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We examined nitric oxide (NO), IL-6, and TNF-a secretion from cultured palmitate-stimulated PBMNC:s or in the plasma from type
2 diabetes mellitus (T2MD) patients or nondiabetic (ND) controls. Free fatty acids (FFA) have been suggested to induce chronic low-
grade inflammation, activate the innate immune system, and cause deleterious effects on vascular cells and other tissues through
inflammatory processes. The levels of NO, IL-6, TNF-«, and MDA were higher in supernatant of palmitate stimulated blood cells
(PBMNC) or from plasma from patients. The results obtained in the present study demonstrated that hyperglycemia in diabetes
exacerbates in vitro inflammatory responses in PBMNCs stimulated with high levels of SFA (palmitate). These results suggest that
hyperglycemia primes PBMNCs for NO, IL-6, and TNF-alpha secretion under in vitro FFA stimulation are associated with the
secretion of inflammatory biomarkers in diabetes. A combined therapy targeting signaling pathways activated by hyperglycemia in
conjunction with simultaneous control of hyperglycemia and hypertriglyceridemia would be suggested for controlling the progress

of diabetic complications.

1. Introduction

Circulating free fatty acids (FFAs) are elevated in patients
with type 2 diabetes mellitus (T2DM), obesity, metabolic
syndrome, and dyslipidemia [1-4]. FFAs represent a complex
group of structurally variable molecules stored in the body
as triglycerides and released through lipolysis [3, 5]. FFAs
are classified according to the carbon chain length in short-
, medium-, and long-chain fatty acids, the presence or
absence of double bonds as saturated (SFA) and unsaturated
fatty acids, respectively, and the number of double bonds
as mono- or polyunsaturated (PUFA) [6, 7]. The effect of
FFA on cellular signaling pathways depends on the chemical
structure. It has been reported that chronic exposure to SFA

increases oxidative stress and inflammation, leading to the
development of cardiovascular diseases and insulin resistance
(8-12].

Oxidative stress, reflecting an imbalance between proox-
idant and antioxidant effectors, plays an important role in
diabetic vascular complications [13]. Superoxide, nitric oxide,
and lipid peroxidation are indicators of oxidative stress in the
body. Despite the number of studies concerning FFA-induced
superoxide overproduction [14-22], there are few reports
concerning FFA-induced nitric oxide (NO) production. NO
is a highly diffusible and unstable gas that acts as a modulator
of vascular tone, glucose transport in skeletal muscle cells and
adipocytes, blood flow, force generation in skeletal muscle,
cytotoxicity, and inflammation [23-26].
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FFA also regulates the immune system through interac-
tions with specific cell surface receptors, such as Toll-like
receptors (TLR) and G-protein-coupled receptors (GPCR),
thereby activating NF-kappaB and c-Jun amino-terminal
kinase (JNK) pathways, which stimulate the secretion of
proinflammatory cytokines (IL-1beta, IL-6 and TNF-alpha)
and chemokines [27-30].

It is well known the effects of hyperglycemia and hyper-
lipidemia on peripheral blood mononuclear cells (PBMNCs)
by activation of NADPH oxidase system leading to reactive
oxygen species production, TLR expression, enhancing NF-
kappaB activity, and inducing proinflammatory cytokines,
chemokines, and circulating adhesion molecules secretion
(8, 21, 31-41].

Thus, elevated plasma FFA levels act as inflammatory
inducers, which potentially contribute to vascular disorders
[27-30, 42, 43]. Thus, the aim of the present study was to
investigate the in vitro effects of palmitate (C16:0), the major
SFA in plasma [44, 45], on the modulation of oxidative stress
and inflammation in T2DM patients. Nitric oxide, with or
without palmitate induction, was quantified and correlated
with proinflammatory cytokines secreted in the cultured
supernatant of PBMNCs from type 2 diabetes patients. The
association among plasmatic triglycerides, NO, proinflam-
matory cytokines (IL-6 and TNF-alpha), and oxidative stress
(malondialdehyde) is discussed.

2. Material and Methods

This study was approved through the Ethical Committee of
Santa Casa Hospital (Belo Horizonte-MG, Brazil) and written
informed consent was obtained from all participants prior to
the study.

2.1. Subjects. T2DM patients (n = 29), diagnosed according
to the criteria of the American Diabetes Association [46], and
nondiabetic controls (n = 16), ranging from 45 to 70 years of
age, were recruited from the Endocrinology Department of
Santa Casa Hospital. Type 2 DM patients were treated with
statins and beta-blockers in addition to hypoglycemic drugs.
Prior to the study, all volunteers received complete physical
examinations, and detailed evaluations of medical histories
and laboratory analyses were performed (Table 1). Pregnant
women and individuals suffering from alcoholism, infection,
inflammation, dementia, or malignant diseases and smoking
addictions were excluded from this study.

2.2. Preparation of Fatty Acids. Palmitate and low-endotoxin
bovine serum albumin (BSA, FFA-free) were purchased from
Sigma-Aldrich Co. FFA was dissolved in 0.1 M NaOH at 70°C
and subsequently complexed with 10% BSA at 55°C for 10 min
to obtain a final FFA concentration of 500 yM (molar ratio
2.4:1) [42, 47]. A 10 mM fatty acid-albumin complex stock
solution and a 0.5uM BSA control solution were freshly
prepared, filtrated, and diluted prior to each experiment.

2.3. Preparation of Peripheral Blood Mononuclear Cells.
PBMNC:s were purified from 10.0 mL of heparinized venous
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TaBLE 1: Clinical and biochemical characteristics of the studied
population.

Parameters T2DM (n=29) ND(n=16) P
Female/Male ratio 19/10 11/5 NA
Age (years) 583+90  57.1+100 ns
Body mass index (kg/mz) 30.8 +9.8 246+4.1 <0.05
Disease duration (years) 6.7+6.4 NA NA
Systolic pressure (mmHg) 127.9 £ 14.5 1223 +159 ns
Diastolic pressure (mmHg) ~ 86.6 £ 8.6 88.9+79  ns
Fasting glucose (mg/dL) 147.0 +£40.7 89.0+9.0 <0.05
Glycated hemoglobin (%) 81+1.1 53+02  <0.05
Total cholesterol (mg/dL) 1916 £65.7  160.7+20.0 ns
Low density lipoprotein 11534397 10454326 ns
(mg/dL)

High density lipoprotein 4564106 502140 ns
(mg/dL)

Triglycerides (mg/dL) 142.0 +51.0 108.6 +37.7 <0.05

Data as means + SD.

NA: not applicable; ns: not significant.

Significant differences between the groups were determined using Student’s
t-test (P < 0.05).

blood, using a Ficoll-Hypaque gradient as previously
described [48], with slight modifications. The trypan blue
exclusion test showed that the cell viability in all samples was
>95%.

2.4. Preparation of Plasma. EDTA venous blood samples
were collected using a standard venipuncture technique.
The plasma was obtained through centrifugation (200 g for
15 min, at room temperature), and the samples were stored
at —80°C until further analysis. Subsequent analyses were
performed within 3 months from the day of storage.

2.5. Quantification of Proinflammatory Cytokines and NO in
Supernatant of PBMNCs. Aliquots (100 L) of a PBMNC
suspension (1 x 10°/mL) from T2DM patients and ND
controls in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fetal bovine serum (FBS) were
incubated in the presence or absence of BSA (0.5uM) or
palmitate (500 M) for 72 hours at 37°C under 5% CO,. The
final volume was adjusted to 300 L in DMEM supplemented
with 10% FBS. After incubation, the cells were centrifuged
and the supernatant was collected. The interleukin-6 (IL-6
human EIA Kit—Enzo Life Sciences, Inc., New York, USA)
and tumor necrosis factor-alpha (TNF-a human EIA Kit—
Enzo Life Sciences, Inc., New York, USA) concentrations
were determined through enzyme-linked immunosorbent
assay (ELISA). Because NO is unstable, the quantitative of
NO was indirectly determined based on the detection of
the blood nitrite and nitrate levels. The NO concentration
was measured using the Total Nitric Oxide Assay Kit (Assay
Designs, Enzo Life Sciences, Inc., New York, USA).
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FIGURE 1: Palmitate induces NO, IL-6, and TNF-alpha secretion in peripheral blood mononuclear cells (PBMNC) from patients with type
2 diabetes. (a) Nitrite production; (b) IL-6 production; (c) TNF-alpha production. Different letters denote significance at P < 0.05 using

Student’s t-test. n = 10 for each group.

2.6. Quantification of NO, MDA, and Proinflammatory
Cytokines in Plasma. The plasma levels of NO, IL-6, and
TNF-alpha were determined as described above. The plasma
MDA concentration was measured using the TBARS Assay
Kit (ZeptoMetrix Corp., New York, USA) according to the
manufacturer’s instructions.

2.7. Statistical Analyses. The values are presented as the
means + standard deviation (SD). The nonparametric
Kolmogorov-Smirnov test was used to assess the normal
distribution of the continuous variables. Comparisons
between groups were performed using unpaired Student’s
t-tests. Within-group correlations were performed using
Pearson’s r correlation. All analyses were considered
significant at P values < 0.05 using Origin 6.0 software
(Microcal Software Inc., Northampton, MA, USA).

3. Result

3.1. PBMNCs from T2DM Patients Are More Sensitive to
Palmitate Stimulation Than the Cells from ND Controls. As
depicted in Figure 1, palmitate activated the secretion of
NO, IL-6, and TNF-alpha in PBMNCs from T2DM patients
compared with those from ND controls (P < 0.05). The
results of the induced effect of palmitate on PBMNCs from
T2DM patients and ND controls, expressed as the means +
SD, were NO, 11.5 + 1.3 and 13.6 + 2.2; IL-6, 86.1 + 14.1 and
126.0 + 29.0; and TNF-alpha, 140.0 + 28.1 and 535.8 + 115,
respectively. The results shown in Figure 1 also demonstrated
that PBMNCs from T2DM patients secreted significantly
(P < 0.05) higher amounts of IL-6 (256.7 + 81.1) and TNEF-
alpha (96.1 + 17.5) compared with the cells from ND controls
(IL-6: 128.3 + 32.3, TNF-alpha: 78.0 + 13.6). No difference
(P > 0.05) was observed in NO production in PBMNCs



from T2DM patients (10.9 +1.7) and ND controls (10.9+1.2)
without stimulation.

The production of NO and proinflammatory cytokines
was not altered in the presence of BSA (P > 0.05) in T2DM
patients and ND controls: NO, 11.5+ 1.3 and 13.6 + 2.2; IL-6,
86.1+14.1 and 126.0 +£29.0; and TNF-alpha, 140.0 £ 28.1 and
535.8 + 115, respectively.

3.2. Palmitate-Induced NO and IL-6 Production in PBMNCs
Are Associated in T2DM Patients, but Not in ND Controls.
Figure 2 shows the Pearson’s correlations between the levels of
NO, IL-6, and TNF-alpha in PBMNCs from T2DM patients
and ND controls after palmitate stimulation. The correlation
between NO and IL-6 were significantly strong in stimulated
PBMNCs from T2DM patients (r = 0.63, P = 0.04) and
moderate in PBMNCs from ND (r = 0.47, P = 0.17).
No correlation was observed between NO and TNF-alpha in
PBMNC:s from T2DM patients and ND controls.

3.3. The Plasma MDA and Proinflammatory Cytokine (IL-
6 and TNF-Alpha) Concentrations Are Elevated in T2DM.
Table 2 shows that T2DM patients had enhanced plasma
concentrations of MDA, IL-6, and TNF-alpha compared with
ND (P < 0.05). No difference was observed in NO levels
between T2DM patients and ND (P > 0.05). The results,
expressed as the means + SD, were MDA, 14.5 + 3.5 and
8.7 £ 3.3; IL-6, 119.1 + 23.3 and 97.6 + 13.5; TNF-alpha,
78.7 + 32.7 and 58.5 + 29.5; NO, 53.5 + 12.9 and 51.13 + 8.7,
for T2DM patients and ND controls, respectively.

3.4. Plasmatic Nitric Oxide Levels Correlate with MDA and
IL-6 Levels in the Plasma from T2DM Patients. Correlations
between the levels of NO and IL-6 and TNF-alpha and
MDA are shown in Figure 3. Strong positive correlation
was observed between NO and IL-6 in T2DM patients
(r = 0.72, P < 0.0001). The results also demonstrated a
significantly negative correlation between NO and MDA in
T2DM patients (r = —0.47, P = 0.0093).

3.5. Plasmatic Triglyceride Levels in T2DM Patients Correlate
with the Plasma Levels of MDA, IL-6, and TNF-Alpha.
Figure 4 shows the Pearson’s correlations between the levels
of triglyceride and NO and IL-6 and TNF-alpha in the plasma
from T2DM patients and ND. The triglyceride levels were
positively correlated with MDA (r = 0.43, P = 0.018), IL-
6 (r = 0.52, P = 0.003), and TNF-alpha (r = 0.37, P = 0.048)
in the plasma of T2DM patients.

3.6. Plasmatic Glucose Levels in T2DM Patients Correlate with
the Plasma Levels of Triglycerides, MDA, IL-6, and TNF-
Alpha. Figure 5 shows the Pearson’s correlations between
the levels of glucose and triglycerides, NO, MDA, and
proinflammatory cytokines levels in the plasma from T2DM
patients and ND controls. The glucose levels were positively
correlated with triglycerides (r = 0.40, P = 0.03), MDA
(r = 0.60, P = 0.0006), IL-6 (r = 0.40, P = 0.04), and TNEF-
alpha (r = 0.35, P = 0.05) in the plasma of T2DM patients.
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TABLE 2: Plasma levels of oxidative stress biomarkers and proinflam-
matory cytokines.

Parameter T2DM (n = 29) ND (n = 16) P
Nitric Oxide (¢M) 53.5+12.9 51.13 + 8.7 ns
MDA (uM) 14.5+35 87+33 <0.05
IL-6 (pg/mL) 119.1 £23.3 97.6 £13.5 <0.05
TNF-alpha (pg/mL) 78.7 +32.7 58.5+29.5 <0.05

Data as means + SD.

ns: not significant.

Significant differences between the groups were determined using Student’s
t-test (P < 0.05).

4. Discussion

The results obtained in the present study showed that hyper-
glycemia in diabetes primes PBMNCs in vivo, inducing the
in vitro upregulation of NO and proinflammatory cytokines
in cells stimulated with palmitate. The plasmitic evaluation
demonstrated greater levels of triglycerides, MDA, IL-6,
and TNF-alpha in T2DM patients compared with ND. No
difference was observed in the NO plasma levels between
T2DM patients and ND. In addition, the results of this study
revealed that the levels of NO were correlated with MDA and
IL-6, and levels of triglycerides were correlated with MDA,
IL-6, and TNF-alpha in the plasma from T2DM patients.

Diabetes is a multifactorial disease characterized by
hyperglycemia and hyperlipidemia, which are important risk
factors for endothelial dysfunction resulting in cardiovas-
cular events [49]. FFAs, particularly SFA, have been shown
to induce a proinflammatory profile associated with obesity,
T2DM, insulin resistance, and dyslipidemia [4, 8-11]. The
results presented herein show the inflammatory effects of
the saturated fatty acid palmitate on PBMNCs from T2DM
patients but not in cells from ND (Figure 1), suggesting
that hyperglycemia plays a role in palmitate-induced inflam-
mation. Studies have shown that the combined effect of
high glucose and FFA levels in human monocytes modu-
late macrophage proliferation involving glucose-dependent
oxidation of LDL, potentiate cytotoxic effects via superoxide
overproduction, and amplify inflammation via TLR [21, 50,
51]. However, Tripathy et al. [32] demonstrated that an
increase in FFA concentration induces oxidative stress and
inflammation in human leukocytes from ND subjects. These
discrepancies might be associated with differences in the
experimental protocols.

The inflammatory changes observed in the presence of
palmitate could be associated with NF-kappaB activation
[21, 28, 32, 52-55]. NF-kappaB is a key mediator that reg-
ulates immune and inflammatory responses and modulates
multiple proinflammatory target genes in endothelial cells,
vascular smooth muscle cells, and macrophages [56]. The
activation of NF-kappaB leads to the increased production of
adhesion molecules, leukocyte-attracting chemokines, vari-
ous inflammatory cytokines, including TNF-alpha and IL-6,
and NO through iNOS expression [57-60].

NO has anti- or proinflammatory properties [61]. NO
plays an important role in vascular homeostasis, and in
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FIGURE 2: Pearson’s correlation coeflicients between NO and proinflammatory cytokines in PMBNCs from T2DM patients (a) and nondiabetic

controls (b) after stimulation with palmitate. n = 10 for each group.

immune cells, NO regulates antimicrobial and antitumor
activities, although excess NO production might cause tissue
damage and is associated with acute and chronic inflamma-
tion [56, 62]. Nitric oxide synthase (NOS) synthesizes NO
from L-arginine using NADPH and oxygen as cosubstrates
[63]. Three isoforms of NO synthase have been described:
neuronal (nNOS or NOS 1), inducible (iNOS or NOS 2), and
endothelial (eNOS or NOS 3) [64]. Activated macrophages
and neutrophils produce large amounts of NO through iNOS
activity [65, 66]. The results of this study demonstrated
increased NO production and a positive correlation between
NO and IL-6 levels in palmitate-stimulated PBMNCs from
T2DM patients, suggesting that iNOS expression can be ele-
vated through palmitate-induced proinflammatory cytokine
secretion. No differences were observed in the cells from ND
controls (Figures 1 and 2). Unbound palmitic acid treatment
increased NO production in skeletal muscle [67]. However,

in endothelial cells, FFA induced the inhibition of eNOS,
thereby attenuating NO production [68-71].

To evaluate in vivo inflammation, we quantified the
plasma levels of NO, the oxidative stress biomarker (MDA),
and proinflammatory cytokines (IL-6 and TNF-alpha) in
T2DM patients and ND controls. Consistent with other
studies [72-93], the results of the present study demon-
strated elevated levels of IL-6 and TNF-alpha, reflecting
the activation of innate immune cells, and high levels of
MDA, indicating the presence of oxidative stress in T2DM
patients compared with ND controls. Diabetic conditions
(hyperglycemia and hyperlipidemia) increase proinflamma-
tory and oxidative stress levels, culminating in endothelium
dysfunction [1, 27, 42, 56, 90, 94, 95]. Oxidative stress reduced
NO production through eNOS [56], and the increased levels
of superoxide could react with NO to produce peroxyni-
trite, a highly toxic product [23, 96]. Peroxynitrite nitrates



200
r=072
P < 0.0001 s T
n .
150 | ' -
f__g R ' .
E Ny ]
2100 wadl ..
O
=
50 |
0 ’ , \
I - 20 90 110
Nitrite (M)
200
r=-0.16
P =040
| |
150 |- )
::] | |
E [ ]
o0
S 100 F - )
S o . .
% __________ .-'..._ ......................
= | | | | "
n " u
50 b . " )
n n
.I
0 ! ' . I
. " 0 50 30 100
Nitrite (M)
100 =047 n
P =0.0093 u
80F e )
\'\.\ R u
~ \.' | | |
S 60t e
> | B
~ - W
p By ~m
%40- ..I.. et \\.\-'
20 -
0 ! ' I I
0 5 10 15 20 »
Nitrite (M)
(a)

Oxidative Medicine and Cellular Longevity

150
r=0.12
P=10.63
0 © R
o o
oI °_o°_._0. .............
[ - 5
’_] I > A
E (o)
gi o
\‘? [e)
=
50 |
0 . | |
0 20 m - |
Nitrite (uM)
100
r=0.09 5 -
P=0.74 R .
[e)
80 .
=) o
)
o0
& (o)
3 .. o
= —
Z 40
: (o)
20 .
o
0 . | |
O B 0 60 80
Nitrite (M)
20
r=-0.16
P =057
15k, i
\.\_\\ .
—~ . o
= o
:C/ 10 I \'\.\. (o)
a s
= -
¢ N ~.
5F o . o . T
0 ) . |
0 20 40 p )
Nitrite (M)
(b)

FIGURE 3: Pearson’s correlation coefficients between nitric oxide and proinflammatory cytokines and MDA in the plasma from T2DM patients
(a) and nondiabetic controls (b). n = 29 for T2DM patients and 16 for nondiabetic controls.

the tyrosine residues in a number of proteins and modulates
their functions [97, 98]. The results in the present study did
not show any differences in the plasma NO levels between the
studied groups (Table 2). However, we observed a negative
association between NO and MDA levels in the plasma
from T2DM patients, suggesting that increased oxidative

stress could affect NO biodisponibility, leading to endothelial
dysfunction in diabetes (Figure 3).

The results obtained in the present study also demon-
strated high levels of triglycerides in the plasma from T2DM
patients compared with ND controls (Table 1). FFAs are
stored in the body in the form of triglycerides and are released
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into tissues through lipolysis, a process regulated through
insulin [99]. Impaired insulin signaling increases lipolysis,
resulting in increased FFA levels [100, 101]. The results of the
present study showed that triglycerides levels are positively
associated with the MDA, IL-6, and TNF-alpha levels in the
plasma from T2DM patients, but this correlation was not
observed in the plasma from ND controls. No correlation was
observed between triglycerides and NO in the plasma from
the studied groups (Figure 4). Glucose levels are positively
correlated with the triglycerides, MDA, IL-6, and TNF-alpha
levels in the plasma from T2DM patients, but not in the
plasma from ND controls (Figure 5).

Accumulating evidence has shown that the regulation
of dyslipidemia is of equal importance for the regulation of
hyperglycemia and hypertension in the care of patients with
T2DM. Hyperlipidemia represents a major risk factor for
the development of vascular dysfunction and atherosclerosis
[27-30, 42, 43]. Most T2DM patients are obese and have
elevated plasma FFA levels [102, 103]. Moreover, high-fat
diets might induce metabolic dysfunction and inflammation
through the release of FFA through lipolysis and proinflam-
matory cytokines through downstream signaling [104, 105].

FFAs have been suggested to induce chronic low-grade
inflammation, activate the innate immune system, and cause
deleterious effects on vascular cells and other tissues through
inflammatory processes. The results obtained in the present
study demonstrated that hyperglycemia in diabetes exacer-
bates in vitro inflammatory responses in PBMNCs stimu-
lated with high levels of SFA (palmitate). Furthermore, the
results suggest that the endothelium levels of NO could be
regulated through oxidative stress and high levels of triglyc-
erides are correlated with oxidative stress and proinflam-
matory cytokine secretion in T2DM patients. Endothelial
dysfunction is associated with several pathophysiological
conditions in diabetes [56]. Combined therapy targeting the
intracellular mechanisms underlying metabolic alterations
leading to endothelial dysfunction is an important issue in
the prevention of vascular complications associated with
diabetes. The simultaneous control of hyperglycemia and
hypertriglyceridemia is necessary to ameliorate the progres-
sion to diabetic vasculopathy.
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