitulate the series of events
known to occur in the developing human neocortex (Figure 1).
Indeed, organoids readily contain aRGs marked by the
expression of the transcription factors SOX2 and PAX6

TABLE 1 | Brain organoid protocols.

Organoid protocol Method
(Guided or
unguided)

Cell
line

EB generation Matrigel Bioreactor Orbital shaker Slicing

Kadoshima et al.
(2013)

guided ESCs From single cells
96 WP

7 7 7

✓
From day 35 (Matrigel
1% vol/vol)
From day 70 (Matrigel
2% vol/vol)

Lancaster et al.
(2013)

unguided ESCs:
H9

From single cells ✓ ✓ 7 7

H1 96 WP From day 11 in
Matrigel droplets

Giandomenico et al.
(2021)

guided ESCs From single cells ✓ ✓ ✓ ✓
H9 96 WP Only once

between
H1 with microfilaments day 45 and 60

Pasca et al. (2015) guided iPSC From single cells 7 7 ✓ 7

96 WP
Qian et al. (2020) guided iPSC From whole

colonies
✓ ✓ ✓ ✓

Use of
collegenase to

During the forebrain
patterning

Optional during
differentiation

During differentiation and
maturation

Day 45 -
Day 150

lift the
colonies 6WP

day 7–14 Day 14–72 Day 45–150 Once a month

Abbreviations: EB, embryoid body; ESCs, embryonic stem cells; iPSCs, induced pluripotent stem cells.
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(Kadoshima et al., 2013; Lancaster et al., 2013; Qian et al.,
2018, 2020). Both subtypes of basal progenitors, bRG and the
intermediate progenitors can be observed in organoids. bRG
are marked by the presence of HOPX, SOX2 and PAX6, along
with the absence of TBR2 (Pollen et al., 2015; Qian et al., 2016,
2020). Moreover, organoids also display the presence of early
born (CTIP2+ or TBR1+) and late born neurons (SATB2+
and/or BRN2+) (Figure 1) (Paşca et al., 2015; Lancaster et al.,
2017; Sloan et al., 2018; Qian et al., 2020; Giandomenico et al.,
2021). Transcriptomic analysis identified that mature brain
organoids between days 250 and 300 correspond to postnatal
stages of human brain development (Gordon et al., 2021).
However, the timing of expression of different cell types and
formation of specific cortical layers differs from protocol to
protocol. For example, the organoids produced by the
Lancaster protocol show the presence of neurons already at
day 30 (Lancaster et al., 2013). This contrasts the organoids
generated by the Kadoshima protocol, which start
neurogenesis after 70 days (Kadoshima et al., 2013). Thus,

the caveat of timing across protocols needs to be considered
when comparing the fetal human development.

Most of the initial organoid protocols showed similar
limitations as they poorly recapitulated the tissue architecture,
notably cortical layering, the bRG abundance, the presence of all
developmental lineages and neuronal maturation. To address
these limitations and to improve the nutrient and oxygen
exchange within the organoid, several improvements of the
initial protocols were reported. For example, adding
microfilaments and culturing organoids at air-liquid interfaces
advanced the original Lancaster protocol (Lancaster et al., 2017;
Giandomenico et al., 2021). Recently, the use of external magnetic
nanoparticles or inclusion of signalling gradients showed
enhanced local patterning of brain organoids (Cederquist
et al., 2019; Fattah et al., 2022). It is tempting to speculate that
such methods could direct an improved cytoarchitectural
organisation of forebrain organoids (Cederquist et al., 2019;
Fattah et al., 2022). Further, repeated slicing of Qian organoids
facilitated an expansion of cortical layers and an increased

FIGURE 1 | Comparison of human cortical development between human fetal neocortex and human forebrain organoids. Cortical neurogenesis in human fetal
development (upper panel) starts with proliferation of neural progenitor cells. In this process, bRG are highly abundant and give a key contribution to the final neuronal
output. Consequently, the neocortex expands into specific cytoarchitectural layers with formation of cortical folding on the basal side. Following neurogenesis, functional
maturation of neurons and glia takes place. Human forebrain organoids (lower panel) recapitulate the cell diversity and developmental lineages, however further
improvements are required to achieve bRG abundance, improved cytoarchitectural organisation, neuronal and glial maturation, and cortical folding similar to the ones
observed during the human fetal neocortex.
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expression of HOPX + bRG cells at day 80, reminiscent of the
OSVZ (Qian et al., 2020).

Another strategy to improve brain organoid maturation
resulted in the fusion of phenotypically independent dorsal
and ventral organoids, termed assembloid (Bagley et al., 2017;
Sloan et al., 2018). The latter is particularly interesting because the
ventral part of the forebrain is the principal origin of human
interneurons, that subsequently migrate into the dorsal regions to
integrate into the cortical circuits (Bandler et al., 2017; Hu et al.,
2017; Lim et al., 2018). Interneurons are generated by the radial
glia of the ventral forebrain, which appear to be more similar to
the dorsal aRG than bRG (Velmeshev et al., 2021). Taken
together, dorsal-ventral assembloids provide a model system to
study generation, migration and integration of interneurons,
which enables a more complete modelling of the human
cortical development (Marton and Pașca, 2020).

Finally, several strategies have been adopted to improve
vascularization. One approach consists in the co-culture of
brain organoids with vascular cells such as human umbilical
vascular endothelial cells (HUVECs). This resulted in a reduced
hypoxic core and improved neuronal maturation (Shi et al.,
2020). Additional strategy transplanted organoids into
vascularised tissue of immunodeficient mice and showed
functional blood circulation and improved organoid viability
(Mansour et al., 2018). Implementation of vascularisation in
forebrain organoids could enhance the viability and potentially
promote neuronal maturation.

WHAT HAVE ORGANOIDS TOLD US
ABOUT bRG?

As mentioned above, bRG are considered to be the key cell
type underlying human neocortical development. Human
bRG are highly proliferative, likely generate most of the
human neurons and serve as the scaffold for the neuronal
migration to the cortical plate (Fietz et al., 2010; Hansen et al.,
2010; Reillo et al., 2011; LaMonica et al., 2013). bRGs biology
has been poorly assessed since the abundance and behaviour
of this cell type is strikingly low in the key animal model, the
mouse (Wang et al., 2011; Wong et al., 2015). Although the
abundance of bRGs in cerebral organoids is still not
comparable to the numbers present in fetal human tissue,
organoids hold great promise to be a suitable in vitro system to
study human bRGs.

Molecular Characterization of bRG
To understand the extent at which the organoid system
recapitulates the bRG identity observed in human fetal
tissue, initial studies examined the transcriptomic profiles of
both model systems. This revealed similar lineage
relationships between aRG and bRG in both systems (Camp
et al., 2015; Pollen et al., 2015). Subsequent studies readily
confirmed the existence of a cell population with a
transcriptomic signature of bRG (Bershteyn et al., 2017;
Giandomenico et al., 2019; Pollen et al., 2019; Velasco et al.,
2019; Cheroni et al., 2022). A recent work aimed to understand

the reproducibility of organoids, identified consistent
generation of diverse cell types, including bRG, in multiple
forebrain organoids (Velasco et al., 2019). Subsequent work
combined the latter dataset with spatial transcriptomics and
identified a spatial patterning of different cell types within the
organoid, with bRG being superficially positioned with respect
to aRG (Uzquiano et al., 2022).

One striking characteristic of brain organoids compared to
other organoids, such as the liver, is their outstanding
increase in size during maturation. However, this can
result in poor oxygenation and nutrient exchange within
the organoid core causing a systematic cellular stress
(Bhaduri et al., 2020). A recent analysis, however,
suggested that the cellular stress is a feature of a
subpopulation of cells, which can be removed in
subsequent computational analyses (Vértesy et al., 2022).

Additional transcriptomic studies extended the role of brain
organoids not only as a promising tool to tackle human cortical
development but also showed the valuable use of organoids in
modelling human brain evolution (Heide et al., 2018; Muchnik
et al., 2019). For example, CTCL, a fusion transcript and a Wnt
signalling modulator, which is expressed in human but not
mouse developing brain, has recently been shown to be
implicated in the proliferative capacity of bRG in human
organoids (Ou et al., 2021). Comparison between human
and non-human primate brain organoids pointed at the
increased activation of another key signalling pathway, the
PI3K-AKT-mTOR, in human bRG (Pollen et al., 2019;
Andrews et al., 2020). Moreover, mTOR signalling in
human organoids was shown to regulate bRG morphology
and behaviour (Pollen et al., 2019; Andrews et al., 2020).
Building on earlier findings that identified the role of Notch
signalling in promoting human bRGs proliferation (Hansen
et al., 2010), recent work conducted in brain organoids,
identified the role of a human-specific gene NOTCH2NL to
enhance the activity of Notch signalling and to delay the neural
differentiation of bRG (Fiddes et al., 2018). The second
human-specific gene implicated in neocortical expansion
and known to operate in bRG, ARHGAP11B (Florio et al.,
2015; Kalebic et al., 2018; Heide et al., 2020), has been
introduced to chimpanzee organoids where it promoted
bRG proliferation (Fischer et al., 2020). Kanton and others
performed a comprehensive cell-type specific analysis of gene
expression in human, chimpanzee and macaque organoids and
further revealed the molecular mechanisms underlying the
differences in gene expression across these species (Kanton
et al., 2019; Muchnik et al., 2019). Their ATAC-seq analysis
showed divergence in chromatin accessibility between human
and chimpanzee organoids, which could be associated with the
human-specific gene expression (Kanton et al., 2019; Muchnik
et al., 2019). Additionally, organoids also offer the possibility
to compare the differences in brain development between
modern humans and ancestral species such as Neandertals.
For instance, Muotri and others modelled Neandertal brains in
organoids by introducing an archaic variant gene called
Neuro-oncological ventral antigen 1 (NOVA1) (Trujillo
et al., 2021). These organoids exhibited changes in organoid
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morphology and neuronal activity (Trujillo et al., 2021).
Recently, Mora-Bermudez and others introduced specific
ancestral variants involved in mitotic spindle and
kinetochore function in organoids and showed shorter
metaphase of apical progenitors compared to the longer
metaphase of non-mutated modern human organoids
(Mora-Bermúdez et al., 2022). It is interesting to speculate
that such evolutionary differences between modern humans
and ancestral human species might also be linked to bRG
development and function.

Cell Biology of bRG
The transcriptomic studies described above have shown that
organoids successfully recapitulate the diversity of cell types
and their lineage relationships. Combined with the existence
of the organoid polarity, it allows us to use this model system
to also study the cell biological features of bRG (Figure 2).
Previous identification on the role of mTOR signalling
pathway (Nowakowski et al., 2017) in human bRG led to its
deeper analysis using organoids (Pollen et al., 2019). Upon the
pharmacological inhibition of mTOR signalling in organoids,

FIGURE 2 | bRG in development, evolution and pathology using forebrain organoids. Forebrain organoids enable us to study the cell biological features and cell
behaviours that characterise bRG (1); their role in the onset of malformations of cortical development, brain cancers and viral diseases (2); and their contribution to the
neocortex expansion of modern humans compared to ancestral human species and non-human primates (3). Overall, organoids provide a new window into bRG and
their link with the expansion of the neocortex.
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bRG exhibited a shorter basal process (Andrews et al., 2020).
Interestingly, bRGmorphology could be rescued by the activation
of the Rho-GTPases CDC42/RAC1 in cortical tissue (Figure 2)
(Andrews et al., 2020). CDC42 in particular has a very important
role in radial glia morphology, as it has been found to affect
polarisation, proliferation and migration of aRG (Cappello et al.,
2006; Yokota et al., 2010). Another determinant of cell polarity
involved in maintenance of the radial scaffold is GSK3 (Yokota
et al., 2010). Recently, a pharmacological inhibition of GSK3 in
organoids led to a reduction in the abundance of bRG and
production of neurons, further emphasising the role of bRG
polarity for normal neurogenesis (López-Tobón et al., 2019).
Although bRG lack classical apicobasal polarity and the
contact with the ventricular surface, they do possess a series of
features that we have previously termed pseudo-apicobasal
polarity (Kalebic and Namba, 2021). A key manifestation of
such polarity is their morphology. Previous findings identified
different bRG morphotypes in mouse, ferret, macaque and
human developing cortex (Betizeau et al., 2013; Reillo et al.,
2017; Kalebic et al., 2019), suggesting that an increased number of
basal processes coincides with the proliferative capacity of bRG
(Kalebic and Huttner, 2020). It would be interesting to identify
these diverse bRG morphotypes in organoids and understand
how morphology might be an important component for
neurogenesis progression.

Another key advantage of the organoid system is that it
enables the studies of bRG structural and temporal dynamics
without the complexity inherent to the in vivo and ex vivo
systems. Prior to mitosis, bRG exhibit a distinctive saltatory
migrational behaviour named mitotic somal translocation
(MST) (Hansen et al., 2010; LaMonica et al., 2013; Ostrem
et al., 2014; Ostrem et al., 2017). Remarkably, organoid
studies based on GFP-electroporated radial glia identified
this unique feature in cells localised away from the VZ
(Lancaster et al., 2013; Otani et al., 2016) The importance
of MST for human cortical development is obvious when
observing a form of human lissencephaly called Miller-Dieker
syndrome (MSD). MSD brain organoids showed prolonged
mitosis and longer MST distances (Figure 2) (Bershteyn
et al., 2017), suggesting that defects in bRG mode of
division could lead to premature neurogenesis in human
lissencephaly.

bRG in Pathology
Organoids, especially when derived from patients’ cells, are a par
excellence platform to dissect the pathogenesis of
neurodevelopmental diseases (Figure 2). One of the first
examples comes from the work conducted by Lancaster and
others who generated patient-derived microcephalic cerebral
organoids carrying a mutation in the centrosomal protein
CDK5RAP2 (Lancaster et al., 2013). They showed an increase
of asymmetric cell divisions in neural progenitors which led to
their premature differentiation (Lancaster et al., 2013). The
second principal way to model neurodevelopmental disorders
in organoids is to introduce disease-causing mutations via
genome editing in PSCs. For example, deletion of WDR62,
another key gene causing microcephaly, resulted in a

reduction of bRG proliferation, which in turn led to reduced
organoid size (Zhang et al., 2019).

In addition to microcephaly, organoids have been useful to
model periventricular heterotopia (Figure 2). A recent study
used both patient-derived and genome-edited PSCs to study
EML1 deficiency in cortical organoids (Jabali et al., 2022). The
analyses revealed defects in the primary cilium structure and
mitotic spindle orientation of aRG, which led to an increase in
aRG delamination and subsequent formation of ectopic neural
progenitors and heterotopic neurons (Jabali et al., 2022).
Interestingly, deeper characterization identified that the
majority of these ectopic progenitor cells are bRG with an
unusual morphology (Jabali et al., 2022), linking bRG
morphology with neurogenesis. Phenotypes of
periventricular heterotopia were successfully recapitulated
in human brain organoids also by manipulation of the
expression levels of ECE2 and PLEKHG6 (O’Neill et al.,
2018; Buchsbaum et al., 2020). Another key gene that has
been recently described to be enriched in human bRG (Pollen
et al., 2015), while being linked to periventricular nodular
heterotopia, is LGALS3BP. Studies using organoids showed
that LGALS3BP expression is essential for proper positioning
of bRG, whereas altered LGALS3BP expression resulted in
neuronal heterotopia and defects in local gyrification,
emphasising once again a potential role of bRG in disease
(Kyrousi et al., 2021).

Further studies identified a role of bRG in the pathogenesis of
Pretzel syndrome (polyhydramnios, megalencephaly,
symptomatic epilepsy; PMSE) derived from mutations in the
STRADA gene, part of the mTOR pathway. PMSE organoids
showed an increase of HOPX + bRG which could be linked with
the megalencephaly observed in PMSE individuals (Dang et al.,
2021). This also further strengthens the role of the mTOR
pathway in the regulation of bRG (Nowakowski et al., 2017;
Andrews et al., 2020). Mutation of CHD8 (chromodomain
helicase DNA-binding 8) in cerebral organoids resulted in an
increased proliferation of a population of radial glial cells which
translated into altered neurodevelopmental trajectories (Villa
et al., 2022).

Several studies modelled cortical folding using organoids
(Figure 2). Activation of the PI3K-AKT signalling is known to
be involved in increased proliferation of BPs (Kalebic et al.,
2019) and its dysfunction is associated with brain overgrowth
disorders (Hevner, 2015). Genetic ablation of PTEN, a
regulator of PI3K, in human organoids showed an increase
of HOPX + bRG with subsequent formation of cortical folding
(Li et al., 2017). Interestingly, both PTEN mutant mice and
human organoids showed an increase of brain or organoid
volume, but only human organoids showed folding (Li et al.,
2017). This suggests the importance of specific molecular and/
or cellular features in humans, but not in mice, to direct
cortical folding. Nevertheless, control human brain
organoids lack the ability to achieve cortical folding,
suggesting that they exhibit insufficient neuronal
maturation and/or lack the mechanical signals from the
microenvironment (Borrell, 2018; Kroenke and Bayly,
2018). Gyrification is important for the development of the
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neocortex as it maximises the surface to pack neurons relative
to the brain size. Karzbrun et al. reported an induction of
folding in organoids by physically constraining brain
organoids using a chip (Karzbrun et al., 2018). Together
with the mechanical forces from the cytoskeleton
contraction and cell migration this induced wrinkles in
organoids that are reminiscent of cortical folding (Karzbrun
et al., 2018). In contrast, lissencephalic organoids (LIS-1
mutant) showed changes in the cytoskeleton and ECM that
resulted in a reduced organoid wrinkling (Karzbrun et al.,
2018). It would be interesting to apply the chip device to
organoids whose age corresponds to the onset of bRG
neurogenesis and examine a link between bRG and the
mechanisms of cortical folding. Interestingly, in
lissencephalic organoids modelling Miller-Dieker syndrome,
bRG showed mitotic defects, suggesting a role of bRG in
pathogenesis of lissencephaly (Bershteyn et al., 2017).

Apart from neurodevelopmental disorders, the use of brain
organoids was beneficial to elucidate a role of bRG-like cells in
malignant brain tumours such as glioblastoma (Figure 2). Live
imaging on primary resected tumours displayed a population of
bRG-like cells undergoing MST (Bhaduri et al., 2020). Upon
transplantation into cortical organoids, these cells exhibited
typical invasiveness and expansion of tumour-like cells
(Bhaduri et al., 2020). This highlights an important role of
bRG biology not only during brain development but also in
the context of cancer progression.

Finally, brain organoids have a potential to mimic viral
infectious diseases (Figure 2) (Harschnitz and Studer, 2021).
An outstanding example was given in response to the outbreak of
Zika virus (ZIKAV), in which ZIKAV induced microcephalic
organoids were generated (Qian et al., 2016; Krenn et al., 2021).
These organoids exhibited increased apoptosis, reduced
proliferation with subsequent reduction of organoid size.
Interestingly, the authors showed that bRG were readily
infected by the Zika virus (Qian et al., 2016), hence indicating
the advantage of using organoids to understand the contribution
of different cell types, such as bRG, in the disease aetiology
(Figure 2).

Brain organoids have hence provided invaluable insight into
the role of bRG for human neurodevelopmental pathologies.
Since rodent models poorly recapitulate features of human
bRG, ferrets and primates are typical species of choice for in
vivo exploration of the bRG role in neurodevelopmental disorders
(Feng et al., 2020; Gilardi and Kalebic, 2021). Although they
recapitulate well the key aspects of bRG biology, these models
require substantial time and resources in addition to important
ethical considerations for disease modelling. Hence the
application of organoids, and particularly patient-derived
organoids, has been instrumental for the advancement of
knowledge regarding neurodevelopmental diseases and role of
bRG in this context.

CONCLUSION

The ability to recapitulate organogenesis outside the embryo
makes the organoid system a fascinating and useful
technology. Although brain organoids differ from the brain in
vivo, their ability to reproduce the diverse cell types and lineage
trajectories comparable to human fetal cortex, makes the
organoids a promising tool to address fundamental questions
in neocortical development and pathologies. This is particularly
relevant for bRG, a key progenitor cell type underlying human
brain development. Future research will likely focus on further
cell biological characterization of bRG in organoids and will
better dissect the steps along the developmental trajectories
examining the contribution of bRG for neocortical
development. Given that organoids are becoming a key model
system to study differences in brain development between
modern humans and ancestral species, it is likely that further
efforts in this direction will elucidate the contribution of specific
genetic changes between these species for the biology of basal
progenitors. Finally, disease modelling has been one of the
principal directions of organoid-based research. Future efforts
in this domain are expected to further develop in the direction of
an ever-more personalised medicine combining patient-derived
organoids with genetic and pharmacological screens. An elegant
example of a genetic screen has been performed by Esk and others
who tested 173 microcephaly-related genes in human brain
organoids using CRISPR/Cas9-mediated genome editing (Esk
et al., 2020). Future approaches can be used to study
candidate genes of other neurodevelopmental pathologies,
genes that have more subtle differences in expression level
between control and pathological development and, finally,
genes whose phenotype is likely to be pertinent to the later
stages of organoid development, when bRG become more
dominant. Hence, although brain organoids still do not
recapitulate all the features of human cortical development,
further advancement of the technology and/or combination
with xenografting into animal models, are likely to pave the
way for an ever-increasing use of this model system to study
neurodevelopmental pathologies and human brain evolution.
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