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Psoriasis is well known as a chronic inflammatory dermatosis. The disease affects persons of all ages and is a burden worldwide.
Psoriasis is associated with various diseases such as arthritis. The disease is characterized by well-demarcated lesions on the skin of
the elbows and knees. Various genetic and environmental factors are related to the pathogenesis of psoriasis. In order to identify
enzymes that are potential therapeutic targets for psoriasis, we utilized a computational approach, combining microarray analysis
and protein interaction prediction. We found 6,437 genes (3,264 upregulated and 3,173 downregulated) that have significant
differences in expression between regions with and without lesions in psoriasis patients. We identified potential candidates through
protein-protein interaction predictions made using various protein interaction resources. By analyzing the hub protein of the
networks with metrics such as degree and centrality, we detected 32 potential therapeutic candidates. After filtering these candidates
through the ENZYME nomenclature database, we selected 5 enzymes: DNA helicase (RUVBL2), proteasome endopeptidase
complex (PSMA2), nonspecific protein-tyrosine kinase (ZAP70), I-kappa-B kinase (IKBKE), and receptor protein-tyrosine kinase
(EGFR). We adopted a computational approach to detect potential therapeutic targets; this approach may become an effective
strategy for the discovery of new drug targets for psoriasis.

1. Introduction

Psoriasis is a common inflammatory disease affecting more
than 25 million people in North America and Europe. It is
associated with arthritis, myopathy, enteropathy, spondylotic
joint disease, and atopic dermatitis. This disease is character-
ized by well-demarcated lesions on the skin of the elbows,
knees, and scalp. It is an autoimmune disease triggered by an
activated cellular immune system resulting from a combina-
tion of genetic and environmental factors. It is also frequently
inherited and is passed from one generation to the next [1].

Many factors trigger psoriasis, including bacterial pha-
ryngitis, stress, and various medications (e.g., lithium and β-
blockers). Perturbation of epidermal keratinocytes is consid-
ered an activating signal in psoriasis [2], and in regions with
psoriasis lesions, keratinocyte proliferation is increased along
with inflammation and angiogenesis [3]. Recent studies

have reported that the interaction between T-cells and kera-
tinocytes gives rise to a cytokine soup dominated by Th1-
type and Th17-type cytokines such as interleukin- (IL-)
12, IL-17, interferon- (IFN-) γ, and tumor necrosis factor
(TNF) [4]. In addition, keratinocytes stimulated with IL-20
upregulate a variety of inflammatory genes, including mono-
cyte chemotactic protein-1 (MCP-1) and myeloid-related
protein-14 (MRP-14) [5, 6].

Some genetic studies have reported a strong association
between psoriasis and human leukocyte antigen- (HLA-) C,
particularly with the HLA-Cw0602 allele. Individuals who
are homozygous have a 2.5-fold higher risk of developing
psoriasis than those who are heterozygous [7]. Moreover, a
genomewide association study revealed that polymorphisms
in genes related to IL-23 and nuclear transcription factor κB
(NFκB) signaling are associated with psoriasis [8]. TNF is
currently considered a major target in psoriasis pathogenesis,
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because much higher levels of TNF are found in lesional skin
than in normal skin [9]. Treatment with TNF antagonists
elicits a response in patients with psoriasis. However, despite
the success of anti-TNF-α therapies, the involvement of
TNF-α in disease pathogenesis is not yet fully understood.
Furthermore, these drugs have clinical nonresponse rates
that range from 20% to 50% in patients with psoriasis [10].
Therefore, there is a need for new and effective drug targets
and compounds.

New research initiatives have been undertaken to collect
high-throughput mRNA expression and protein-protein
interaction (PPI) data from different organisms. This impor-
tant source of biological information has been effectively
employed in the search for new drugs [11]. Systematic
analysis using bioinformatics has enabled researchers to
extract and manipulate biological information with the goal
of understanding the pathogenesis of disease. In particular,
the combined analysis of gene expression and PPI may help
identify candidates that are potential therapeutic targets.
Recent studies analyzing protein interaction networks have
been carried out in Saccharomyces cerevisiae and Caenorhab-
ditis elegans [12, 13]; such studies have confirmed that
topological metrics of protein interaction networks are useful
for predicting essential target proteins. These studies have
also been expanded to organisms of medical importance,
such as the malaria parasite [14], as a starting point for the
discovery of new drug targets. In humans, the analysis of PPIs
has also been useful in detecting important proteins, such as
hub proteins, when the interactions were predicted using a
homologous approach [15].

To better understand the pathogenesis of psoriasis and
to identify potential therapeutic targets, we performed a
microarray analysis comparing lesional and nonlesional
psoriatic skin and a protein interaction network analysis that
was constructed using differentially expressed genes obtained
from the microarray data. We identified potential therapeutic
or drug target candidates by analyzing the protein interaction
network with the metrics of degree and centrality. We then
selected the enzymes from the candidates and detected
nonsynonymous single-nucleotide polymorphisms (SNPs)
in the enzyme genes that could cause structural changes in
the proteins. These putative enzyme targets are a starting
point for the discovery of new psoriasis drugs.

2. Materials and Methods

2.1. Microarray Analysis Related to Psoriasis. Microarray
data from psoriasis patients were downloaded from Gene
Expression Omnibus (GEO), which is a public database
of centrally archived raw microarray data [16]. We used 2
microarray datasets (GDS2518 and GDS3539) generated
using Affymetrix human genome microarrays, which have
more than 4 million gene expression measurements. The
GDS2518 dataset contained transcriptome data of lesional
and nonlesional skin from 13 patients with plaque-type
psoriasis [17]. The GDS3539 dataset contained similar data
from 33 patients [18]. In order to identify genes that are
differentially expressed in psoriasis patients, we compared
lesional and nonlesional skin data to microarray datasets.

2.2. Identification of Differentially Expressed Genes from
Transcriptome. We removed probe redundancy because 1
gene has several probes on a single microarray chip. After
removing the redundancy, the average expression profiles
were calculated for the probe clusters having multiple expres-
sion profiles. From each of the given microarray datasets, we
obtained differentially expressed genes (DEGs) by unpaired
two class analysis (Sigma = 2.4, Q-value = 0.0001) by using
significance analysis for microarray (SAM) [19]. We then
combined the DEGs obtained from GDS2518 and GDS3539.

2.3. PPI Resources. Predictions of PPI have been applied in
various studies in order to understand the mechanism of
disease development, find key proteins related to species
lethality, and search for drug targets between a host and
pathogen [20]. PPI resources were assembled from a combi-
nation of several experimental protein interaction databases.
The protein interaction resources include 6 databases: DIP
[21], BIND [22], IntAct [23], MINT [24], HPRD [25], and
BioGrid [26]. We performed a redundancy test to remove
identical protein sequences from the interaction databases.
The databases contain 116,773 proteins and 229,799 interac-
tions.

2.4. Protein Network Prediction from the DEGs. There are
computational methods for predicting PPIs such as gene
neighborhood [27], gene fusion [28], phylogenetic profile
[29], and interolog [30]. In particular, the interolog approach
is widely used to predict PPIs when the sequences of
target proteins are known. In the interolog approach, the
interaction of 2 query proteins is predicted when both have
homologousproteins that are already known to interact [30].
A protein network of DEGs selected from the microarrays
was predicted from homologous interactions. To find homol-
ogous interactions among the DEGs, we converted the DEGs
to proteins, and we aligned these with proteins from the
interaction resources using PSI-BLAST [31] with a minimal
cutoff of 40% sequence identity, 70% length coverage, and an
E-value of 0.0001.

2.5. Detection of Essential Proteins with Topological Metrics
and Selecting for Enzymes. The protein network analysis has
been applied to find essential proteins, such as hubs, that
are related to a disease or biological pathway [11]. To find
essential proteins, we performed a protein network analysis
with topological metrics such as degree and betweenness
centrality using Perl program. Proteins with a high num-
ber of interaction partners in the network were regarded
as degree-based hubs. Proteins with many shortest paths
between other proteins were regarded as betweenness-based
hubs. Proteins that have high betweenness scores mainly
exist in the middle of the protein network. If the protein is
removed from the network, the proportion of unreachable
protein pairs and the mean shortest path length between
all pairs of reachable nodes are increased [32]. We selected
the essential proteins that have the top 1% of total degree
and 1% of total betweenness in the protein network as
hubs. Finally, the proteins were filtered through the list
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of enzyme proteins stored in the ENZYME nomenclature
database (http://expasy.org/enzyme/).

2.6. Structural Changes Induced by Nonsynonymous SNPs.
Nonsynonymous single-nucleotide polymorphisms (nsS-
NPs) have been implicated in various diseases; nsSNPs can
alter protein function [33], destabilize core protein structure,
and reduce protein solubility [34]. Because polymorphisms
are an important genetic factor in psoriasis [7], we checked
for nsSNPs in the selected enzymes using the dbSNP database
(http://www.ncbi.nlm.nih.gov/projects/SNP/), and we pre-
dicted the structural changes in the enzymes caused by the
nsSNPs through structure modeling and stability analysis.
On the basis of homology modeling, three-dimensional
structural models of the target enzymes were built using
SWISS-MODEL [35]. The SWISS-MODEL program auto-
matically provides an all-atom model using alignments
between the query sequence and known homologous struc-
tures. For homology modeling, the known homologous
structures of enzymes from the Protein Data Bank (PDB)
(http://www.pdb.org/) were used as the structural templates.
Further, the stability of the enzyme structure was checked
using the CPUSAT program [36].

3. Results and Discussion

3.1. Psoriasis Microarray Coupled with SAM Analysis. We
compared the microarray datasets GDS2518 and GDS3539
from regions with and without lesions in psoriasis patients.
Using SAM (Sigma 2.6 cutoff value with a 0.0001 Q-value),
6,437 candidate genes were found, and 3,264 genes were
upregulated while 3,173 genes were downregulated. Among
the listed candidates were several distinct genes that have
been known to be associated with psoriasis; these genes
coded for TNF-α, IFN-γ receptor 1, IL-8, and IL-20 (data
not shown). In this study, we used bioinformatic analyses
in which several methods were integrated, including PPI
and structure prediction, to detect novel candidate proteins
except well-known genes.

3.2. Identification of Putative Therapeutic Candidates. There
are several ways to obtain candidate genes for disease analy-
sis, including cDNA microarray and proteomics approaches
such as mass spectrometry. Although we could obtain many
upregulated or downregulated genes in psoriasis using high-
throughput omics approaches, it was very difficult to choose
the important genes. However, PPI mapping can help find
potential targets among these candidates. Recent studies have
successfully applied this approach to discover drug targets
using computational predictions of protein networks in the
bacterium Mycobacterium tuberculosis and in humans [37–
39]. Therefore, we predicted the protein interaction network
of psoriasis-related proteins using homologous interaction
prediction. We separately constructed 2 protein interaction
networks using 3,264 upregulated genes and 3,173 downreg-
ulated genes in psoriasis. The protein interaction network
constructed from the upregulated genes contained 1,310
proteins and 1,934 interactions, and the network constructed
from the downregulated genes contained 985 proteins and
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Figure 1: Protein interaction networks constructed by DEGs in
psoriasis. The node indicates protein and the edge indicates protein-
protein interaction. The red nodes are essential enzymes predicted
by topological metrics such as degree and betweenness centrality.
(a) Protein interaction network constructed from genes upregulated
in microarray data from regions with and without lesions in
psoriasis patients. The network consisted of 1,310 proteins and
1,934 interactions. (b) Protein interaction network constructed
from downregulated genes. The network consisted of 985 proteins
and 1,205 interactions.

1,205 interactions, and they are shown in Figure 1. In order
to find potential therapeutic candidates, we calculated the
number of interacting partners (degree) [40] and between-
ness centrality [41] for each protein. These 2 topological
metrics have been shown to improve the detection of
essential proteins in protein networks [42]. Betweenness
centrality correlates more closely with essentiality than
degree, thereby exposing critical nodes that usually belong to
the group of scaffold proteins or proteins involved in cross-
talk between signaling pathways. This metric has also been
proposed in the new paradigm of network pharmacology
as a good method for investigating potential drug targets
[43]. In the protein network, we selected the top 1% of
the degree and centrality rank as hub proteins because this
cutoff value identifies the group with the highest probability
to be an essential group of proteins. We chose 17 proteins
in the upregulated gene protein interaction network and 15
proteins in the downregulated gene protein interaction net-
work. The protein list and network properties are described
in Tables 1 and 2. We found the 5 enzymes by filtering
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Table 1: Selected hub proteins in the protein interaction network constructed from upregulated genes.

Gene symbol Refseq ID Full name (enzyme number) Topological metrics

CDKN1A NP 000380.1 Cyclin dependent kinase inhibitor 1A centrality: 64419

RUVBL2 NP 006657.1 RuvB like 2 (3.6.4.12: DNA helicase) centrality: 50925

COPS6 NP 006824.2 COP9 constitutive photomorphogenic homolog subunit 6 centrality:60596

EWSR1 NP 001156757.1 Ewing sarcoma breakpoint region 1 centrality: 62682

FTSJ1 NP 036412.1 FtsJ homolog 1 degree: 27

SFN NP 006133.1 14-3-3 sigma centrality: 50372

GRB2 NP 002077.1 Grb2 centrality: 397096

CCDC85C NP 001138467.1 C14orf65 protein centrality: 76862

EIF6 NP 002203.1 Eukaryotic translation initiation factor 6 centrality: 61909

ARF6 NP 001654.1 ADP ribosylation factor 6 centrality: 45220

NFKB1 NP 001158884.1 NFKB1 degree: 18

PCNA NP 002583.1 Proliferating cell nuclear antigen centrality: 46316

PINX1 NP 060354.4 Pin2 interacting protein X1 centrality: 51027

PSMA2 NP 002778.1 Proteasome subunit alpha type 2 (3.4.25.1: Proteasome endopeptidase complex) degree: 17

VDAC1 NP 003365.1 VDAC1 degree: 18

ZAP70 NP 001070.2 ZAP70 (2.7.10.2: Nonspecific protein-tyrosine kinase) centrality: 50140

IKBKE NP 001180250.1 IKKE (2.7.11.10: I-kappa-B kinase) centrality: 412760

the group of detected 32 proteins through the ENZYME
nomenclature database. Among the upregulated genes, 4
enzymes were selected as putative targets: DNA helicase
(RUVBL2), proteasome endopeptidase complex (PSMA2),
non-specific protein-tyrosine kinase (ZAP70), and I-kappa-
B kinase (IKBKE). From the downregulated genes, EGF
receptor (EGFR) was selected.

3.3. Experimental Evidence of the Predicted Targets Related to
Psoriasis. The predicted enzymes were directly or indirectly
related to psoriasis. The predicted enzymes have several
significant features. IKBKE was already known as a psoriasis-
related protein that is essential for the regulation of antiviral
signaling and inflammatory pathways. TNF-α, which exists
on upstream of IKBKE signaling pathway, has been used as
a psoriasis drug target. TNF-α inhibitors such as etanercept
are used for treating rheumatoid and psoriatic arthritis. The
abnormal activation of T-cells is known to be a factor in the
development of psoriasis. Therefore, T-cell infiltration and
the inhibition of cytokines are the major modalities for the
treatment of psoriasis [1].

ZAP70 plays a role in T-cell development and lympho-
cyte activation [44]. This enzyme, which is phosphorylated
at tyrosine residues upon T-cell antigen receptor (TCR) stim-
ulation, functions in the initial step of TCR-mediated signal
transduction in combination with the Src family kinases Lck
and Fyn [45]. Mutations in this enzyme cause selective T-
cell defects and a severe combined immunodeficiency disease
characterized by a selective absence of CD8-positive T-cells
[46]. Furthermore, a significant change in ZAP70 expression
was reported during the course of chronic lymphocytic
leukemia [47].

We found EGFR, which plays a role in morphogenesis
by modulating cell adhesion, as a downregulated target.
EGFR promotes keratinocyte antimicrobial defenses in

a differentiation-dependent manner. Ligands of the EGF
family regulate autocrine keratinocyte proliferation, and
IL-1 family cytokines have epithelial defense responses [48].

Two proteasome-related enzymes were also found among
the upregulated target candidates. RUVBL2 is a DNA helicase
that is essential for homologous recombination and DNA
double-strand break repair. Recent research reported that the
depletion of RUVBL2 leads to tumor growth arrest and that
it is overexpressed in a majority of hepatocellular carcinomas
[49]. Moreover, the enzyme levels are strictly controlled
by a posttranslational mechanism involving proteasomal
degradation of newly synthesized proteins [50]. PSMA2 is
a proteasome subunit alpha type 2 and is a member of
the peptidase T1A family. Proteasome-related enzymes may
be valuable as therapeutic candidates since a proteasome
blockade causes the overexpression of the suppressor of
cytokine signaling (SOCS) 3protein, which inhibits the IFN-
α response which are overexpressed in psoriasis [51].

This may be reasonable because these enzymes are
important regulators in the mechanism of development
of psoriasis. Although more information on the biological
functions of these interesting enzymes is needed, they are
potential candidates for future drug screening and therapeu-
ticor drug target development.

3.4. Structural Stability Analysis of Enzymes Using nsSNPs.
We predicted the structural changes in ZAP70 caused by
nsSNPs with structural modeling and stability analysis
because mutations can cause selective T-cell defects [46].
Known homologous structures of ZAP70, PDB entries
1M61 and 1U59 (100% and 98.9% sequence identity), were
used as structural templates. Currently, 19 nsSNPs in the
dbSNP database have been reported to cause nonsense or
missense changes in ZAP70. Using the CUPSAT program,
we found 10 nsSNPs that cause unstable structural changes.
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Table 2: Selected hub proteins in the protein interaction network constructed from downregulatedgenes.

Gene symbol Refseq ID Full name (enzyme number) Topological metrics

EIF1B NP 005866.1 Translation factor sui1 homolog centrality: 41540

RNPS1 NP 006702.1 RNA binding protein S1, serine-rich domain degree: 21

EGFR NP 005219.2 EGF receptor (2.7.10.1: Receptor protein-tyrosine kinase) centrality: 83945

NINL NP 079452.3 KIAA0980 protein centrality: 53502

HTT NP 002102.4 Huntingtin centrality: 99972

HMGB1 NP 002119.1 High mobility group box 1 centrality: 43032

APP NP 000475.1 Amyloid beta A4 protein centrality: 51716

RIF1 NP 001171134.1 Rap1 interacting factor 1 degree: 17

PLSCR4 NP 001121778.1 Phospholipid scramblase 4 centrality: 60954

BCL6 NP 001124317.1 B cell lymphoma 6 protein degree: 18

TBP NP 001165556.1 TATA box binding protein centrality: 40738

SUMO1 NP 001005781.1 SMT3 suppressor of mif two 3 homolog 1 degree: 21

UNC119B NP 001074002.1 Unc-119 homolog B centrality: 42366

NCOR1 NP 001177367.1 Nuclear receptor corepressor 1 degree: 16

UTP14C NP 067677.4 UTP14, U3 small nucleolarribonucleoprotein, homolog C centrality: 60679

Table 3: Nonsynonymous SNPs of ZAP70.

rsNumber DNA substitution Amino-acid substitution Overall stability Predicted ΔΔG (kcal/mol)

rs56077145 106C > G Leu36Val Destabilising −1.03

rs113994172 239C > A Pro80Gln Stabilising 0.82

rs56264206 308A > T Asn103Ile Stabilising 0.71

rs55845489 309C > A Asn103Lys Destabilising −0.36

rs55679020 311G > C Arg104Pro Stabilising 0.11

rs111771234 550T > A Phe115Ile Stabilising 0.67

rs55964305 524G > T Arg175Leu Destabilising −0.67

rs56403250 572C > T Pro191Leu Stabilising 0.08

rs76059124 653C > T Ala218Val Destabilising −1.86

rs113310375 1274T > C Val356Ala Destabilising −2.01

rs113994174 1393C> T Arg465Cys Destabilising −0.81

rs56059280 1468G > A Asp490Asn Destabilising −0.29

rs104893674 1554C > A Ser518Arg Destabilising −0.56

rs56189815 1568G > T Trp523Leu Stabilising 3.36

rs56146954 1580T > G Val527Gly Destabilising −4.09

rs113994175 1714A >T Met572Leu Stabilising 0.17

rs55803111 1781G > A Arg594Gln Stabilising 1.11

rs56326640 1783G > T Ala595Ser Destabilising −0.36

rs56250717 1826G > A Gly609Asp — —

The nsSNPs are shown in Table 3. In particular, Val527Gly
had the lowest unstable energy value. The native structure
and changed structures are shown in Figure 2. Although
there is no experimental evidence which shows that nsSNPs
regulate the expression level in T-cells, stability analysis of
the target structure can give us more biological information
to understand the enzymatic mechanism and to evaluate the
drug effect.

4. Conclusion

In this study, we attempted to explore potential therapeutic
candidates for psoriasis by utilizing bioinformatic methods.
We have presented essential proteins from upregulated and
downregulated genes in psoriasis; some of these findings
have been supported by experimental evidence reported
in the literature. Of particular interest are the predicted
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Figure 2: Protein structure of ZAP70 and structural variations by
nsSNPs. We predicted the structural changes in ZAP70 caused by
nsSNPs through structural modeling and stability analysis because
mutations can cause selective T-cell defects [46]. In order to predict
the structure of ZAP70, we used PDB entries 1M61 and 1U59 as
the structural templates, which have 100% and 98.9% sequence
identity, respectively, which were found to be suitable structural
templates. We found 19 nsSNPs from the dbSNP database that cause
nonsense or missense changes in ZAP70. From these nsSNPs, 10
nsSNPs were found to lead to unstable structural changes by using
CUPSAT. In particular, Val527Gly had the lowest unstable energy
value (Predicted ΔΔG: −4.09). The red region shows the location of
Val527Gly in the middle of the alpha-helix structure.

essential enzymes that are important proteins related to the
pathogenesis of psoriasis; these enzymes can be explored
as therapeutic or drug target candidates. Further studies
should be conducted to determine the role of these candidate
enzymes in psoriasis and to explore agonists of the upregu-
lated candidates or antagonists of downregulated candidates
as drug targets by exploiting the property of multiple
targeting. These results will aid future drug discovery efforts,
enabling drug development in a more timely and cost-
effective manner.

Abbreviations

SAM: Significance analysis of microarray
PPI: Protein-protein interactions
SNP: Single-nucleotide polymorphism.
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