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Abstract 

 

This paper describes a probabilistic case detection system (CDS) that uses a Bayesian network 

model of medical diagnosis and natural language processing to compute the posterior 

probability of influenza and influenza-like illness from emergency department dictated notes 

and laboratory results.  The diagnostic accuracy of CDS for these conditions, as measured by 

the area under the ROC curve, was 0.97, and the overall accuracy for NLP employed in CDS 

was 0.91.    
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1 Introduction 
 

In disease surveillance, the objective of case detection is to notice the existence of a single 

individual with a disease.  We say that this individual is a case of the disease.  The importance of 

case detection is that detection of an outbreak typically depends on detection of individual cases.
1
 

In current practice, cases are detected in four ways: by clinicians, laboratories, screening programs 

and computers. Some of these methods of case detection employ case definitions. A case 

definition is a written statement of findings that are both necessary and sufficient to classify an 

individual as having a disease or syndrome.  More commonly, however, the determination of 

whether an individual has a disease (or syndrome) is left to the expert judgment of a clinician. 

Clinicians detect cases as a by-product of routine medical and veterinary care. The strength of case 

detection by clinicians is that sick individuals seek medical care. Further, clinicians are experts at 

diagnosing illness, which is fundamental to case detection. However not every sick individual sees 

a clinician. Also, clinicians may not correctly diagnose every individual they see. Clinicians may 

forget to report cases or fail to report cases in the time frame required by law. 
2, 3

  Even when a 
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clinician reports a case, the reporting may occur relatively late in the disease process. With some 

exceptions (e.g., suspected meningococcal meningitis, suspected measles, suspected anthrax), 

clinicians report cases only after they are certain (or almost certain) about the diagnosis.  

A variant of clinician detection is the sentinel clinician approach.
4-9, 10 

  A sentinel clinician reports 

the number of individuals he or she sees who match a case definition, e.g., for Influenza-Like 

Illness (ILI).  The strength of sentinel clinician case detection is its relative completeness of 

reporting. Its limitations include that some cases may not be reported and those cases that are 

reported may be delayed due to its being a manual process.
11

   

Another variant of clinician detection is drop-in surveillance. Drop-in surveillance refers to the 

practice of asking physicians in emergency rooms to complete a form for each patient seen during 

the period surrounding a special event.
12-19

  The clinicians record whether the patient meets the 

case definition for one or more syndromes of interest. The strength of drop-in surveillance (and 

sentinel clinician surveillance) is that it detects sick individuals on the day that they first present 

for medical care.  A limitation is that it is labor intensive.  

Laboratories detect cases also as a by-product of their routine operation. Laboratories often 

become aware of cases of notifiable diseases either before or at the same time as the clinician who 

ordered the test. The strength of laboratories-as-case-detectors is that they are process oriented; 

therefore, they may report cases more reliably than busy clinicians.  A weakness is that there is not 

a definitive diagnostic test for every disease, and there may not be a test with 100% sensitivity for 

a disease. Additionally, a laboratory cannot detect a case unless a sick individual sees a clinician, 

who must suspect the disease and order a definitive test.  Lag times for the completion of 

laboratory work can be substantial. 

Screening programs detect cases by interviewing and testing people during a known outbreak to 

identify additional cases (or carriers of the disease).  Screening is most often used for contagious 

diseases in which it is important to find infected individuals to prevent further infections.  

Finally, computers detect cases by applying case definitions or other algorithmic approaches to 

routinely collect clinical data.  The earliest use of automatic case detection was for hospital 

infections,
20-26

 followed by notifiable conditions
27-30

  and syndromes
31-43

.  

The case definitions used in case detection may be represented either using Boolean logical 

statements or probabilistic statements.  Boolean approaches include the clinical findings that are 

both necessary and sufficient to classify a case, such as a case of ILI. The statements include AND 

and OR operations. On the other hand, a probabilistic case definition states evidence that supports 

or refutes a diagnosis using conditional probabilities and provides probability thresholds above 

which the diagnosis is considered either confirmed, likely, or suspected, e.g., a  confirmed case of 

a Disease might be defined as P(Disease | Data) > 0.99. 

In this paper, we describe and evaluate an automated case detection system (CDS) that uses 

Bayesian network models of diagnosis to represent case definitions.  It first derives the likelihood 

of a disease given the symptoms, signs, and findings (Data) for a patient, namely, P(Data | 

Disease). It then combines such a likelihood with a prior probability distribution of disease, 

P(Disease), to derive the posterior probability of disease given the Data, P(Disease | Data).   

A Bayesian network is a compact representation of a joint probability distribution among the 

nodes in the network. When a Bayesian network is used to represent the medical diagnosis of a 

disease, the variables (nodes) include the diagnosis and findings that a physician would use when 
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diagnosing the disease, including significant negative findings that the physician might count 

against some disease being present. For example, negative lab tests that usually have high 

sensitivity can help physicians rule out a diagnosis.
1, 44, 45

  Similarly, positive results of tests with 

high specificity can help rule in a diagnosis.
44, 45

   The relevance of Bayes rules to medical 

diagnosis was first introduced theoretically by Ledley and Lusted in 1959 
46

 and was used early on 

in a diagnostic expert system by Homer Warner in 1961.
47

 Developers of diagnostic expert 

systems continue to use the same methods as did Warner, as well as more complex Bayesian 

methods.  

Several theoretical advantages of Bayesian case detection over Boolean case detection include: (1) 

it can use the prior probability of a disease, (2) it can represent the sensitivity and specificity of 

tests and findings for a disease, (3) it can represent an expert’s knowledge of disease diagnosis in 

the form of conditional probabilities, (4) it parallels a physician’s diagnosis of reasoning under 

uncertainty by computing posterior probabilities of diseases, and (5) it assists in decision making 

when new information becomes available. 

The current state-of-the-art automated CDSs are (1) electronic laboratory reporting (ELR) systems 

that are based on laboratory reports, and (2) syndromic surveillance systems that are based on chief 

complaints.
43, 48

  However, the two systems fall into two extremes on diagnostic accuracy and 

timeliness spectrums. In regards to diagnostic accuracy, electronic lab reporting is at one extreme 

of generally being very accurate, whereas syndromic surveillance is generally less so.  Regarding 

timeliness, syndromic surveillance can be immediately available at the time of a patient visit, 

whereas an ELR can be delayed for days from the time a lab was drawn.
49

 

CDS is a component in the probabilistic, decision-theoretic disease surveillance and control 

system described in an accompanying paper in this issue of the journal.  

Bayesian networks have not only been used for case detection but also for outbreak detection 

during the past decade. As a representative example, Mnatsakanyan et al.
50

 developed Bayesian 

information fusion networks that compute the posterior probability of an influenza outbreak by 

using multiple data sources, such as aggregate counts of emergency department (ED) chief 

complaints that are indicative of influenza and counts of relevant ICD-9 codes from outpatient 

clinics. As another example, Cooper et al.
51-53

 developed the PANDA system and its extensions 

that derive the posterior probabilities of CDC Category A diseases (including anthrax, plague, 

tularemia, and viral hemorrhagic fevers) using ED chief complaints and patient demographic 

information as evidence. 

In this paper, we use the diagnoses of influenza and influenza-like-illness as examples, although 

the approach is general and can be applied to other notifiable conditions or syndromes. 

 

2 Methods 
 

This section describes (1) the Bayesian CDS, and (2) an evaluation of its diagnostic accuracy for 

the diagnosis of influenza and ILI. 

2.1 Bayesian CDS  

The Bayesian CDS includes (1) a natural language component that process free-text clinical 

reports and chief complaints, (2) disease models in the form of diagnostic Bayesian networks, (3) a 
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Bayesian inference engine, and (4) a time-series chart reporting engine (Figure 1).  The software 

components, including the inference engine, are implemented in Java. 
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Figure 1: CDS and its relationship to other components in a probabilistic, decision-theoretic 

system for disease surveillance and control. CDS currently operates on clinical data from the 

UPMC Healthcare System. The blue boxes represent software components and hexagons represent 

models. 

 

CDS sits between clinical data and ODS, an outbreak detection and characterization system.  A 

component called Phoenix, described in an accompanying paper, receives data from an electronic 

medical record (EMR) system via HL-7 messaging, converts any proprietary codes to LOINC and 

SNOMED codes, stores the data, and processes requests from CDS. In general, CDS passes the 

likelihoods P(Dataj | Diseasei) to ODS for each modeled disease i and for each patient j in the 

monitoring period. For example, for a given patient, CDS would send the probability P(Data | 

influenza) to ODS, where Data denotes the symptoms, signs, and other findings of that patient. An 

accompanying paper in this issue describes ODS in more detail. In addition, CDS can output the 

posterior probabilities of modeled diseases for end users, as shown in Figure 1. 

Our design criteria for CDS included computational efficiency sufficient to keep up with the 

volume of new patient data in a large healthcare system, and portability.
54

 CDS uses the 

computationally efficient junction tree algorithm
55, 56

 for Bayesian inference, which is also used in 

popular commercial Bayesian inference engines such as Hugin® and Netica® .  

We have operated CDS since 2009.
57

 It generates daily reports of influenza and ILI and sends them 

to the Allegheny County Health Department (ACHD) by way of email (Figure 2). The daily report 



Probabilistic Case Detection for Disease Surveillance Using Data in Electronic Medical Records 

5 
Online Journal of Public Health Informatics * ISSN 1947-2579 * http://ojphi.org * Vol.3, No. 3, 2011 

includes a graph of the daily counts of expected influenza cases, which is derived as 

∑   (                         ) 
   . It also includes in the graph a daily time-series plot of 

Boolean-based ILI cases, influenza test orders, and influenza positive cases. Note the Boolean ILI 

counts in the daily chart are based on the Boolean case definition (Fever) AND (Cough OR Sore 

Throat), where the symptoms or findings are extracted by NLP.  

Public health officials in the ACHD have indicated that they find CDS to be useful. The charts 

shown in Figure 2 illustrate three areas of impact on practice at ACHD.
57

  First, CDS provided 

ACHD with daily updates instead of weekly reports from sentinel physicians. Second, ACHD 

could provide the charts to local media on a regular basis.
58

 Finally, ACHD reduced staff time 

since they no longer had to manually compile ILI reports from sentinel ILI reports (2 days of work 

for each weekly report). 

 

 

 

Figure 2: Influenza and ILI summary chart for February 15, 2010 (showing data from Aug. 1, 

2009 to Feb. 14, 2010) in a daily email report to the Allegheny County Health Department. It 

comprises daily fever counts (from NLP), accumulated influenza posterior probability counts from 

Bayesian CDS, ILI counts (from NLP), and influenza (flu) test positive counts. 

2.1.1 Disease models 

One of the core components in CDS is a knowledge base that contains disease models represented 

as Bayesian diagnostic networks. A disease model can include symptoms, signs, diagnosis, 

radiology findings, and laboratory test results (which we refer to as all-data), or it may use selected 

data, such as laboratory results, in which case we refer to the network as lab-only. CDS has one 

Bayesian diagnostic network (disease model) per disease.  
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CDS uses an existing Bayesian network design tool named GeNIe
59

 as a front end graphical user 

interface for disease model editing. GeNIe, which was developed at the University of Pittsburgh, 

can be downloaded from the Web
60

 for free.  GeNIe can convert proprietary Bayesian network file 

formats used by Hugin® and Netica® (two of the most popular commercial Bayesian inference 

engines) into an XML file that can be then fed into CDS, allowing CDS users to import networks 

already developed by other groups. Note that the GeNIe tool is only needed when a user wishes to 

revise or create a Bayesian network. Figure 3 shows the GeNIe graphical user interface that allows 

an physician expert in clinical infectious disease  to construct the influenza diagnostic model 

shown in right panel. 

For portability, CDS disease models use standard terminology. For variables in a disease model 

representing symptoms and signs, we use concept unique identifiers (CUIs) from the UMLS.  Both 

NLP tools in CDS-- the well-known Medical Language Extraction and Encoding system 

(MedLEE) 
61

, and a locally developed Topaz, use CUIs to represent extracted symptoms and 

findings; note that we used Topaz results in this paper. For laboratory tests, we use Logical 

Observation Identifiers Names and Codes (LOINC).  

2.1.1.1 Lab-only Diagnostic Bayesian Network  

Figure 3 shows a lab-only diagnostic model for B. anthracis.  The laboratory tests in this model 

come from the Reportable Condition Mapping Tables (RCMT).
62

 This disease model comprises 

33 nodes that represent 32 lab tests for B. anthracis.  The names and results of the tests are 

represented using the Logical Observation Identifiers Names and Codes (LOINC) and 

Systematized Nomenclature of Medicine (SNOMED) coding systems. The parent node, labeled 

Anthrax, denotes whether the diagnosis of anthrax equals True or False.  The 32 child nodes 

denote, for each laboratory test, whether the result was positive, negative, or unknown (because it 

has not been obtained).  The structure of this particular model indicates that we are assuming that 

the tests are independent, given the diagnosis.  Any dependencies among tests can be modeled in 

hidden nodes or by the inclusion of direct arcs among the nodes that denote tests. 

We can apply this network to report cases in a manner similar to current electronic laboratory 

reporting systems.  The conditional probability distributions in the network represent the 

sensitivity and specificity of each laboratory test for the disease anthrax.  Let R denote the results 

of a set of laboratory tests for a given individual. We can perform inference on the network to 

derive P(anthrax | R). If that probability is above a threshold Tanthrax, then the case is reported. If 

the specificities of the tests are assumed to be 1, then any positive test result will lead to a 

probability of anthrax of 1, which will result in the reporting of the case if Tanthrax < 1. More 

generally, however, the sensitivities and specificities of the tests will not be 1, and in turn the 

probability of anthrax given test results will not be 0 or 1. Thus, in general, there is a need for case 

reporting that is based on probabilistic modeling and inference. 
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Figure 3: Anthrax lab-only diagnostic network. A Bayesian network model for detection of 

anthrax cases using only laboratory results. 

 

2.1.1.2 All-data Diagnostic Bayesian Network for Influenza 

We developed an all-data influenza/ILI diagnostic Bayesian network that comprises flu symptoms, 

findings, and lab tests defined in the RCMT (Figure 4). The symptom and sign nodes and their 

corresponding conditional probabilities were initially built by author JD, who is board-certified in 

infectious diseases. The network comprises a total of 368 nodes including 29 symptom nodes, 337 

lab test nodes, one test-order node, and one disease node (influenza), which can take the values 

“true” or “false”.  The 337 lab nodes are those tests defined as reporting conditions in RCMT.
63

 

Note that an NLP algorithm extracts symptoms and signs from free-text clinical reports, and they 

are used to set the values of the finding nodes.    
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Figure 4: Influenza all-data diagnostic network. A Bayesian network model for diagnosing 

Influenza. The network utilizes data from free text clinical reports, orders for laboratory tests and 

the results of laboratory tests. 

2.1.2 Parameter Estimation 

Each model we built has two sets of parameters: expert assigned conditional probability tables 

(CPTs) and machine learning estimated CPTs. We have access to a large corpus of EMRs through 

the UPMC health System. We implemented a variation of the well-known Expectation 

Maximization-Maximum-A-Posteriori (EM-MAP) algorithm
56

 for learning network parameters 

from data. The EM-MAP is implemented in Java. The algorithm is able to learn network 

parameters by combining the data with prior knowledge (e.g., from our infectious disease experts 

and the literature), while being tolerant of missing values in the data.  

2.1.3 Natural Language Processing 

We developed an NLP application called Topaz that determines the presence, missing, or absence 

(negation) of 51 findings (e.g., signs, symptoms, and diagnoses) that are expected in influenza and 

shigellosis cases, or that are significant negative findings. Note that CDS will not assign any value 

for a variable in a disease model when the variable identified by Topaz has a value missing. Topaz 

comprises three modules. Module 1 looks for relevant clinical conditions and annotates all 

instances of those conditions in the report. Module 2 determines which annotations are negated, 

historical, hypothetical, or non-patient. Module 3 integrates the information from the annotations 

in the first two steps to assign values of present, absent (negated), or missing to each clinical 

condition for each patient.  

2.1.4 User Interface/Data Viewer 

Figure 5 is a screen capture of a data viewer, which gives a patient care-episode view of the data 

for internal development purposes and serves as a prototype for a health department end-user 
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interface. It displays all data associated to a patient’s visit, including extracted symptoms and signs 

from free text reports, lab findings and CDS output (posterior probabilities).  

 

 

Figure 5. Case review web page. A web page that allows users to review disease posterior 

probabilities (CDS output) and patient data including lab reports, free text reports. The posterior 

probabilities are displayed in a descending order with the highest disease probability on the top. 

2.1.5 Event Driven Process 

An event driven process is a software process that defines how a system reacts to an event.
64

 We 

define an event as data that triggers the execution of CDS, such as a laboratory test report or an ED 

report for a patient’s visit. When an event is available to CDS, CDS computes the posterior 

probabilities of the patient.  

Since a patient’s visit may have multiple events (such as chief complaint, ED reports, laboratory 

test reports) that are available at different points in time, a disease’s posterior probability may 

change over time. For example, a lab report followed by a free text discharge report could raise the 

influenza posterior probability from 0.5 to very close to 1 when the lab report states an influenza 

test is positive. Note that a free-text ED report could be available a few hours after the patient visit 

whereas a lab report could take days. 
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To obtain an accurate patient diagnosis, when an event becomes available, CDS retrieves all 

patient events across different types up to the current time of the patient visit by using a data 

linkage key. In particular, CDS uses the visit number as the data linkage key.   

2.2 Evaluation of Bayesian CDS 

We evaluated Bayesian CDS in two ways: 1) case detection performance for one illness (i.e., 

influenza) from processing one data type, namely ED reports, and 2) NLP (Topaz) performance 

for extracting findings from ED reports.  

2.2.1.1 Diagnostic Bayesian Network Study 

For the study of case detection performance, we evaluated two influenza (all-data) Bayesian 

networks: 1) an expert influenza network constructed by a board-certified infectious disease 

domain expert, who assessed both the structure and parameters and the Bayesian network, and 2) 

an EM-MAP trained influenza network. Note that both networks share the same structure but 

different parameters.  

2.2.1.1.1 Training and Testing Data for Case Detection Evaluation 

In this study, we used ED reports from UPMC Heath System to measure the CDS performance for 

influenza case detection.  All the ED reports used for evaluation were de-identified by an honest 

broker using the De-ID tool.
65

 The training data comprised 182 influenza cases and 47,062 

non-influenza cases. The test data consisted of 58 influenza positive cases and 522 non-influenza 

cases. All cases were selected randomly from EMRs in the UPMC HS. 

We considered a patient to have influenza if: 1) a polymerase chain reaction (PCR) test was 

positive, and 2) the linked ED reports had the keywords of flu, influenza, or H1N1 in the 

Impression section or Diagnosis section.  

We considered a patient to not have influenza if: 1) no flu tests were ordered, and 2) the ED visits 

were during July 1, 2010 through August 31, 2010 for the training data, and during July 1, 2011 

through July 31, 2011 for the test data.  

2.2.1.1.2 Evaluation Metrics 

The evaluation metrics used in this study include: ROC curves, area under a ROC curve 

(AUROC), probability of data given each of two diagnostic Bayesian networks as stated in the 

above paragraph, and the average speed for processing one case.  

2.2.1.2 Topaz (NLP) Evaluation 

We randomly selected 201 ED reports with flu PCR tests positive. The gold standard for 

evaluating Topaz was experts’ annotation. Three board certified physicians annotated the ED 

reports for a set of 51signs, symptoms, and other findings that are expected in influenza and 

shigellosis cases. To ensure reliability, all the three annotators first went through training sessions; 

when the measured kappa value was above 0.8, they started annotating the 201 ED reports. 

The evaluation metrics used in this study include kappa values, accuracy, and recall and precision.  
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3 Results 
 

This section provides the evaluation results. 

3.1 Diagnostic Bayesian Networks 

Figure 6 shows the two ROC curves for the expert model and the EM-MAP trained model for the 

total 580 test cases. The expert model has AUROC 0.956 (95% CI: 0.936-0.977) and the EM-MAP 

model has AUROC 0.973 (95% CI: 0.955-0.992).   

We measured the computational speed for computing the posterior probabilities and EM-MAP 

training. The average run time for computing influenza posterior probability is 15 milliseconds per 

case. The speed performance was measured on a desktop computer with Intel
®
 Core™ 2 Quad 

CPU Q9550, 2.83GHz and 4GB RAM. 

 
 

Figure 6. ROC curves for two influenza Bayesian networks. The blue line (with dots) 

represents the influenza model with parameters assigned by a domain expert and the pink line 

(with dashes) represents the influenza model with parameters learned by EM-MAP algorithm.   

 

3.2 Topaz  

Table 1 summarizes the performance of Topaz. The kappa value between the gold standard and 

Topaz was 0.79. The overall accuracy including absent (negated), present, and missing findings 

was 0.91 and the accuracy for only absent and present was 0.77.   
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Table 1. Topaz performance 

 

 Recall Precision 

Absent (negated) 0.82 (1022/1249) 0.84 (1022/1220) 

Present 0.73 (1109/1526) 0.84 (1109/1319) 

Missing 0.96 (7205/7476) 0.93 (7205/7712) 

 

4 Discussion 
 

The results of the evaluation of the two influenza Bayesian networks (expert model and EM-MAP 

model) show high diagnostic accuracy. Additionally, augmenting the expert’s conditional 

probability distributions used in the model with empirical data about the distributions improves the 

diagnostic accuracy for influenza case detection. 

The performance of the Topaz natural language processing algorithm for influenza findings 

approaches that of medical experts, as indicated by the kappa value 0.79 and overall accuracy of 

91%.  

A limitation of the evaluation study of Bayesian diagnostic models is as follows. Although we 

obtained non-influenza cases from patient visits that occurred in the summer and were not 

associated with an order for an influenza test, it is possible that there are influenza cases in the 

non-influenza training and testing data.  However, any such contamination would be expected to 

bias the experiment against finding good diagnostic accuracy. 

We also note that our current influenza model (Figure 4) should be modified to distinguish 

between Influenza A and B, which we plan as future work. 

Of the four types of case detection discussed in the introduction—clinician, laboratory, screening, 

and computerized—the principle role of Bayesian CDS is in computerized (automatic) case 

detection. CDS can be used to augment laboratory, clinician, and screening case detection systems. 

To assist clinical diagnosis, the differential diagnoses output by CDS can be fed back directly to 

clinicians, or to other computer systems that provide decision support to clinicians at the point of 

care—reminding clinicians of diagnoses, notification requirements, vaccination, and history items 

to obtain or laboratory tests to order.   

For laboratory-based case detection, the lab-only approach for Bayesian case detection discussed 

in this paper is a superset of current ELR approaches, which has the advantage of being able to 

represent the uncertainty associated with lower sensitivity or specificity tests. 

For screening, the ability of the Bayesian CDS to represent a probabilistic case definition could be 

a significant advantage for emerging diseases that have case definitions that may be evolving or 

are dependent on constellation of symptoms and signs. 

 

5 Conclusion 
 

We developed an automatic case detection system that uses Bayesian networks as disease models 

and NLP to extract patient information from free-text clinical reports.  The system computes 
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disease probabilities given data from electronic medical records. The system is in use for influenza 

monitoring in Allegheny County, PA, automatically reporting daily summary charts to public 

health officials.
57

  The Bayesian CDS can function as a probabilistic ELR system or an all-data 

case-detection system. CDS is capable of integrating diagnostic information about a patient with 

prior probabilities of diseases to compute a probabilistic differential diagnosis that can be used in 

clinical decision support. The case probabilities derived by CDS can also be used as a key 

component for a system that detects and characterizes outbreak diseases in the population; a 

companion paper in this issue discusses a system called ODS that does just that.   
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