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Abstract: The fast development of multi-drug resistant (MDR) organisms increasingly threatens
global health and well-being. Plant natural products have been known for centuries as alternative
medicines that can possess pharmacological characteristics, including antimicrobial activities.
The antimicrobial activities of essential oil (Calli oil) extracted from the Calligonum comosum
plant by hydro-steam distillation was tested either alone or when combined with lawsone, a
henna plant naphthoquinone, against MDR microbes. Lawsone showed significant antimicrobial
activities against MDR pathogens in the range of 200–300 µg/mL. Furthermore, Calli oil showed
significant antimicrobial activities against MDR bacteria in the range of 180–200 µg/mL, Candida
at 220–240 µg/mL and spore-forming Rhizopus fungus at 250 µg/mL. Calli oil’s inhibition effect
on Rhizopus, the major cause of the lethal infection mucormycosis, stands for 72 h, followed by an
extended irreversible white sporulation effect. The combination of Calli oil with lawsone enhanced
the antimicrobial activities of each individual alone by at least three-fold, while incorporation of both
natural products in a liposome reduced their toxicity by four- to eight-fold, while maintaining
the augmented efficacy of the combination treatment. We map the antimicrobial activity of
Calli oil to its major component, a benzaldehyde derivative. The findings from this study
demonstrate that formulations containing essential oils have the potential in the future to overcome
antimicrobial resistance.
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1. Introduction

The emergence of MDR microbial strains with the lack of development of new antimicrobials
endangers the future management of infectious diseases. Thus, alternatives to traditionally-used
antibiotics can be of great benefit in combating MDR pathogens. Compounds isolated from natural
sources are alternatives to many drugs, including those with antimicrobial activity, mainly because
of their reduced side effects compared to synthetic drugs [1]. Natural compounds can be considered
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as privileged structures functionally evolved for the purpose of interaction with specific targets.
Many attempts have been made to investigate the potential role of plant extracts and their major
active compounds to overcome antibiotic resistance. For example, naphthoquinones, including
lawsone (2-hydroxy-1,4-naphthoquinone), are promising antibacterial and antifungal compounds [2–4].
Lawsone is the principal active ingredient of the Henna plant [5,6]. Although lawsone is known as an
antimicrobial compound, it’s effect is not consistent when tested against different microbes including
Candida and spore-forming fungi [7]. Furthermore, lawsone is not stable and shows a degradation
behavior over time [8].

Essential oils are also products of the secondary metabolism of aromatic plants. Essential oils are
known to possess different biological properties including antimicrobial activities [9]. Essential oils
are multi-component products and, hence, can exert greater antimicrobial activity compared to their
major components alone [9]. Due to the multi-component nature of essential oils, antimicrobial drug
resistance is less likely to be developed since these oils affect numerous targets in the pathogen [10].
Consistent with this hypothesis, clinical resistance to essential oil has not yet been reported [11].
Essential oils exert their antimicrobial effect mainly by affecting membrane permeability [12] due to
their lipophilic nature [13].

Calligonum comosum is an aromatic plant reported as a source of essential oil [14]. Although
the plant extract shows antimicrobial activities [15–17], its antimicrobial properties have never been
attributed to its oil content. Furthermore, the broad spectrum antimicrobial activities and the active
components of the oil extracted from United Arab Emirates (UAE) Calligonum plant have never
been investigated.

In this study, we investigated the antimicrobial activities of lawsone from Henna and Calli
oil from Calligonum comosum, alone or in combination, against several pathogens known for their
resistance to antibiotics. We also investigated the toxicity of these plant extracts with or without
liposome preparations. We report on the broad-spectrum activity of both lawsone and Calli oil against
methicillin-resistant Staphylococcus aureus (MRSA), Gram-negative MDR bacteria, Candida species
(including C. auris), and the spore-forming Rhizopus fungus, the major cause of the lethal infection
mucormycosis. We also show the enhanced activity of combination of lawsone and Calli oil against
these priority pathogens. Finally, liposome preparations of lawsone and Calli oil are less toxic to
mammalian cells.

2. Results

2.1. The Anti-Microbial Effect of Lawsone and Calli Oil

2.1.1. Lawsone is a Potential Antimicrobial Candidate

The potential antimicrobial activity of lawsone was evaluated against several priority MDR
pathogens. Lawsone showed strong cidal activity against Gram-positive MRSA and Gram-negative
bacteria including MDR Pseudomonas aeruginosa, Klebsiella pneumoniae carbapenemase (KPC)-producing
bacteria, extensively drug-resistant Acinetobacter baumannii, and E. coli (Figure 1A). Similarly,
lawsone demonstrated cidal activity against Candida species including C. albicans (SC5314), C. krusei,
C. glabrata, C. tropicalis, and the MDR C. auris (CAU09) (Figure 1B). The growth inhibition was
concentration-dependent with a range of 100–200 µg/mL being sufficient to significantly inhibit the
growth of all tested bacteria spp. Lawsone at 200 µg/mL caused ~90%, 88%, 92%, 94% and 96%
inhibition of E. coli, MRSA, KPC-producing bacteria, A. baumannii, and P. aeruginosa, respectively
(Figure 1A) compared to a 100% inhibition due to 0.7–10 µg/mL colistin for Gram-negative bacteria
and 3 µg/mL vancomycin for MRSA (Supplementary Table S1). On the other hand, 200 µg/mL
lawsone resulted in ~60% inhibition of the growth of all tested Candida spp. (Figure 1B) compared to
a 100% inhibition due to 1–3 µg/mL ketoconazole (Supplementary Table S2). The effective MIC of
lawsone for bacteria strains and Candida was 220–240 and 250–300 µg/mL, respectively (Supplementary
Tables S1 and S2).
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Figure 1. Antibacterial and anti-Candida effects of lawsone. The effect of different lawsone 
concentrations on (A) Gram-negative and Gram-positive bacteria, and (B) different Candida spp. 
Lawsone at 200 µg/mL caused significant inhibition of the growth of all tested bacterial spp. and 
Candida strains down to ~>90% and 60%, respectively. The data display the mean of the percentage of 
microbial growth at different concentrations ± standard error of the mean. 

2.1.2. Calligonum plant essential oil (Calli oil) showed potential antimicrobial activities 

Calli oil isolated from Calligonum comusum (Arta) plant by hydro-steam distillation showed broad 
spectrum antimicrobial activities. At a concentration of 160 µg/mL, the extracted oil demonstrated 
66–71% inhibition of all tested bacterial spp. compared to untreated controls (Figure 2A). Similarly, 
Calli oil inhibited the growth of all tested Candida spp. including C. albicans (SC5314), C. krusei,  
C. glabrata, C. tropicalis, and C. auris (CAU09) (Figure 2B). The inhibition was also concentration- 
dependent with 160 µg/mL significantly reducing the yeast growth by ~60%. The MIC of Calli oil 
was determined as 180–200 µg/mL for the bacterial strains and 220–240 µg/mL for Candida spp. 
(Supplementary Tables S1 and S2). 

The amount of Calli oil extracted from Calligonum plant was calculated as 0.4 µg oil/gm plant 
(dry weight) and the major components were 4-(1-methylethyl)-benzaldehyde (cuminaldehyde, 
50%), 2-caren-10-al (11.3%), and 1-(1,5-dimethyl-4-hexenyl-4-methyl-benzene (curcumene, 10%) 
identified by GC-MS analysis (Figure 3). 

Figure 1. Antibacterial and anti-Candida effects of lawsone. The effect of different lawsone
concentrations on (A) Gram-negative and Gram-positive bacteria, and (B) different Candida spp.
Lawsone at 200 µg/mL caused significant inhibition of the growth of all tested bacterial spp. and
Candida strains down to ~>90% and 60%, respectively. The data display the mean of the percentage of
microbial growth at different concentrations ± standard error of the mean.

2.1.2. Calligonum Plant Essential Oil (Calli Oil) Showed Potential Antimicrobial Activities

Calli oil isolated from Calligonum comusum (Arta) plant by hydro-steam distillation showed broad
spectrum antimicrobial activities. At a concentration of 160 µg/mL, the extracted oil demonstrated
66–71% inhibition of all tested bacterial spp. compared to untreated controls (Figure 2A). Similarly, Calli
oil inhibited the growth of all tested Candida spp. including C. albicans (SC5314), C. krusei, C. glabrata,
C. tropicalis, and C. auris (CAU09) (Figure 2B). The inhibition was also concentration-dependent with
160 µg/mL significantly reducing the yeast growth by ~60%. The MIC of Calli oil was determined
as 180–200 µg/mL for the bacterial strains and 220–240 µg/mL for Candida spp. (Supplementary
Tables S1 and S2).

The amount of Calli oil extracted from Calligonum plant was calculated as 0.4 µg oil/gm plant
(dry weight) and the major components were 4-(1-methylethyl)-benzaldehyde (cuminaldehyde, 50%),
2-caren-10-al (11.3%), and 1-(1,5-dimethyl-4-hexenyl-4-methyl-benzene (curcumene, 10%) identified by
GC-MS analysis (Figure 3).
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Figure 2. Antibacterial and anti-Candida effects of Calli oil isolated from Calligonum comosum grows
in the UAE. The effect of different Calli oil concentrations on (A) Gram-negative and Gram-positive
bacteria and (B) different Candida spp. Calli oil at 160 µg/mL caused significant inhibition of the
growth of all tested bacterial spp. and Candida strains down to ca. >60%. The data display the mean of
the percentage of microbial growth at different concentrations ± standard error of the mean.

Molecules 2017, 22, 2223 4 of 13 

 

 

Figure 2. Antibacterial and anti-Candida effects of Calli oil isolated from Calligonum comosum grows in 
the UAE. The effect of different Calli oil concentrations on (A) Gram-negative and Gram-positive 
bacteria and (B) different Candida spp. Calli oil at 160 µg/mL caused significant inhibition of the 
growth of all tested bacterial spp. and Candida strains down to ca. >60%. The data display the mean of 
the percentage of microbial growth at different concentrations ± standard error of the mean. 

 

Figure 3. GC-MS analysis of Calli oil. The analysis showed that 4-(1-methylethyl)-benzaldehyde, 
2-caren-10-al and 1-(1,5-dimethyl-4-hexenyl-4-methyl-benzene were the three major components of 
Calli oil. Y axis represents the abundance of the peaks. 

  

Figure 3. GC-MS analysis of Calli oil. The analysis showed that 4-(1-methylethyl)-benzaldehyde,
2-caren-10-al and 1-(1,5-dimethyl-4-hexenyl-4-methyl-benzene were the three major components of
Calli oil. Y axis represents the abundance of the peaks.
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2.2. The Synergistic Effect of both Lawsone and Calli Oil

2.2.1. Calli Oil Augmented the Antimicrobial Activities of Lawsone

Preliminary study by mixing lawsone and Calli oil showed antimicrobial activities that exceeded
the activity of each product alone. Briefly, a mixture of 50 µg/mL lawsone and 40 µg/mL Calli oil
(for a total of 90 µg/mL) caused ≥90% growth inhibition of all tested bacterial strains (Figure 4A).
Similarly, a mixture of 75 µg/mL lawsone and 60 µg/mL Calli oil (for a total of 135 µg/mL) caused
>90% growth inhibition of all tested Candida spp. (Figure 4B). The MIC of the combination preparation
against the tested bacteria, or Candida ranged between 100–150 µg/mL, a ~50% reduction in the MIC
values of each product alone (Supplementary Tables S1 and S2).
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2.2.2. Calli Oil Enhanced the Antifungal Activities of Lawsone against Rhizopus Fungus 

Due to the enhanced efficacy of combination of Calli oil and lawsone against MDR bacteria and 
Candida, the combined preparation was tested against spore-forming fungus, Rhizopus delemar. R. delemar 
PDA cultures were treated with either lawsone, or Calli oil, at concentrations 100, 200, and  
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Figure 4. Antibacterial and anti-Candida effects of combined treatment using Calli oil and lawsone.
The effects of different concentrations of combined substances on (A) Gram-negative and Gram-positive
bacteria and (B) different Candida spp. Combination of lawsone and Calli oil showed a synergistic
effect on MDR microbes with 90 µg/mL and 135 µg/mL caused more than 90% inhibition of tested
bacterial spp. and Candida spp., respectively. The data display the mean of the percentage of microbial
growth at different concentrations ± standard error of the mean.

2.2.2. Calli Oil Enhanced the Antifungal Activities of Lawsone against Rhizopus Fungus

Due to the enhanced efficacy of combination of Calli oil and lawsone against MDR bacteria
and Candida, the combined preparation was tested against spore-forming fungus, Rhizopus delemar.
R. delemar PDA cultures were treated with either lawsone, or Calli oil, at concentrations 100, 200,
and 250 µg/mL. Similarly, R. delemar cultures were treated with combined Calli oil/lawsone at
concentrations 50, 100 and 150 µg/mL. All cultures were incubated for 48 h in the dark at 37 ◦C
followed by measuring inhibition zone of growth using disc diffusion assay. Lawsone, Calli oil, and
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their combined preparation caused significant inhibition zone of growth corresponding to ~18 ± 0.75,
23 ± 0.5, and 20 ± 0.43 mm in diameter, respectively (Figure 5). The antimicrobial effects of tested
substances on Rhizopus fungus was extended for more than seven days, where the oil alone caused the
appearance of white spores at the zone of inhibition, lawsone showed less sporulated thinner hyphae
and the combined treatment caused less number of white spores, but thinner hyphae (Figure 5).
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Figure 5. The antifungal effect of lawsone, Calli oil and combined Calli oil/lawsone on R. delemar, a
spore-forming fungus at different concentrations. The effect was measured visually by disc diffusion
assay and under light microscope. The experiment was repeated at least three times.

2.3. The Effect of Liposome Preparation on the Antimicrobial Activity of Lawsone and Calli Oil

Liposome preparation enhanced activities, reduced the toxicity of both natural products, and
promoted the stability of lawsone.

2.3.1. Liposome Preparation Enhanced the Antimicrobial Activity of Natural Product Employed

Liposomes made of lawsone and Calli oil by the ether injection method caused significant
growth inhibition to bacteria and Candida similar to their combination treatment (Supplementary
Tables S1 and S2). Measuring the amount of liposome-incorporated Calli oil (by GC-MS) and lawsone
(by LC-MS) indicated that ~87% of the combined oil was included (calculated by measuring the
cuminaldehyde content of the oil) and only ~76% of lawsone was incorporated in the final liposomes
preparation. These results indicate that Calli oil combined with lawsone with or without liposome
preparation enhanced the antimicrobial activities over each natural product alone by ca. three-fold
versus bacteria and ca. four-fold versus Candida. On the other hand, liposome preparation showed
similar antimicrobial pattern measured by disc diffusion assay up to one month of storage at room
temperature; compared to reduction in antimicrobial activity of lawsone alone with time (data not
shown). The results indicated that liposomes preparation promoted the stability of lawsone.

2.3.2. Liposome Preparation Enhanced the Anti-Rhizopus Activity of Natural Product Employed

Liposomes preparation of Calli oil/lawsone showed significant growth inhibition (zone of
inhibition, 30 mm diameter) compared to combination treatment (20 mm diameter) (Figure 6A).
Liposome preparation caused a significant (p = 0.0001) reduction in the fungal growth greater than, or
equal to, two-fold compared to each substance alone measured by microdilution assay (Figure 6B).
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The inhibitory concentrations of lawsone, Calli oil, combined treatment and liposome against R. delemar
were 250 µg/mL, 250 µg/mL, 150 µg/mL (i.e., 80 µg/mL lawsone and 70 µg/mL Calli oil) and
~ 150 µg/mL compared to 5 µg/mL amphotericin B as the positive control.
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amounts of Calli oil and lawsone and combined amount of both substances on Rhizopus fungus using
(A) disc diffusion assay and (B) microdilution assay. The data display the mean of the growth of
Rhizopus ± standard error of the mean. The statistical significance was calculated with one-way
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2.3.3. Liposome Preparation Significantly Reduced the Toxicity of the Natural Product Employed

The cytotoxic effect of lawsone, Calli oil, or their combination, was compared using both hemolysis
of red blood cells (RBCs) and mammalian cell injury assays. Liposome preparation of lawsone and Calli
oil was significantly (p = 0.0001) less toxic when compared to each natural product alone (ca. seven-
and four-fold reduction in hemolytic toxicity versus lawsone or Calli oil, respectively) (Figure 7A).
Furthermore, liposome caused significant (p = 0.0001 and p = 0005) reduction in damage to human
umbilical vein endothelial cells (HUVECs) (~2.5-fold reduction in damage when compared to each
product alone) (Figure 7B).
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(A) RBCs hemolysis assay or (B) HUVEC injury assay. The data display the mean of the percentage
of hemolysis or percentage of cell damage ± standard error of the mean. The statistical significance
was calculated with one-way ANOVA and significance level indicated by asterisks (*** p = 0.0005, and
**** p = 0.0001).
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3. Discussion

Lawsone showed potential antimicrobial activities against Gram-positive and Gram-negative
bacteria, Candida and spore-forming fungi within the range of 200–300 µg/mL. The antimicrobial
activity of lawsone is partially lower than the results obtained by Rahmoun, et al., 2012 [4].
The minimum amount required for inhibition is different than what has been reported possibly
because of the degradation behaviors of lawsone [8].

Consistent with previous reports [14], we found that Calligonum comosum collected from the UAE
desert is a good source of essential oils. Although the plant extract is known to have antimicrobial
activity [15], to our knowledge this study is the first to attribute this antimicrobial activity to Calligonum
oil (Calli oil) against MDR pathogens including Gram-positive and Gram-negative bacteria, Candida
species, and the Mucorales mold, R. delemar. Another different finding from our studies than previously
reported studies lies in the composition of oils extracted from UAE Calligonum comosum. The major
components of the oil isolated in our study were 4-(1-methylethyl)-benzaldehyde (cuminaldehyde),
2-caren-10-al and 1-(1,5-dimethyl-4-hexenyl-4-methyl-benzene (curcumene), whereas in a previous
study essential oil from the same plant was reported as lauric, myristic, and palmitic acids [14].
This difference could be due to the geographical differences from where the plants were obtained [18].
It is prudent to mention that the potential antimicrobial activities of benzaldehyde and cuminaldehyde
were previously realized [19,20].

One critical finding of our studies is the activity seen with Calli oil against the Mucorales mold,
R. delemar, a rare, but lethal, fungal infection. It appears in addition to the direct effect of the Calli
oil on the growth of the spore-forming mold, it appears the oil caused discoloration of the black
spores potentially due to prevention of melanin formation [21]. Melanin’s role in virulence of fungal
pathogens, including the ability to resist phagocyte killing is well-described [21]. Thus, Calli oil has the
potential to directly kill this lethal mold and also enhance the immune system to clear the infection.

Synergistic combination between conventional antibiotics and essential oils is currently under
investigation and can represent a potential area for future novel treatment regimens in combating
antimicrobial resistance [22]. Such combination treatment has the potential to surpass monotherapy by
producing enhanced antimicrobial activity [23]. Our studies of combining lawsone and Calli oil clearly
support this concept and represent a future promising novel treatment for MDR pathogens.

Liposomes are spherical vesicles consisting of outer lipid bilayers surrounding aqueous
core [24]. Hydrophilic antibiotics can be encapsulated in the internal aqueous compartment, whereas
hydrophobic drugs may bind to or incorporate in the lipid bilayer [25]. Liposome encapsulation of
antibiotics can increase the therapeutic index of antibiotics by augmenting their concentrations at the
site of infection and reducing their toxicity [26]. Similarly, we found that the activity of liposomes
prepared from lawsone and Calli oil was enhanced and at lower doses. We also found that these
liposome preparations were less toxic than the natural products and provided stability over a long
period of time. We hypothesize that the liposome preparation of using essential oil within the lipid
layer likely potentiates the antimicrobial activities since both the hydrophobic outer layer and the
inner aqueous core have antimicrobial activities. A multi-component outer oily layer will disturb the
microbial membrane and, hence, enhances and stabilizes the effect of aqueous core-containing lawsone.
This approach is also likely to improve treatment of severe infections since liposomes can achieve a
significant longer blood and tissue half-life [27]. Consistent with Sherry, et al. [28], the entrapped oil
was greater than the entrapped aqueous substance mainly because the oil entrapped with the lipid
layer and, hence, stabilized its presence; however, lawsone in the aqueous core may be leaked from the
prepared liposomes.

As concluding remarks, the formulation of antimicrobial liposomes by combining both hydrophilic
natural products and hydrophobic essential oil can be a future promising area for improved
delivery of naturally present products with antimicrobials activity against MDR-resistant pathogens.
The multi-functional entrapped essential oil in these liposomes can stabilize the structure, increase
the interaction of the liposome with the hydrophobic surface of pathogens, and directly affect the
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viability of the targeted microbes. Additionally, and as noted before [29] these liposomes can reduce
any potential toxicity of the delivered drugs and increase their half-life in plasma and targeted tissues.

4. Materials and Methods

4.1. Materials

Lawsone, colistin, vancomycin, ketoconazole, and amphotericin B were all purchased from Sigma
(Sharjah, UAE).

4.2. Essential Oil Extraction

The air-dried Calligonum comosum aerial parts were collected from the desert of Sharjah, UAE.
The plant was ground to obtain a homogeneous powder and subjected to hydro-steam distillation [30]
for 3 h. Collected oil was dried over anhydrous sodium sulphate and then stored at 4 ◦C in sealed
vials before antimicrobial testing and GC-MS analysis.

4.3. Studying the Antimicrobial Activities of Tested Substances

The antibacterial activity of lawsone and Calli oil was studied against methicillin-resistant
Staphylococcus aureus (MRSA) strain and Gram-negative bacteria including P. aeruginosa, E. coli, and
the multidrug resistant (MDR) A. baumannii and Klebsiella pneumoniae on agar plates and in liquid
broth media according to a modified version of Clinical and Laboratory Standards Institute (CLSI) [31].
Briefly, 0.1 mL containing 105 CFU/mL was spread on Luria-Bertani (LB) agar plates [32]. The plates
were then incubated at 37 ◦C with filter discs (8 mm diameter) saturated with different dilutions of
lawsone (3, 6, 12, 25, 50, 100 and 200 µg/mL), Calli oil (2.5, 5, 10, 20, 40, 80 and 160 µg/mL) and
their combination (12.5, 25, 50 and 75 µg/mL) for 24 h. For the microdilution method, the microbial
strains were incubated with the aforementioned concentrations of substances into LB broth media
inoculated with 105 CFU/mL in 96-well microplates at 37 ◦C for 24 h and the microbial growth
(turbidity) was measured by microplate reader (DYNEX Technologies, Chantilly, VA, USA) at OD600.
Each test was performed in triplicate. The anti-Candida activities were similarly measured against
C. albicans (SC5314), C. krusei, C. glabrata, C. tropicalis, and C. auris (CAU09) and according to a modified
version of Clinical and Laboratory Standards Institute (CLSI) (Wayne, PA, USA) [31] using LB agar
plates for disc diffusion assay or yeast nitrogen base (YNB) supplemented with 100 mM glucose for
microdilution assay.

For the spore-forming fungus (Rhizopus delemar), the antimicrobial activities were determined by
using the reference procedure of the Antifungal Susceptibility Testing Subcommittee of EUCAST for
spore-forming molds [33]. Briefly, flat-bottom microdilution 96 well-plates were loaded with 200 µL
RPMI 1640 medium supplemented with 2% glucose and an inoculum of 2 × 105 CFU/mL. Growth
inhibition was visually determined at 24, 48 and 72 h. The reading was performed after 5 min of
agitation on a microdilution plate shaker with a spectrophotometer (DYNEX Technologies, Chantilly,
VA, USA) at 570 nm.

Colistin, vancomycin, ketoconazole, and amphotericin B were used as positive controls against
Gram negative bacteria, Gram-positive bacteria, Candida and fungi, respectively. Cultures without
antimicrobials served as negative controls. All experiments were repeated in triplicate. All microbial
strains are clinical isolates from patients who were seen at Harbor-UCLA Medical Center, Torrance,
CA, USA. The antimicrobial activities of all substances were tested either by disc diffusion assay,
microdilution assay or by measuring the minimum inhibitory concentration (MIC).

4.4. Stability Testing

Calli oil, lawsone, and their liposome preparation were stored separately at room temperature
(~25 ◦C) for one month. The antimicrobial activity of each substance alone and in liposome preparation
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was measured by disc diffusion assay at different time intervals. The results obtained were compared
to those obtained prior to storage. The diameter of zone of growth inhibition (in mm) was read at 24 h.

4.5. Cytotoxicity Assay

The cytotoxic assays of tested substances were performed by hemolysis assay and mammalian
cell damage assay as reported below.

4.5.1. Hemolysis Assay

Each tested substance was measured as the amount of hemoglobin released by the lysis of human
erythrocytes [34,35]. Briefly, fresh whole blood from healthy individual was collected into heparinized
vacutainer from Harbor-UCLA Hospital and 1 mL whole blood was immediately centrifuged at 500× g
for 10 min using a benchtop centrifuge (Eppendorf 5804R refrigerated benchtop, Pittsburgh, PA, USA).
The erythrocytes were washed three times with DPBS supplemented with 1 mg/mL bovine serum
albumin (BSA) and then re-suspended to 3 × 107 cells/mL in DPBS. Washed cells (3 × 106 cells per
well) were incubated with the substance dissolved in the washing buffer at different concentrations
(ranging from 100 to 200 µg/mL) in round-bottomed 96-well plates in a final volume of 200 µL.
Washing buffer and 0.1–1% Triton X-100 were used as negative and positive controls, respectively.
The plate was incubated at 37 ◦C for 30 min, followed by 30 min incubation on ice, and the intact cells
were precipitated by centrifugation at 500× g for 10 min at 4 ◦C and the supernatants (125 µL) were
transferred to a flat-bottom 96-well plate to measure hemoglobin release by absorbance at 405 nm using
a microplate reader. The absorbance values for each sample were subtracted from the absorbance value
obtained for washing buffer-treated cells and the hemolytic activity (%) was calculated. The experiment
was conducted in triplicate and the data was analyzed using two-way analysis of variance (ANOVA).
The 50% cytotoxic concentration (CC50) values were calculated as the concentration of substance
caused 50% hemolysis compared to 100% hemolysis of erythrocytes treated with 0.1% triton X-100.
Written informed consent was obtained from donor for the use of his/her blood. All experimental
procedures were approved by Institutional Review Board (IRB) of LA Biomed under protocol 11671-11.

4.5.2. Mammalian Cell Damage Assay

Human umbilical vein endothelial cells (HUVEC) damage were quantified using a 51Cr release
assay [36]. Briefly, cells grown in 96-well tissue culture plates containing detachable wells were
incubated with 1 µCi/well Na2

51CrO4 (ICN) in M-199 medium for 16 h. On the day of the experiment,
the unincorporated 51Cr was aspirated, and wells were washed twice with pre-warmed HBSS. Cells
were treated with substances suspended in RPMI 1640 medium supplemented with glutamine and
incubated at 37 ◦C in a 5% CO2 incubator. Spontaneous 51Cr release was determined by incubating
the cells only in culture medium supplemented with glutamine. After 16 h incubation, the medium
was aspirated from each well and transferred to glass tubes, and cells were manually detached and
placed into another set of tubes. The amount of 51Cr in the aspirate and the detached well was
determined by gamma counting. The total amount of 51Cr incorporated by the cells in each well was
calculated as the sum of radioactive counts per min of the aspirated medium and radioactive counts of
the corresponding detached wells. After data were corrected for variations in the amount of tracer
incorporated in each well, the percentage of specific cell release of 51Cr was calculated as follows:
((experimental release) − (spontaneous release))/(1 − (spontaneous release)). Each experimental
condition was tested in triplicate, and the experiment was repeated twice.

4.6. Gas Chromatography-Mass Spectrometry (GC-MS)

GC-MS measurements were carried out using an Agilent model 7683 (Wilmington, DE, USA)
autosampler, 6890 gas chromatograph, and 5975 inert mass selective detector in the electron impact
(EI) mode. EI energy was set to 70 eV. Separation was carried out on an Agilent HP5-MS column
with dimensions 30 m × 250 µm × 0.25 µm. Ultra-high purity grade He (Airgas, Kennesaw, GA,
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USA) was used as carrier gas with the flow set to 0.8 mL/min in constant flow mode. The initial oven
temperature was set to 45 ◦C for 1 min followed by a 30 ◦C/min ramp to a final temperature of 300 ◦C
which was maintained for 3 min. A 3.2 min solvent delay was used. The MSD was set to scan the
40–1050 m/z range. Data collection and analysis were performed using MSD Enhanced Chemstation
software (G1701EA, Agilent, Wilmington, DE, USA). Product spectra were identified by comparison of
the measured fragmentation patterns to those found in the NIST 08 Mass Spectral Library.

4.7. Liquid Chromatography-Mass Spectrometry (LC-MS)

For LC-MS quantification of lawsone, prepared liposomes were dissolved in methanol and 10 µL
was injected in to LC-MS. LC-MS analyses were carried out in negative ion mode by electrospray
ionization (ESI) on a ACQUITY UPLC triple quadrupole (Xevo TQD, Waters, Milford, MA, USA)
instrument equipped with MassLynx software (4.1, Waters, Milford, MA, USA ). The solvent system
was (A: 100% acetonitrile and B: water containing 0.1% formic acid). The solvent gradient was
0–10 min/75% A, 8 min/100% A, 2 min/75% A and 3 min/75% A. The flow rate was 0.3 mL/min
and the injection volume was 10 µL. All solvents and reagents were HPLC grade and used without
further purification.

4.8. Liposome Preparation and Drug Loading Using Solvent Dispersion Ether Injection
(Solvent Vaporization) Method

Phospholipids (100 mg/mL) and essential oil (80 µg/mL) isolated from Calligonum were dissolved
in diethyl ether and then vortexed for 5 min. The solution was then gradually injected to an aqueous
solution of lawsone (100 µg/mL) at 55 ◦C. The ether was then removed under vacuum [37,38] and the
solution left was centrifuged at 10,000× g for 15 min, followed by aspiration of water and vacuum dried.

4.9. Statistical Analysis

The data was collected and graphed using Microsoft Excel and Graph Pad (5.04, La Jolla, CA,
USA) for Windows for statistical analysis. The effects of individual natural substance or in combination
on MDR bacteria and Candida spp. inoculated onto solid agar media and liquid broth was analyzed by
one-way analysis of variance (ANOVA) using Dunnett’s Multiple Comparison Test. A p-value < 0.05
was considered as significant.

Supplementary Materials: Tables indicating the MIC of all tested substances are available online.
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