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Abstract
Previous approaches for creating polygenic risk scores (PRSs) do not explicitly consider the biological or
developmental relevance of the genetic variants selected for inclusion. We applied gene set enrichment analysis to
meta-GWAS data to create developmentally targeted, functionally informed PRSs. Using two developmentally
matched meta-GWAS discovery samples, separate PRSs were formed, then examined in time-varying effect models of
aggression in a second, longitudinal sample of children (n= 515, 49% female) in early childhood (2–5 years old), and
middle childhood (7.5–10.5 years old). Functional PRSs were associated with aggression in both the early and middle
childhood models.

Introduction
A growing literature examines polygenic risk scores

(PRSs) formed from multiple single nucleotide poly-
morphisms (SNPs) as indices of genetic risk1–8. To date,
two approaches are most commonly used in forming these
scores. One approach is theoretically driven, in which a PRS
is formed from a small number of candidate SNPs selected
from genes proposed to be relevant to a trait or behavior9.
Another common approach is data-driven, and involves
forming a score which typically includes a large number of
SNPs drawn from a discovery genome wide association
study (GWAS), with all SNPs below a certain significance
threshold selected for inclusion6. Both approaches have
strengths and limitations. The first approach attempts to
elucidate biological pathways, but often relies heavily on a
few SNPs and candidate genes selected for proposed
functional relevance. The second approach leverages the
power of GWAS to detect small effects across the gen-
ome10, including the effects of SNPs in pathways

overlooked by candidate gene research. The GWAS
approach is blind to theory and it is possible to include large
numbers of SNPs in which some associations are driven
purely by chance. The strongest approach would therefore
integrate theoretical or actual knowledge of biological
processes determined from biological databases with sta-
tistically selected SNPs11–13. Such a biologically informed
approach could improve the predictive accuracy of PRSs
and explain biological pathways underlying genetic influ-
ences on behavior. An additional limitation is that research
using both approaches often derives PRSs from findings in
an initial discovery sample that is developmentally divergent
from the sample currently being tested (e.g., SNPs drawn
from a discovery GWAS of adults are used to test a PRS in a
childhood sample). This is problematic because genetic
influences can be dynamic across the lifespan and vary by
physical and socio-cultural environmental conditions14–17.
We examined a new approach for creating biologically

informed PRSs for aggression across childhood. We first
used a traditional data-driven approach to form two PRSs
for aggression from separate discovery meta-GWASs in
(a) early childhood and (b) middle-to-late childhood18.
Next, we used a bioinformatics tool, gene set enrichment
analysis (GSEA; 11–13), to inform selection of SNPs from
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the same meta-GWASs of childhood aggression in early
and middle childhood, respectively. Using GSEA we cre-
ated two biologically refined PRSs for each developmental
period. These PRSs included: (a) those SNPs that sig-
nificantly mapped to gene sets, and (b) those SNPs that
significantly mapped to gene sets and were functional.
Thus, we test the predictive utility of three PRSs for
aggression in each developmental period (one traditional
PRS and two GSEA-informed PRSs) with aggressive
behavior across early childhood (2–5 years of age), and
across middle childhood (7.5–10.5 years of age) using
separate time-varying effect models.

Genetic effects on childhood aggression
Genetic associations are typically viewed as static and

are tested in samples with wide age ranges. However,
seminal genetic and developmental theories propose that
genetic effects are developmental in nature and vary over
time14–17. Hence, there is increasing evidence of devel-
opmental genetic effects on aggressive behavior from
adoption19, twin20, and molecular genetic studies6,21.
Developmental studies illustrate that both the strength of
genetic effects, and the relevant genetic variants may vary
over the life course based on differences in environmental
context and genetic processes. Because genetic factors can
account for both stability and change in aggression across
childhood, developmentally specific indices of genetic risk
for aggression likely capture less variants accounting for
stability and would not be expected to replicate across
developmental periods22–24. However, this developmental
specificity has been less examined relative to PRSs.
Although a growing number of studies examine PRSs in

adulthood in relation to health outcomes1, substance use2,
and psychiatric outcomes8, relatively few studies have
examined polygenic risk in childhood. Even fewer have
considered aggression or other indices of externalizing
behavior during this period, so associated phenotypes are
also reviewed. In particular, polygenic risk for ADHD was
associated with comorbid ADHD and conduct problems
in 6–17 year olds3. Another study found that polygenic
risk for behavioral disinhibition was associated with
behaviorally disinhibited behavior and nicotine, alcohol,
and drug use in adolescence4. Some studies have found
developmental specificity in polygenic scores. Researchers
created a PRS for externalizing behavior based on an adult
GWAS of externalizing disorder, and found that it was
associated more strongly with externalizing behavior in
adolescence compared with young adulthood6. Other
researchers formed a PRS for behavioral disinhibition
based on SNPs identified through a review of the litera-
ture, including samples spanning from childhood to
adulthood7. This PRS was associated with impulsivity in
middle childhood but not late childhood. Finally, a PRS
based on a predominately child-based discovery sample

predicted both ADHD symptoms but also general psy-
chopathology25. Thus, evidence indicates that PRSs are
associated with indices of externalizing behavior and
psychopathology. However, these results are primarily in
adolescent samples with few studies in childhood and no
studies in early childhood. Early studies on polygenic
effects on aggression and related indices are informative
but are limited in the developmental conclusions that can
be drawn.
More broadly, whereas there has been some preliminary

examination of developmental specificity of polygenic
effects in which SNPs were drawn from adult samples, no
study has tested the developmental specificity of PRSs
based on GWASs that are developmentally matched to
the age in which they were originally tested. In addition to
these developmental limitations, the data-driven approach
and the theoretical approach to forming PRSs each have
their own conceptual and methodological challenges.

Creation of polygenic risk scores
Two complementary concepts underlie the use of PRSs:

the idea that complex traits and behaviors are polygenic
or affected by a number of genes, and the idea that these
outcomes are influenced in part by pleiotropy, in which
each gene affects a number of behaviors8,10. This frame-
work and converging evidence from GWASs illustrate
that most complex behaviors have an underlying poly-
genic architecture10, which has prompted a recent rise in
examination of PRSs in relation to psychopathological
outcomes. One method for forming PRSs has been to use
a theoretically or hypothesis-driven approach in selecting
SNPs from the literature based on known or assumed
associations with the trait or behavior of interest; the
theoretical derived approach is similar to the candidate
gene approach5. For example, SNPs have been chosen
based on the knowledge that they reside in genes that are
broadly related to a certain biological function and the
related behavior26. For some well-validated genetic effects
this is plausible and links to biological processes have
been established. However, in other cases the theoretical
approach is often predicated on theorized or ambiguous
biological relationships between genes and biological
processes, with no evidence that SNPs within the pro-
posed genes have any biological function. The theoretical
approach also suffers from the limitations associated with
candidate gene research, including multiple testing issues,
small effects, and a high likelihood of missing meaningful
associations27,28.
A second common method for generating PRSs uses a

data-driven, hypothesis-free approach to selecting SNPs.
Specifically, SNPs found to be associated with the out-
come of interest in a previous GWAS are combined into a
PRS, often composed of hundreds or thousands of SNPs5.
Commonly, multiple PRSs are formed using different
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significance thresholds for data-driven SNP selection (e.g.,
p < 0.01, p < 0.05, p < 0.10…p < 0.70), and in some cases all
SNPs from a GWAS are included in a score, weighted by
effect size. Genetic associations between each PRS and a
phenotype are then tested, often in one or more separate
replication samples, and the best score is considered the
one that explains the most variance in the outcome.
However, this approach raises concerns about multiple
testing and Type I error. Further, forming scores that
include data-driven SNPs that are not even nominally
associated in the original GWAS (i.e., p > 0.30 or greater),
or including all SNPs from a GWAS likely introduces
spurious variance. Such a GWAS-based approach may be
of little theoretical value and result in diluting a true
signal. Finally, scores formed using this GWAS-based
method have no biological relevance. By including SNPs
associated with a phenotype based on a broad statistical
threshold, it is difficult to make connections to a single, or
even multiple biological systems or processes. Indeed,
SNPs included in such scores may fall within regions of
genes and have no functional relevance at all.
Bioinformatics tools offer the possibility of applying

biological relevance to GWAS data in secondary analyses.
Many methods for utilizing these tools exist, but one
increasingly frequent approach being applied to GWAS
data is Gene Set Enrichment Analysis (GSEA; 11–13). A
gene set is a collection of genes that can represent a bio-
logical process (e.g., molecular, cellular, disease), but may
also represent gene networks and ontologies. Known gene
sets are available from numerous public databases, which
specify the genes in each set and the process they repre-
sent13,29,30. GSEA is a statistical procedures that provides
information about which gene sets a given gene, or mul-
tiple genes, belong to and what biological processes they
represent, based on information accessible from these
public databases. For a detailed walkthrough and recom-
mendations for running GSEA, see Mooney and
Wilmot12.
An innovative variation of GSEA is to statistically test

whether SNPs within genes are significantly associated
with a gene set. The broad steps involved in this type of
GSEA vary based on the software used; the following
description is based on iGSEA4GWASv231,32. First, the
user typically specifies which gene sets to load from
publicly available databases; either all gene sets or only
those related to certain databases or processes (e.g., gene
ontology). Next, the user provides a list of SNPs and their
respective p-values from association tests with a given
phenotype, such as those from a relevant discovery
GWAS. These SNPs are then mapped to genes based on
SNP and gene annotations from an online database (e.g.,
Ensembl Biomart) within the user-specified range
upstream and downstream33. Each gene is ranked based
on the number of SNPs in each gene and their respective

p-values. These genes (and their ranks) are then com-
pared with the available gene sets to calculate each set’s
enrichment score; that is, the proportion of the associa-
tion between the gene(s) and target gene sets compared
with the association between gene(s) outside gene sets12.
Finally, permutation tests apply a false-discovery rate
(FDR) to correct for multiple testing, gene set size, and
overlap in gene sets11,12. These procedures result in a list
of SNPs and their respective gene and the gene set to
which each gene was mapped. Thus, using GSEA can be
applied to a large group of SNPs from a GWAS to filter
and derive a smaller group of SNPs, which map to a gene
set. These SNPs can then be formed into a biologically
informed PRS.
A recent option in some GSEA software further refines

the list of SNPs that were successfully mapped to genes
and gene sets to those SNPs (or a SNP in LD proxy) that
are functional32. Functionality can be conferred by
annotation (e.g., a SNP resides in a coding region asso-
ciated with a protein or RNA product), regulatory regions
(e.g., a SNP resides in a region that controls the expres-
sion of other coding regions), or eQTL (e.g., a SNP is
associated with variation in expression of mRNA or
protein). Collectively, GSEA with functional SNP identi-
fication can be used to classify SNPs at two levels1: those
SNPs significantly mapped to a gene set, or2 those SNPs
both significantly mapped to a gene set and noted as
functional.
To date, GSEA is being used with GWAS data to

identify specific biological processes involved in disease
outcomes in the medical literature (e.g., lung function34),
with some emerging research on psychopathology out-
comes such as ADHD35. However, these emerging studies
typically examine single SNPs resulting from GSEA or the
effect of single pathways. To our knowledge, no study has
created PRSs composed of functional SNPs resulting from
GSEA. Thus, the current study is the first to create bio-
logically informed PRSs for psychopathological outcomes,
by first filtering meta-GWAS data for child aggression
through GSEA, then forming PRSs from SNPs that sig-
nificantly mapped to gene sets and for the subset of SNPs
with a known biological function.
An additional strength of the present study is that the

discovery meta-GWASs examined associations with child
aggression separately in early and middle childhood18,
allowing us to create separate PRSs targeted to each of the
two developmental periods. As previously mentioned,
most studies rely on GWAS in adult samples and result-
ing PRSs are tested in child samples, which is problematic
given genetic effects can vary with development. We
tested the current PRS in a replication sample of children
that developmentally aligns with those periods repre-
sented in the discovery meta-GWAS. In addition, we
tested genetic associations with childhood aggression
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using the most common measure used in the discovery
meta-GWAS (18; parent report of aggression on the Child
Behavior Checklist).
Greater alignment of sample characteristics and speci-

ficity in the developmental period and phenotypes can
help to uncover more precise genetic associations. To
address differences in genetic association across devel-
opment, we considered these associations using a time-
varying effect model (TVEM; 36) to explicitly model
change in the association between PRSs and aggression
across childhood.
Based on the discovery meta-GWASs18, we created a

total of six polygenic risk scores, all at the p < 0.05
threshold. For both developmental periods (early and
middle childhood), we used meta-GWAS data to create
three PRSs: one PRS formed from all SNPs at p < 0.05, one
PRS formed from SNPs that significantly mapped to gene
sets using GSEA at p < 0.05, and finally, one PRS formed
from the subset of SNPs that both significantly mapped to
gene sets and with biological function at p < 0.05. We
chose p < 0.05 as a relatively stringent threshold for a
number of reasons. First, it includes a smaller number of
markers that represent statistically significant associa-
tions. Second, by using a more stringent threshold it
excludes more chance associations, i.e., SNPs that may be
spuriously associated with aggression in the original meta-
GWAS. As stated in a recent article, selecting the optimal
p-value threshold is “analogous to a tuning parameter that
balances a signal and noise tradeoff. This tradeoff arises
because more significant p-value thresholds have higher
proportions of causal variants”37. This is in-line with our
current approach to identify functional variants which is
optimized by a more stringent statistical threshold.
To test the utility of these scores, we examined the

association of the three early childhood PRSs with
aggressive behavior from 2 to 5 years old in a time-varying
effect model. We separately tested a similar model in
middle childhood in which we examined the association
of the three middle childhood PRSs with aggressive
behavior from 7.5 to 10.5 years old in a time-varying effect
model. The replication sample was drawn from a long-
itudinal study of child development in which children
were randomly assigned to a family-based intervention
condition38.
We hypothesized that the PRS formed from all SNPs at

p < 0.05 would not be associated with aggressive behavior
given we were not looking to maximize variance explained
at multiple thresholds but rather chose a stringent
threshold a-priori. Whereas less stringent criteria may
explaining greater variance in a phenotype, it also likely
includes SNPs that are spuriously associated in the ori-
ginal meta-GWAS or those that have less biological
relevance. Further, we hypothesized that the PRS com-
posed of mapped SNPs would show small, albeit

significant, associations with aggression and that the PRS
composed of functional SNPs would show the most
robust associations with child aggression in the early
childhood and middle childhood models, respectively.
Further, given that PRS were created for unique devel-
opmental periods we expected this pattern of findings to
be replicated within both the early and middle childhood
models, respectively, but there would be no associations
between PRSs across developmental periods.

Online methods
Participants
Seven hundred and thirty one ethnically and racially

diverse, low-income families with 2-year-old children
were recruited between 2002 and 2003 from Women,
Infants, and Children Nutritional Supplement Programs
(WIC) at three sites in Pittsburgh, PA, Eugene, OR, and
Charlottesville, VA. Screening procedures were used to
recruit families of toddlers at high risk for conduct pro-
blems, based on socio-demographic risk, primary care-
giver risk, and toddler behavior problems. Participation
rates of those families invited to participate who qualified
by risk status were high across the three sites [83.2% total
(49% female); 84% in Eugene (n= 271), 76% in Charlot-
tesville (n= 188), 88% in Pittsburgh (n= 272)]. More than
two thirds of the families reported an annual income of
less than $20,000, with 24% of primary caregivers having
less than a high school education, 41% having a high
school diploma or general education diploma, and an
additional 32% having 1–2 years of more than high school
education. Primary caregivers (96% mothers) self-
identified as belonging to the following ethnic groups:
13% Latino, 28% African American, 50% European
American, 13% biracial, and 9% other groups (e.g., Native
American, Asian American). For more information about
sample characteristics, see ref. 38.
Families were randomly assigned to control or inter-

vention conditions after the baseline assessment at child
age 2 years, following completion of global ratings by the
lead examiner of the assessment. Those in the control
condition received WIC services as usual. Those in the
intervention condition had the opportunity to receive the
Family Check-Up (FCU39), following each of the assess-
ments from ages 2 to 10.5. The FCU is comprised of three
sessions: (1) assessment, where research staff and parents
completed questionnaires about the child’s behavior and
family factors, and parents and children were videotaped
taking part in structured and unstructured tasks (e.g., free
play, clean-up, and teaching tasks in early childhood;
discussion tasks with parents during middle childhood);
(2) initial interview, where intervention staff and parents
discussed their child’s strengths and challenges as well as
aspirations the parents had for their child; and (3) feed-
back, where intervention staff provided feedback to the
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parents based on the initial interview and assessments. All
families were re-contacted at child age 3, 4, 5, 7.5, 8.5, 9.5,
and 10.5, and 14 years (81% of the sample participated at
age 14) for home-based assessments. In terms of
engagement, 76% of families engaged at age 2, with over
90% of the families engaging in at least one session of the
FCU by child age 5. Adolescents who were genotyped at
age 14 years (86.7% of the sample who participated in
home visits at age 14; n= 515) comprise the sample for
the current study. Selective attrition analyses revealed no
significant differences between members of the initial
sample with no genetic data and those who were geno-
typed with respect to parental education, race, gender,
study site, child problem behaviors at age 2, temperament,
or parental depression.

Procedures
All assessments were conducted in the home at ages

2–14 with primary caregivers (96% biological mothers at
age 2), alternative caregivers when available (e.g., fathers,
grandmothers, other relatives involved in the child’s care),
and children. Primary caregivers completed ques-
tionnaires regarding the physical and socio-cultural
environment and children’s behavior. All study proto-
cols were approved by the university Institutional Review
Board, parental written consent was obtained for all
families (with assent obtained from children beginning at
age 14), and families were compensated for their time at
each age.
Participants provided saliva samples with Oragene kits

for genotyping during the age 14 home visit. RUCDR
Infinite Biologics at Rutgers University extracted and
normalized the DNA, and then genotyped the samples
using the Affymetrix Axiom Biobank1 Array. SNPs that
did not meet the criteria of Hardy-Weinberg equilibrium at
p < 10−6 and SNPs with a minor allele frequency less than
1% were removed. Also, any SNP or individual with a
missing data rate greater than or equal to 5% was removed
(no participants met this criteria). Using the software
PLINK, we reduced linkage disequilibrium (LD; correlation
among the SNPs) by screening out regions of long-range
LD and local LD using the sliding window procedure.

Measures
Polygenic risk scores
Polygenic risk scores were created in three steps. Each

step was completed separately for the early childhood
meta-GWAS of aggression and the middle childhood
meta-GWAS of aggression18. The first step involved
compiling the reference number and p-value for each SNP
from the respective meta-GWASs18.
Second, SNPs and their respective p-values were

entered into I-GSEA4GWASv2, a web-server that per-
forms GSEA with functional analyses of SNPs31,32. This

GSEA program uses a two-step method in which each
gene is ranked based on the number of SNPs and their
respective p-values. Genes (and their ranks) are then
compared with the available gene sets to calculate each
gene sets enrichment score. This software uses a com-
petitive test that compares the proportion of the asso-
ciation between the gene(s) and target gene sets compared
with the association between gene(s) outside gene
sets12,13,31,32. In line-with recommended best practices,
the following GSEA specifications were made: SNPs were
mapped to genes at 20 kb upstream and downstream from
each gene; all gene sets from BioCarta, GO, and KEGG
databases were included; and gene set size was restricted
to 10–200 genes12,13,29–32. At present these options are
considered industry standards12,13 and ensure that SNPs
within or near genes are included and that the most up-
to-date gene sets from all possible sources are referenced.
Also by including gene sets ranging from 10–200 genes
we captured the majority of sizes without being too
restrictive or liberal.
Finally, permutation tests are applied at an FDR of p <

0.25. For the present analyses, only gene sets with a FDR
< 0.05 were retained, which is considered “high con-
fidence” in mapping30. SNPs within these gene sets were
then extracted at two levels: (a) those that significantly
mapped to genes within a gene set, and (b) the subset of
those SNPs that were mapped and functional. This pro-
cedure was carried out for both meta-GWASs, resulting
in mapped and functional SNPs in early and middle
childhood.
Finally, PRSs were formed using PLINK40. For all PRSs

SNPs were coded additively and unit weighted and were
formed at the p < 0.05 threshold. This represents a rela-
tively stringent threshold for SNP inclusion. Whereas less
stringent criteria may explain greater variance in a phe-
notype, it also likely includes SNPs that are spuriously
associated in the original meta-GWAS or those that have
less biological relevance.
Three PRSs were formed for early childhood and three

PRSs were formed for middle childhood. Within each
developmental period, PRSs were formed from all SNPs
(all-PRS), only those SNPs that significantly mapped to
gene sets using GSEA (mapped-PRS), and only the subset
of SNPs that both significantly mapped to gene sets and
with a known biological function (functional-PRS). All
polygenic scores were Z-score transformed for interpret-
ability. The number of SNPs within each score can be
found in Table 1.

Population admixture
We conducted a Principal Components Analysis of all

autosomal SNPs to represent population admixture using
PLINK. We extracted the first 20 components, with the
first component (PC1) having an eigenvalue of 28.84 and
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differentiating European-American and Latino groups
from African-American groups, with most biracial parti-
cipants falling in the middle. The second component
(PC2) had an eigenvalue of 5.62 and differentiated non-
Latino participants (European and African American)
from Latino participants. The remaining components had
eigenvalues ranging from 1.45 to 1.21 and were excluded
from these analyses.

CBCL Aggression, 2–10
Primary caregivers completed the Child Behavioral

Checklist 1½–5 (CBCL41) at the age 2, 3, and 4 visits, and
the CBCL 6–1842 at the age 5, 7.5, 8.5, 9.5, and 10.5
assessments. Parents rated each item on a 3-point scale
(0= not true, 1= somewhat or sometimes true, 2= very
true or often true). The aggression subscale was used in
the current analyses, which assesses children’s aggressive
behavior in early childhood (e.g., “Destroys own things”)
and middle childhood (e.g., “Cruel, bullying, or mean to
others”). Internal consistency was good across early
childhood (αs range 0.85 to 0.90) and middle childhood
(αs range 0.91 to 0.92).

Covariates
Covariates included gender (females= 0, males= 1;

M= 0.51, SD= 0.50), study site location (Eugene and
Charlottesville compared to Pittsburgh indexed with two
dummy codes), and the first two ancestry principal
components, PC1 and PC2. Cumulative risk was also
included as a covariate to account for severe environ-
mental influences. This score which was a count-based
index created at age 2 composed of seven familial and
demographic risk factors. The risk factors included par-
ental substance use, parental education, single adult in the
home, overcrowding in the home, parental convictions,
neighborhood danger, and poverty. As the study involved
an intervention sample, intervention condition was also
controlled for in the main analyses.

Statistical analyses
We examined all relevant statistical assumptions

inherent to the application of TVEM (e.g., multivariate
normality) and affirmed a priori. All variables were nor-
mally distributed43 except for PC2, which was square root
transformed. TVEM were tested using a time-varying
effect model macro in SAS v9.444. TVEMs are an exten-
sion of linear regression but make no parametric
assumptions about the shape (e.g., linear, quadratic) or
rate of change over time in associations36,44. Rather, using
a regression framework time-varying effect models esti-
mate the shape of change directly from observations by
estimating regression coefficients and 95% confidence
intervals between time-varying predictors and a long-
itudinal outcome as a function of continuous time.

Significant effects are indicated when the 95% confidence
interval around a regression coefficient does not include
zero. Therefore, in the current analyses the strength of
associations with aggression over time are modeled
without any user specification of their shape. At present
no formal tests of power exist for TVEM models. How-
ever, recent methodological analyses suggest that 100
participants with 10–25 observations per participant is
sufficient for reasonable results, and that with more par-
ticipants fewer observations would be needed36. In the
current sample we had fewer observations (assessed at
ages 2, 3, 4, 5, 7, 8, 9, and 10 years) but greater sample size
(N= 515). To a degree, power within TVEM models can
be observed by the width of the 95% confidence interval,
which is dependent on sample size. This can be observed
in the current analyses by widening of the interval at the
lower and upper ages due to less clustering of observa-
tions. Thus, the present findings that occur relative to
narrower confidence intervals are likely the most well-
powered and reliable.
In the current models we included standardized PRSs as

time-varying predictors and covariates as time-invariant
effects in-line with TVEM recommendations36,44. In the
early childhood model we examined the early childhood
PRS containing all SNPs at p < 0.05, the PRS containing
mapped SNPs, and the PRS containing functional SNPs as
time-varying predictors of aggression from ages 2–5 years
old (actual ages ranged from 24–72 months). Child gen-
der, study site, cumulative risk, intervention condition,
and PC1 and PC2 were included as covariates. Within this
time-varying effect model, a normal distribution was
specified using the P-spline method. A similar time-
varying effect model was examined for middle childhood
using the age-appropriate PRSs as predictors of aggression
from ages 7.5–10.5 (actual ages ranged from
89–142 months), including the same covariates and
model settings. Where any significant effects were evi-
dent, we subsequently examined the genetic association
separately in the intervention and control groups.

Results
Means, standard deviations, and correlations are pre-

sented in Table 1. As expected because of SNP overlap,
the early childhood PRSs were significantly correlated
with each other. Likewise, the middle childhood PRSs
were strongly associated with each other. However, none
of the early childhood PRSs were correlated with the
middle childhood PRSs. There was only one significant
correlation between any PRS and aggression at any age;
the functional-PRS was positively associated with age 5
aggression. It should be noted, the middle childhood PRSs
were correlated with PC1 (although the functional-PRS
had the lowest correlations), which could indicate
uncontrolled ancestral variation in the meta-GWAS
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findings. All analyses removed this variance in the PRS
scores by controlling for PC1 and PC2 in all analyses.

Early childhood
Mean levels of aggression across ages 2–5 are presented

in Fig. 1a. The all-PRS and mapped-PRS were not sig-
nificantly associated with aggression at any age. Con-
versely, the functional-PRS (Fig. 1b) was related to
aggression and the change in strength of association from
age 2 to 5 years of age was cubic. These findings represent
the magnitude of regression coefficients with 95% con-
fidence intervals as a function of age. Significant asso-
ciations are illustrated by the glowing line which indicates
the 95% confidence interval does not include zero. From
∼3 to 4 years, and 5.3 to 6 years, the functional-PRS was
significantly associated with aggression. Based on the
significant effect of the functional-PRS, we examined the
same predictors in separate models for the control group
and intervention group. Both groups showed a cubic
shape. There were no significant effects in the interven-
tion group, but in the control group a significant asso-
ciation between the functional-PRS and aggression was
apparent from ∼5.3 to 6 years. Additionally, as a post-hoc
comparison we examined functional-PRS and mapped-
PRS at p < 0.01 thresholds. The functional-PRS showed a
similar association with aggression from ∼3.5 years to
5.75 years, helping to validate the current results.

Middle childhood
Mean levels of aggression across ages 7.5 to 10.5 are

presented in Fig. 2a. The all-PRS and mapped-PRS were
not significantly associated with aggression at any age.
The functional-PRS was associated with aggression and
change in the strength of the association had a negative
quadratic shape from 7.5 to 10.5 years (Fig. 2b). Sig-
nificant effects are highlighted by the glowing portions of

lines which indicate where the 95% confidence interval
does not include zero. From ∼8.75 to 10 years, the
functional-PRS was significantly associated with aggres-
sion, as indicated by the 95% confidence interval bands.
Based on the effect of the functional-PRS, we examined
separate models for the control and intervention groups.
Both groups presented a mixture of cubic and negative
quadratic shapes indicating that results using the full
sample reflect both subsamples, but no significant effects
were observed in either group. Additionally, as a post-hoc
comparison we examined functional-PRS and mapped-
PRS at p < 0.01 thresholds. The mapped-PRS was asso-
ciated with aggression at ∼9.0 years old, helping to vali-
date the current results.

Discussion
To date, the majority of studies in developmental and

mental health fields have examined GWAS-based PRSs
without considering biological relevance in the selection
of SNPs. The present study is the first to create biologi-
cally informed PRSs from meta-GWAS data by using
GSEA to identify SNPs significantly mapped to gene sets,
and those mapped SNPs that were also functional.
Broadly, functional-PRSs in both early and middle child-
hood were associated with aggression, but not the all-
PRSs or mapped-PRSs. It should be noted that only one
association was observed in zero-order correlations, the
functional-PRS was associated with age 5 aggression,
which was also reflected in the TVEM model. Additional
findings likely reflect the use of time-varying effect
models. Time-varying effect models depict associations
between the PRSs and behavior over time based on
individual time points, whereas correlations do not cap-
ture heterogeneity within age or change in behavior.
In addition to this innovative approach, this study also

drew SNPs from a meta-GWAS that facilitated creation of

40

45

50

55

60

65

2 3 4 5 6

C
B

C
L 

Sc
or

e

Age Age

Levels of Early Childhood 
Aggression Across Ages 2 - 5

-4

-2

0

2

4

6

R
eg

re
ss

io
n 

C
oe

ff
ic

ie
nt

Early Childhood Aggression 
Predicted by Functional-PRS Across 

Ages 2 - 5

2 3 4 5 6
 A  B

Fig. 1 Mean levels of aggression across early childhood (a) and associations between the functional polygenic risk score and early childhood
aggression (b)

Elam et al. Translational Psychiatry           (2019) 9:212 Page 8 of 12



separate PRSs for two distinct age groups. Surprisingly,
the early and middle childhood PRSs were not associated
with each other, indicating largely unique genetic effects
on childhood aggression across the two developmental
periods. Polygenic risk scores were then examined in
relation to aggression in the approximate age ranges
reflected in the original meta-GWASs. Further, we
examined the CBCL aggression subscale, which was the
most commonly used measure in the meta-GWASs.
Finally, we utilized time-varying effect models to examine
developmental genetic effects on aggression over child-
hood. Previous developmental genetic theory proposes
that genetic effects increase with age because of gene-
environment correlations45,46, but the current study
illustrates that genetic main effects over time may be
more nuanced. Results are discussed relative to develop-
mental genetic effects in early and middle childhood.
Previously, a large body of research has identified

genetic effects on aggression in early childhood from twin,
adoption, and candidate gene research47–49. The present
findings add a degree of specificity but given the novelty of
the current approach should be viewed as preliminary and
warrant replication. The functional-PRS in early child-
hood was associated with aggression from 3 to 4 years old
and from ∼5 to 6 years old. Proposedly, the effect of the
functional-PRS on aggression from 3 to 4 years may be
related to normative trajectories of aggression in early
childhood. In particular, aggression increases early in life,
peaking from age 2 to 3 which stabilizes but is high from 3
to 4 before declining from 4 to 5 years50,51. During this
early age children have yet to fully learn to regulate their
emotions and behaviors, and temperamental proneness to
frustration, negative affect, and low inhibitory control can
lead greater anger and aggression in difficult situa-
tions52,53. These trait-level processes are in part biologi-
cally based on developing dopamine, serotonin, and

neuroendocrine systems, which may originate from
genetic influences54. These processes may then be exa-
cerbated by environmental pressures when 3–4 year olds
face increasing rules and expectations yet still have limited
regulatory capacities. It should be noted that the CBCL
aggression subscale assesses other disruptive behaviors
besides physical aggression, including anger, frustration,
and problems with inhibitory control41,42. Thus, the
resurgence of the effect of the functional-PRS during 5–6
years of age may also reflect broader disruptive behavior
in difficult situations. Biologically based variations in
neurotransmitter systems in the face of environmental
pressure may contribute to greater levels of aggression54.
During 5–6 years of age children face numerous transi-
tions including school entry, asserting greater autonomy
in parent-child interactions, and spending more time with
peers55. Seminal research theorizes that individual dis-
positions are most pronounced during transitions, and
relatedly, that genetic effects are accentuated in unstruc-
tured situations56,57. Thus, the current effects observed
during 3–4, and 5–6 may be in part be driven by biolo-
gical and genetic variation under pressure during devel-
opmental transitions when the children begin to have
independence (3–4) and during the transition to formal
schooling (5–6). Although these patterns of association
are theoretically supported they warrant replication.
It is interesting that there was evidence of an association

in the control group but not the intervention group. This
may indicate that the intervention buffered genetic risk
for aggression. However, TVEM does not support tests of
significance across models and as testing intervention
effectiveness was not the aim of the current study this
issue was not pursued. Importantly, this preliminary trend
is consistent with previous research findings suggesting
that psychosocial intervention effects during early child-
hood can buffer genetic risk for aggression58,59.
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As mentioned, these developmental effects may also be
explained by variation in biological processes. A list of all
gene sets represented by the functional SNPs in early
childhood and middle childhood can be found as part of
the supplemental materials. For the 67 early childhood
functional SNPs, each SNP was represented on average in
5 gene sets, for a total of 354 gene sets, 218 which were
unique and 136 which were overlapping. For the 66
middle childhood functional SNPs, each SNP was repre-
sented on average in 4 gene sets, for a total of 272 gene
sets, 129 of which were unique and 143 which were
overlapping. As an illustrative example the SNP
rs3744215 was identified in the GSEA within the gluta-
mate receptor activity gene set (GO 0008066, 29) and was
subsequently included in the early childhood functional
PRS. This SNP is a missense variant located in the glu-
tamate ionotropic receptor NMDA type subunit 2C
(GRIN2C) gene and shows elevated presence in the
frontal cortex and amygdala33. This gene affects glutamate
receptor activity related to the excitatory neuro-
transmitter (NT) glutamate. This NT has been associated
with aggression in animal models60, but also serves as a
metabolic precursor for the inhibitory NT GABA which
has also been associated with aggression61. Both gluta-
mate receptors62 and variants of the GRIN2 gene63 have
been associated with neurodevelopmental deficits in early
childhood. Thus, it may be that early variation in this SNP
and gene contribute to variation in glutamate receptor
activity, and subsequent aggression in early childhood.
While this illustrates a single biological pathway repre-
sented by this PRS, many other possibilities were also
represented in the PRS such as serotonin and G-protein
coupled receptor activity which have been implicated in
human and rodent models of aggression61,64. This illus-
trates a potential strength of the present method; facil-
itating identification of biological pathways. However, it
should be noted that even though biologically related
SNPs were captured in the current PRS this does not
guarantee causal effects on aggression as there are
numerous environmental and biological processes that
may regulate and modify behavior.
During middle childhood, literature suggests that

aggression is fairly stable and slightly decreasing65,66.
Previous research demonstrates robust and stable genetic
effects on aggression during this developmental per-
iod22,67. In the current study, the functional-PRS was
associated with aggression from ∼8.75 to 10.5 years,
which bears replication. Hypothetically, these genetic
effects may arise from biologically based temperamental
predispositions and emerging gene-environment correla-
tions17,54. For example, it may be that genetic predis-
positions for aggression lead to evocative and selection
effects, via biological processes, in which more aggressive
children both evoke greater aggression (an evocative

gene-environment correlation) and affiliate with more
aggressive peers (an active evocative gene-environment
correlation), which collectively contribute to greater
aggression in the child44. A complementary explanation is
again that during developmental transitions genetic
effects may be accentuated56,57, and thus during the
beginning of middle childhood new social experiences and
early puberty may serve to instigate greater expression of
individual’s biologically based dispositions. Similarly to
early childhood, glutamate and G-protein receptor and
signaling pathways were identified via gene sets indicating
possible biologically linked processes in child aggression.
Study limitations should also be considered. Results

pertain to a high-risk sample so they may not generalize
to higher SES populations. In high-risk populations
genetic effects may be more pronounced68,69. Also, a
small proportion of individuals chose not to engage
initially or at later waves, despite high retention, which
may indicate some evidence of selection bias. However,
selective attrition analyses revealed no significant differ-
ences between members of the initial sample with no
genetic data and those who were genotyped with respect
to parental education, race, gender, study site, child pro-
blem behaviors at age 2, temperament, or parental
depression. An additional limitation is that the primary
caregiver (primarily mothers) was the sole reporter for
child outcomes, raising the possibility of reporter bias,
however parents have shown to be valid reporters of child
psychopathology70. Finally, genetic associations had small
effect sizes on child aggression. This is in line with pre-
vious genetics literature using polygenic scores (e.g., 6,
21), and highlights the need for efforts to improve crea-
tion of PRSs.
In conclusion, this study illustrates how the current

PRSs may be more predictive than previous methods for
forming PRSs that include a greater number of SNPs,
utilize higher statistical thresholds, and do not filter for
biological function. GSEA and other bioinformatics tools
can be used to inform selection of genetic variants in
forming PRSs to offer more precise tests of genetic
influences on behavior. Findings also have important
developmental implications for future genetic research
that uses GWAS data to form PRSs.
In particular, predictive accuracy may be compromised

where sample demographics diverge between the dis-
covery GWAS sample and the sample in which the
resulting PRSs will be tested71. Based on the present
findings and other developmental literature on PRSs,
developmentally specific hypotheses should also be made
when testing PRSs with attention to the ages represented
in the originating GWAS. More optimally, PRSs should
be developmentally targeted, with the developmental
period of the GWAS matched to the sample in which the
PRS is to be tested. In addition, genetic associations
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should be tested with a phenotypic measure that aligns
or is associated with that considered in the
original GWAS.
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