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ABSTRACT
Recently, medium-chain triglycerides (MCTs)
containing a large fraction of lauric acid (LA) (C12)—
about 30%—have been introduced commercially for
use in salad oils and in cooking applications. As
compared to the long-chain fatty acids found in other
cooking oils, the medium-chain fats in MCTs are far
less likely to be stored in adipose tissue, do not give
rise to ‘ectopic fat’ metabolites that promote insulin
resistance and inflammation, and may be less likely to
activate macrophages. When ingested, medium-chain
fatty acids are rapidly oxidised in hepatic mitochondria;
the resulting glut of acetyl-coenzyme A drives ketone
body production and also provokes a thermogenic
response. Hence, studies in animals and humans
indicate that MCT ingestion is less obesogenic than
comparable intakes of longer chain oils. Although LA
tends to raise serum cholesterol, it has a more
substantial impact on high density lipoprotein (HDL)
than low density lipoprotein (LDL) in this regard, such
that the ratio of total cholesterol to HDL cholesterol
decreases. LA constitutes about 50% of the fatty acid
content of coconut oil; south Asian and Oceanic
societies which use coconut oil as their primary source
of dietary fat tend to be at low cardiovascular risk.
Since ketone bodies can exert neuroprotective effects,
the moderate ketosis induced by regular MCT ingestion
may have neuroprotective potential. As compared to
traditional MCTs featuring C6–C10, laurate-rich MCTs
are more feasible for use in moderate-temperature
frying and tend to produce a lower but more sustained
pattern of blood ketone elevation owing to the more
gradual hepatic oxidation of ingested laurate.

TRIGLYCERIDES SYNTHESISED FROM
COCONUT OIL
Standard medium-chain triglycerides (MCTs)
are produced by hydrolysing coconut oil and
esterifying the fatty acids shorter than lauric
acid (LA) (C12) with glycerol; the resulting
triglycerides are rich primarily in caprylic
(C8) and capric (C10) acids. The exclusion
of LA reflects the fact that this fatty acid has
high commercial value as a precursor for

antibacterial pharmaceuticals (eg, mono-
laurin) and other worthwhile compounds.
Coconut oil is one of the richest available
sources of LA—constituting about half of its
total fatty acid content—and so is used to
produce LA; the shorter chain fats are hence
by-products of this process and then are used
for production of MCTs. As contrasted with
coconut oil, standard MCTs are consistently
fluid at room temperature; their utility for
cooking applications, however, is limited by
their low smoke point, which makes them
unsuitable for use in frying.
Recently, however, manufacturers have

started to produce a novel type of MCT that
contains a high fraction of LA—typically
30%. A tablespoon of this MCT—containing
14 g of fat—is said to contain 12 g of
medium-chain fatty acids (lauric 4.45 g, cap-
rylic 3.35 g, capric 4.00 g) and 1 g of unsatu-
rates (presumably largely oleic acid). Hence,
the content of longer chain saturated fatty
acids is extremely low and of questionable
physiological significance.

METABOLIC FATES OF MEDIUM-CHAIN
TRIGLYCERIDES
The fatty acids featured in MCTs are charac-
terised by a limited potential for storage as
triglycerides. This reflects the fact that they
cannot be employed for de novo synthesis of
diacylglycerol or phosphatidic acid.1 2

However, they can act as substrates, to a
limited extent, for diacylglycerol acyltransfer-
ase; laurate is more active in this regard than
the shorter chain fatty acids.1 2 This means
that medium-chain fatty acids can participate
in triglyceride synthesis when other longer
chain fatty acids are present to generate
diacylglycerol.
The half life of ingested medium-chain

fatty acids (MCFAs) tends to be short not
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only because the capacity for their storage is less than
that for longer chain fats but also because they can
enter mitochondria efficiently without preliminary
esterification to carnitine.3 Conversion of fatty acyl-
coenzyme As to fatty acyl-carnitines in the cytoplasm
(via carnitine palmitoyltransferase-I—CPT-I) is a
process tightly regulated in regard to metabolic need.
When cellular glucose availability is ample, CPT-I is
inhibited by malonyl-coenzyme A; insulin activity also
inhibits this enzyme.4 Ketosis only develops when the
liver is glycogen depleted and insulin levels are low, such
that CPT-I activity is disinhibited.5 Under these circum-
stances, fatty acids in the portal circulation have rapid
access to the inner matrix of mitochondria in hepato-
cytes; their subsequent oxidative degradation gives rise
to a glut of acetyl-coenzyme A, some of which will be
converted to ketone bodies that enter the circulation. A
bolus dose of MCTs likewise can give rise to ketone pro-
duction in hepatocytes—even in the context of ample
glycogen availability—because medium-chain fatty acids
can stream into hepatic mitochondria efficiently, where
they are rapidly converted either to ketone bodies or to
CO2.

3 (Insulin/glucagon balance, however, can still par-
tially regulate ketone production as it can influence the
activity and expression of the rate-limiting enzyme for
ketone body production, HMG-coenzyme A synthetase;6

hence, a somewhat higher proportion of medium-chain
fatty acids may be converted to ketone bodies during
fasting metabolism).
The high ketogenicity of C8 and C10 further reflects

the fact that, as they are poorly incorporated into chylo-
microns but are relatively soluble, they tend to enter the
portal circulation directly after absorption (as opposed
to the lymphatics) and hence have rapid access to the
liver. Rodent studies show that LA has a higher propen-
sity to be absorbed via the lymphatics (presumably
reflecting its greater capacity for incorporation into tri-
glycerides), and so its access to the liver is delayed.7 8

Logically, this delay should imply that the rise of ketone
bodies after laurate ingestion is delayed and that a some-
what lower proportion of this fatty acid (as compared to
C8 or C10) is ultimately converted to ketones; the latter
can be deduced from the fact that a sudden glut of
hepatic mitochondrial acetyl-coenzyme A is more pro-
ductive of ketones than a small sustained rise. Data of
Veech cited by Newport do indeed indicate that,
whereas administration of a bolus of standard MCT oil
produces a large rise in plasma ketones that returns to
baseline levels within about 3 hours, ingestion of intact
coconut oil (in which laurate is the chief MCFA) leads
to a delayed and less prominent rise in ketone bodies.9

HEALTH ADVANTAGES OF MEDIUM-CHAIN FATTY ACIDS
The fact that MCFAs are less efficiently stored than
other fatty acids and are highly prone to oxidative
metabolism once ingested, implies that they have a short
half life in the body and are unlikely to promote obesity

via direct storage in adipocytes.10 Moreover, bolus inges-
tion of MCTs tends to trigger thermogenesis, presum-
ably reflecting the fact that a glut of acetyl-coenzyme A
production in mitochondria tends to trigger protective
uncoupling mechanisms.11–13 Studies in rodents and
humans indicate that, when diets are fed containing
comparable amounts of MCTs or longer chain fats, the
MCT diets are less obesogenic.14 Hence, it has been pro-
posed that MCTs should be used as an oil source by
people who are attempting to control their weights.13

The adverse impact of excessive fatty acid exposure on
health—especially long-chain saturated fatty acids—is
attributable not only to modulation of serum lipid profile,
or promotion of obesity but also to the production of
‘ectopic fat’ metabolites within tissues that interfere with
insulin signalling and promote inflammation.15–19

Ceramide and diacylglycerol appear to be prominent in
this regard. The production of these metabolites tends to
be greater in obese people with an insulin-resistant fat
depot, especially when they consume diets rich in fat and
carbohydrates; indeed, these metabolites are suspected to
mediate many of the adverse effects of metabolic syn-
drome.20–23 It is notable that MCFAs are incapable of
giving rise to such metabolites.1 2 A number of studies in
rats or humans have found that, as contrasted with long-
chain fatty acids, diets featuring MCFAs are less likely to
induce insulin resistance24–27—albeit a few studies con-
clude otherwise.28

Longer chain saturated fatty acids have the ability to
upregulate activation of macrophages/microglia via pro-
motion of toll-like receptor signalling and by supporting
ceramide synthesis.29–32 Conceivably, this helps to ration-
alise the many epidemiological studies associating meta-
bolic syndrome and long-chain saturate-rich diets with
increased risk for neurodegenerative disorders and
atherogenesis.33 34 Although MCFAs cannot give rise to
palmitate and have not promoted macrophage activation
in some studies, other researchers report that, especially
under low-serum conditions, LA can activate macro-
phages by promoting signalling via certain toll-like
receptors—TLR2 heterodimers and TLR4 homodi-
mers.29 35 Also, macrophages can express a receptor for
MCFAs, GPR84, which can exert a pro-inflammatory
effect.36 Whether these in vitro findings are pertinent to
orally administered MCFAs is unclear; several rodent
studies find that orally administered MCTs to rodents
exert anti-inflammatory effects in certain contexts.37–39

With respect to lipoprotein metabolism, diets rich in
LA tend to raise low density lipoprotein (LDL) levels,
but they have a greater proportional effect on high
density lipoprotein (HDL) levels, such that the total
cholesterol/HDL cholesterol level declines; in fact,
laurate is reported to have a greater depressive effect on
this prognostically significant ratio than other fats.40 A
meta-analysis of clinical feeding trials found that,
whereas replacing 1% of dietary energy as carbohydrate
with LA raises apoB non-significantly by 5.6 mg/L, it
raises apoA-1 by a significant 13.8 mg/L.40 It is notable
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that, in South Seas cultures in which coconuts (and
hence LA) are the predominant dietary fat source, car-
diovascular disease tends to be relatively rare.41–44

Hence, as a dietary oil, MCTs or laurate-rich MCTs
can be recommended for the following reasons: they are
unlikely to exacerbate obesity; they do not give rise to
ectopic fat metabolites that are key mediators of the
pathogenicity of metabolic syndrome; and their impact
on serum lipid profile appears to be relatively benign,
despite an increase in total cholesterol.

NEUROPROTECTIVE POTENTIAL OF KETONE BODIES
Moreover, ketone bodies have neuroprotective poten-
tial,45–49 and a diet rich in MCTs represents a convenient
means to raise plasma ketone body levels without the
undertaking the inconvenience and monotony of severe
carbohydrate restriction.50 51 Although the rise in plasma
ketones achieved with MCTs is much less dramatic than
that which can be achieved during prolonged fasting or
carbohydrate avoidance, there is reason to suspect that it
may be sufficient to aid cognitive function in elderly
patients with minimal cognitive dysfunction or early
Alzheimer’s disease (AD).9 Indeed, small studies in
rodents, dogs and humans support this conclusion, and a
MCT preparation has been approved as a ‘medical food’
for use in AD.52–60 Decreased neuronal usage of glucose
in brain regions affected in AD is a key feature of pre-
symptomatic AD,61–63 and it has been postulated that, by
serving as an alternate source of biochemical energy for
brain neurons, ketone bodies may alleviate a neuronal
‘energy deficit’ in AD, thereby improving cognitive func-
tion.64 65 Ketone bodies also have the potential to aid pro-
duction of acetylcholine and hence may address the
cholinergic deficit in AD.66 67 Whether moderate ketosis
achievable with MCTs might have an impact on the fun-
damental pathogenic process in AD and other prominent
neurodegenerative conditions, perhaps delaying or
slowing the progression of these syndromes, is not yet
clear; in any case, symptomatic benefit in AD—as seen
with cholinesterase inhibitor drugs—appears likely with
an adequate intake of MCTs. (Administration of so-called
‘ketone esters’, which can replicate the ketone levels seen
during fasting, may be required to achieve the fullest neu-
roprotective benefits of ketone bodies).68 69

When attempting to use dietary MCFAs to promote
ketogenesis for health reasons, laurate-rich MCTs may
have the advantage that they combine the rapid-acting
C8 and C10 with the more delayed-acting LA; hence,
they might be expected to produce a more sustained
and moderate rise in plasma ketone bodies, as opposed
to the large episodic rises and falls which ingestion of
standard MCTs would tend to produce.

USING LAURATE-RICH MCTS: PRACTICAL
CONSIDERATIONS
The main drawback with standard MCTs as a cooking oil
is the fact that it is not considered safe or appropriate

for use in frying owing to a low smoke point. (‘Smoke
point’ refers to the temperature at which triglycerides
degrade, producing soot and off-flavours.) Laurate-rich
MCTs have the advantage that they can be expected to
have a somewhat higher smoke point and hence can be
employed in home pan frying and sauteeing (albeit not
deep frying). Hence, laurate-rich MCTs appear to be
appropriate for use in most home cooking applications.
When taken as a bolus—for producing ketones, for

example—too high a dose of MCTs tends to produce diar-
rhoea and gastrointestinal (GI) upset. It seems logical to
expect that this effect will be less notable with laurate-rich
MCTs, which are closer in structure to coconut oil.
Anecdotally, there appear to be few if any reports of GI
intolerance when laurate-rich MCTs are used as a
cooking oil.
Perhaps the chief hindrance to the widespread appli-

cations of laurate-rich MCTs is cost; current retail price
for a litre is about US$32. Presumably, the fast food
industry and mass food manufacturers would not be
interested in such a pricey oil; but motivated consumers
who have a reasonable income could choose to afford it
for home cooking applications.
A whole-food, fully plant-based diet, with no added

oils, accompanied by standard pharmacotherapy, has
been found to have remarkable efficacy for preventing
further vascular events in patients with advanced coron-
ary disease.70–72 Getting patients to abstain from all
animal products is a difficult enough proposition, and
the additional proscription of added oils makes it all the
harder as fat has a major impact on flavour. The possibil-
ity that laurate-rich MCTs might be used safely with such
regimens is worthy of consideration.
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