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Abstract

The protein composition, molecular weight distribution, and rheological properties of honey

locust, mesquite, Kentucky coffee tree, and carob seed germs were compared against

wheat gluten. Polymeric and Osborne fractionation protocols were used to assess biochemi-

cal properties. Dynamic oscillatory shear tests were performed to evaluate protein function-

ality. All samples had similar ratios of protein fractions as well as high molecular weight

disulfide linked proteins except for the Kentucky coffee tree germ proteins, which were

found to have lower molecular weight proteins with little disulfide polymerization. Samples

were rich in acidic and polar amino acids (glutamic acid and arginine,). Rheological analyses

showed that vital wheat gluten had the most stable network, while Kentucky coffee seed pro-

teins had the weakest. High molecular weight disulfide linked glutenous proteins are a com-

mon, but not universal feature of pod bearing leguminous trees.

Introduction

Glutenous proteins are a rare occurrence and few plants outside of wheat have proteins with

demonstrated gluten-like properties. To the authors knowledge, few proteins have been shown

to behave similarly as gluten to form a “true dough” that is workable/moldable by hand. These

are caroubin from the germ of the carob tree (Ceratonia siliqua) [1–5], zein from maize (Zea
mays) [6–9], and proteins of the marama bean (Tylosema species) [10]. The rubber-like physi-

cal properties of gluten have been selected for hundreds of years, and gluten was isolated for

the first time about 300 years ago [11]. Gluten creates a viscoelastic protein network when

combined with water and mixed, which is a key to the desired textural properties of bread and

bakery products. The exact mechanism of how such a protein network is developed and how

other dough components and ingredients contribute is not fully understood. It is believed that

high molecular weight proteins create a network with the help of intermolecular interactions

such as hydrogen bonding, disulfide bonding, and ionic interactions [12]. Such interactions

enable large polymeric proteins to create three-dimensional networks that form a viscoelastic
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rubber-like material known as dough. When searching for alternative protein sources to glu-

ten, the ability to form similar networks must be taken into account.

Because leguminous pod bearing trees including both mesquite and carob trees have been

shown to have seeds with high protein content, and in some cases functionalities similar to glu-

ten [1–4], greater exploration in this group of plants is a logical next step in finding alternatives

to gluten. Mesquite (Prosopis juliflora) is a tree belonging to the family of Leguminosae and

subfamily of Mimosoideae. This perennial ever-green tree is fast growing, resistant to drought,

and usually grows in semi-arid regions of the world [13]. Another leguminous tree native to

the Mediterranean region is carob (Ceratonia siliqua). The traditional food application of

carob has been carob seed gum, also called locust bean gum. The industrial production of

carob seed gum leaves behind a large amount of carob germ flour as a by-product, which

could be an excellent source for protein extraction [5]. Honeylocust (Gleditsia triacanthos) is

another tree that has gained interest for food and feed application. Improved varieties of

honey locust have a rapid growth rate, produce seeds with high nutritive value, and have a

higher seedpod yield [14]. Kentucky Coffee tree (Gymnocladus dioicus) is also a pod bearing

tree which is native to the central United States and produces reddish brown to black, 12 to 25

cm long pods that contains dark brown seeds [15].

Given the ability of carob germ flour proteins to form dough and similarities to trees with

similar life histories, the objective of this study was to analyze the germ protein composition

and molecular weight distribution difference among carob, honey locust, mesquite, and Ken-

tucky coffee tree seeds, as well as their rheological properties. This information is important

for determining gluten-like functionality and will provide an opportunity to better understand

the physicochemical basis of the viscoelastic properties of plant protein complexes such as

leguminous tree seeds proteins and wheat gluten. Discovery of glutenous proteins is key for

the future development of analogues to wheat bread [5, 16].

Results

Total protein

Protein content of all samples was measured via nitrogen combustion using a conversion fac-

tor of 6.25. From high to low, the total protein content of mesquite, carob, honey locust, com-

mercial carob, and Kentucky coffee seeds were 63.76, 52.96, 50.65, 49.90, and 31.53% (w/w)

respectively. In general, all seed germs had a relatively high protein content.

Polymeric protein extraction

Size exclusion chromatography separates proteins based on their hydrodynamic radius and

provides information on molecular weight distribution of proteins in a sample. Table 1 shows

Table 1. The size exclusion chromatography of soluble, insoluble, and residue protein fractions from polymeric protein extraction procedure, and Osborne

fractions.

Sample name Polymeric Protein Extraction (% of total peak area) Osborne fractions (% of total peak area)

Soluble proteins Insoluble proteins Residue proteins Albumins/globulins Prolamins non-reduced Prolamins reduced Glutelins

Carob 95.7 ± 2.3 3.8 ± 0.3 0.6 ± 0.0 44.6 ± 0.9 8.5 ± 0.1 2.7 ± 0.2 44.2 ± 0.2

Commercial carob 69.4 ± 16.6 20.6 ± 5.9 10.1 ± 2.2 64.8 ± 1.4 11.6 ± 0.0 3.7 ± 0.1 19.9 ± 0.1

Mesquite 70.6 ± 3.2 19.2 ± 1.1 10.2 ± 0.6 52.3 ± 1.4 8.7 ± 1.2 2.0 ± 0.0 37.0 ± 0.4

Kentucky coffee 88.5 ± 4.3 10.1 ± 1.1 1.4 ± 0.2 84.8 ± 1.4 3.9 ± 0.2 1.2 ± 0.1 10.1 ± 0.0

Honey locust 92.3 ± 0.1 6.9 ± 0.4 0.8 ± 0.1 76.9 ± 0.7 4.1 ± 0.4 1.8 ± 0.0 17.2 ± 0.7

https://doi.org/10.1371/journal.pone.0249427.t001
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the percentage of the soluble, insoluble, and residue protein fractions of each sample calculated

by dividing the total peak area of each fraction by the sum of areas from all fractions. For all

samples, soluble proteins are in the highest quantity, followed by insoluble proteins and resi-

due proteins. This is also apparent in Fig 1 where chromatograms obtained from the soluble

protein fraction (SP) and the insoluble protein fraction (IP) are compared. A common trait

that is observed in all five samples is that soluble protein fractions show a high amount of pro-

teins with low hydrodynamic radius (late eluting peaks) that are absent in insoluble fractions.

This suggests that smaller, more readily soluble proteins predominate in all samples. SEC also

showed that there is a large amount of variability between samples in their IP molecular weight

distribution.

Comparing the peaks of the reduced with non-reduced fractions revealed a shift to later elu-

tion times in all samples, except for the Kentucky coffee tree germ proteins. This shift in peaks

is the result of the splitting of more complex proteins into their subunits by disulfide bonds

cleavage by 2-ME. From Table 1 and Fig 1, it appears Kentucky coffee seed proteins contain

much lower molecular weight proteins with little to no disulfide linked polymers. Note, all

reduced samples had a large peak between minutes 12 to 14, which was the 2-ME added to the

samples as a reducing agent.

Osborne fractionation

Based on the Osborne fractionation scheme, proteins were divided into albumin/globulin,

prolamin, reduced prolamin, and glutelin fractions [5]. This classification of proteins by sol-

ubility is a classical technique for characterizing wheat and similar proteins. Individual pro-

tein fractions were separated by size exclusion chromatography (Fig 2). The majority of

proteins for all samples were in the albumin/globulin fraction, which has the highest solubil-

ity in aqueous salt solutions. The prolamin fraction shows lower amount of proteins, and

reduced prolamin fraction shows little to no protein. The glutelin fractions also show a large

portion of proteins. In the carob seed sample, the amount of glutelin is the highest, and

almost the same as albumin/globulin fraction (Table 1). The Osborne composition of the lab-

oratory produced carob germ flour was again similar to the results by Smith et al. [5]. Mes-

quite germ flour was similar in composition to the carob samples (Table 1), but with greater

amounts of protein.

Microfluidic separation (lab-on-a-chip)

Fig 3 shows the microfluidic size separation of Osborne fractions from all five samples. Each

band represents a protein with a specific molecular weight with the intensity of the color relat-

ing to the protein’s concentration. The molecular weights were determined based on a set of

standard proteins with molecular weights of 4.5, 7, 15, 28, 46, 63, 95, 150, and 240 kDa. The

prolamin fractions (reduced or non-reduced) contained little to no protein. Most of the pro-

teins were observed in the albumin-globulin fraction. This concurs with our results of size

exclusion chromatography of the Osborne extracts. The majority of proteins in these fractions

show a molecular weight of approximately 28 and 63 kDa. The glutelin fractions also appear to

contain 3 major proteins, which was similar to the findings by Smith et al. [5]. Carob and com-

mercial carob samples show the same proteins with commercial carob having the lower color

intensity (lower concentration). Honey locust and mesquite also show three major proteins in

their glutelin fraction, but with different molecular weights. Regarding the number of proteins,

the highest number of bands were observed in the albumin-globulin fractions, which showed

great diversity in molecular weight distribution.
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Fig 1. Size exclusion chromatograms obtained from soluble protein (SP) and insoluble protein (IP) fractions in

reduced and non-reduced forms.

https://doi.org/10.1371/journal.pone.0249427.g001
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Amino acid analysis

The amino acid composition of all 5 samples were compared to vital wheat gluten in both con-

centration and ratio to total amino acids (Table 2). As noted in Table 2, glutamic acid and

aspartic acid represent, both glutamine plus glutamic acid and asparagine plus aspartic acid

respectively. As expected, the major amino acid of vital wheat gluten was glutamic acid (233.2

Fig 2. Size exclusion chromatograms obtained from Osborne fractionation analysis.

https://doi.org/10.1371/journal.pone.0249427.g002
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mg/g) comprising 36.6% of total amino acids [17]. Glutamic acid contains a carboxylic acid

group attached to the end of the C3 side chain, which provides ionic interaction sites with

divalent ions in the dough to stabilize the viscoelastic structure of gluten [17]. Among samples,

carob had the highest percentage of glutamic acid (24.7 and 27.6% for carob and commercial

Fig 3. The SDS-PAGE analysis of Osborne fractions.

https://doi.org/10.1371/journal.pone.0249427.g003
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carob, respectively) followed by honey locust and mesquite containing 22.7 and 20.1% glu-

tamic acid, respectively. Glutamic acid was the most predominate amino acid in all five sam-

ples, which could to some extent explain the similar structure of those proteins to gluten when

mixed with water.

The second most abundant amino acid in gluten was proline at 87.6 mg/g comprising

13.8% of the total amino acids [17]. This high amount of proline and other non-polar amino

acids could provide hydrophobic interactions inside protein chains when mixed with water.

However, the amount of proline in the tree seed germ samples was not as high as it was in glu-

ten. Levels of other non-polar amino acids (such as glycine and valine) in all five samples was

comparable to that of gluten (Table 2).

All samples also showed a high amount of cysteine (highest in carob at 41.4 mg/g). This

unique amino acid, which provides disulfide bonding sites to other cysteine groups, is known

to have a key role in the viscoelastic structure of gluten. The high amount of cysteine in carob

and mesquite provides the possibility of disulfide interactions in those proteins when making

dough [5].

Water hydration capacity

Water hydration capacity (WHC) is an important functional property for an ingredient used

in food formulations where there is interaction with water. The WHCs of samples in increas-

ing order were 1.62±0.02, 1.73±0.05, 1.79±0.06, 1.81±0.02, 2.04±0.03, and 2.32±0.06, for Ken-

tucky coffee, vital gluten, commercial carob, mesquite, honey locust, and carob, respectively.

Except for Kentucky coffee, all the other samples had a WHC higher than gluten. The labora-

tory made carob germ flour showed the highest WHC with a hydration of 2.32 mL/g. The

Table 2. The amino acid composition of all five samples (concentration and ratio) compared with gluten.

Amino acid Concentration (mg/g) Ratio to total amino acids (%)

Vital

gluten

Carob Commercial

carob

Kentucky

coffee

Honey

locust

Mesquite Vital

gluten

Carob Commercial

carob

Kentucky

coffee

Honey

locust

Mesquite

Aspartic acid1 21.6 40.0 35.0 24.1 49.3 50.1 3.4 8.6 8.9 10.7 10.2 8.9

Threonine 15.7 14.3 12.8 14.0 14.4 12.5 2.5 3.1 3.3 6.2 3.0 2.2

Serine 36.8 26.4 22.3 17.2 29.0 29.2 5.8 5.7 5.7 7.6 6.0 5.2

Glutamic

acid2
233.2 115.3 108.4 34.1 109.7 112.6 36.6 24.7 27.6 15.1 22.7 20.1

Glycine 26.4 27.3 23.4 13.2 26.6 31.2 4.2 5.8 6.0 5.9 5.5 5.6

Alanine 18.3 21.4 19.1 10.9 23.7 27.8 2.9 4.6 4.9 4.8 4.9 5.0

Cysteine 32.0 41.4 12.2 8.8 14.1 30.9 5.0 8.9 3.1 3.9 2.9 5.5

Valine 13.1 9.0 7.8 5.9 11.9 16.3 2.1 1.9 2.0 2.6 2.5 2.9

Methionine 1.2 3.0 0.9 0.7 1.4 3.7 0.2 0.6 0.2 0.3 0.3 0.7

Isoleucine 10.9 6.9 6.2 4.5 9.2 8.4 1.7 1.5 1.6 2.0 1.9 1.5

Leucine 40.8 27.6 23.2 14.3 32.6 39.8 6.4 5.9 5.9 6.3 6.7 7.1

Tyrosine 22.2 13.3 11.9 7.4 15.3 17.3 3.5 2.8 3.0 3.3 3.2 3.1

Phenylalanine 36.3 16.2 13.1 10.5 19.7 25.5 5.7 3.5 3.3 4.6 4.1 4.6

Lysine 8.4 25.8 22.0 15.9 27.3 21.3 1.3 5.5 5.6 7.0 5.6 3.8

Histidine 11.6 11.0 9.5 5.4 12.6 16.9 1.8 2.4 2.4 2.4 2.6 3.0

Arginine 20.6 60.7 50.9 28.6 66.5 82.3 3.2 13.0 13.0 12.7 13.7 14.7

Proline 87.6 7.1 13.7 10.3 20.4 34.7 13.8 1.5 3.5 4.6 4.2 6.2

1 Aspartic acid + asparagine
2 Glutamic acid + glutamine

https://doi.org/10.1371/journal.pone.0249427.t002
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value for gluten was 1.73 mL water per gram gluten. This shows the superiority of carob and

honey locust over gluten for hydration in food formulations.

Dynamic oscillatory shear analysis

The data in the linear viscoelastic region showed that Kentucky coffee germ had the highest

elasticity among all protein samples (Fig 4). Ǵ values were ~2x105 Pa for the Kentucky coffee

seed germ at low applied strains, whereas vital wheat gluten showed the lowest Ǵ values with

2x104 Pa, showing a high degree of variability in Ǵ with one order of magnitude difference

between the highest and lowest values. The honey locust sample was found to be the only pro-

tein showing a crossover at a strain value of around 20%. Ǵ and Ǵ´ for the honey locust pro-

tein represented a crossover at the highest strain applied (100%). However, Ǵ and Ǵ´ values

for the rest of the proteins did not show a crossover up to the highest strain applied. The cross-

over observed for the Ǵ and Ǵ´ values of the Kentucky coffee and honey locust showed the

Fig 4. Strain sweep data for the protein samples (ω = 1 Hz, T = 20˚C).

https://doi.org/10.1371/journal.pone.0249427.g004
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highest elastically dominated linear rheological properties, indicating a structural decay, which

resulted in a more viscously dominated behavior for these proteins as the amplitude of strain

increased.

The laboratory produced carob germ flour represented higher Ǵ and Ǵ´ values compared

to the commercial carob. Ǵ values for the carob protein overlapped with the Ǵ values of mes-

quite. However, the magnitude between the Ǵ and Ǵ´ values for the carob protein was higher

compared to that of mesquite, indicating a more elastic structure for the carob protein. Com-

mercial carob protein and vital wheat gluten showed similar Ǵ´ profiles throughout the

applied strain range.

Frequency sweep tests, where the effect of frequency on the linear viscoelastic properties of

different protein doughs were studied, revealed that Ǵ values were higher than Ǵ´ values for

all samples within the applied frequency range (0.1–100 rad/sec). At the lowest frequency

applied, Ǵ and Ǵ´ values for vital wheat gluten were almost the same. As the frequency

increased, this difference started to increase until the frequency reached 0.25 rad/sec. Above

this frequency, Ǵ´ values were recorded to be 2 times below Ǵ values.

The ratio of viscous (Ǵ´) to elastic (Ǵ ) components which is known as loss factor (tanδ) is

another commonly used parameter to evaluate the dynamic viscoelastic properties of materials

[18]. Since Ǵ values are higher than Ǵ´ values for all samples throughout the applied fre-

quency range, tanδ for all samples were lower than 1. All protein dispersions, except for vital

wheat gluten, showed increasing tanδ values with respect to increasing frequencies (Fig 5B)

suggesting a viscously dominated linear viscoelastic behavior, which is typical for biopolymer

gels [19]. Vital wheat gluten represented decreasing tanδ at low frequencies up to 0.25 rad/sec

and above this frequency showed a slight increase, then remained consistent at frequencies

above 10 rad/sec.

Phase angle δ = 0˚ or tanδ = 0 corresponds to an elastic response, while δ = 90˚ or tanδ =1

represents a viscous response. The material behavior is described as viscoelastic in the case of

phase angle being within the limits of 0˚<δ<90˚ [20, 21]. As pointed out with the strain sweep

(Fig 4), frequency sweep (Fig 5A) data and tanδ values (Fig 5B), vital wheat gluten represented

the highest viscously dominated viscoelastic behavior with the highest δ values for all frequen-

cies studied. Again, the most consistent δ values observed for vital wheat gluten against the

increasing frequency proved the stability of the gluten network. Depending on the phase angle

values recorded at frequencies above 1 rad/sec (Table 3), the protein samples are listed as fol-

lows in terms of the degree of elasticity dominating their viscoelastic behavior: commercial

carob>carob>mesquite�honey locust>Kentucky coffee>vital wheat gluten.

Discussion

The polymeric protein extraction is a biochemical method used to gage wheat gluten quality.

Here proteins are sequentially separated unreduced into SP (soluble in SDS), IP (soluble in

SDS with mild reduction through ultrasonication), and RP (soluble in SDS with a chemical

reductant). For glutenous proteins, greater proportions of IP are indicative of greater quanti-

ties of high molecular weight proteins, which can result in increased dough strength and qual-

ity [5, 22–24]. While IP is known to lead to improved gluten strength and dough quality in

wheat, the proteins in wheat IP fractions are typically skewed to a higher molecular weight [5,

22–24] than what was observed in the experimental tree seed samples. In the tree seed samples,

the molecular weight distribution varied widely amongst samples. The Kentucky coffee trees

seeds had almost no proteins eluting at the early eluting exclusion peak, while mesquite and

the commercially produced carob germ flour had the most (Fig 1). It was also interesting that

the molecular weight distribution of the carob samples IP varied within this study and from
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Fig 5. A) Frequency sweep data for the protein samples (γo = 0.02%, T = 20˚C), B) Loss factor (tanδ) as a function of

frequency for the protein samples.

https://doi.org/10.1371/journal.pone.0249427.g005
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the work by Smith et al. [5]. The laboratory produced carob germ flour proteins in this project

were similar to the data reported in Smith et al. [5]. This suggests that there is a potential for

regional, seasonal, and/or genetic influence on the protein composition and quality. Further-

more, disulfide linked high molecular proteins are a key factor in achieving glutenous behavior

of proteins [24]. From the microfluidics data, it is evident that proteins from each of the seeds

studied varied substantially. This is discernible by the presence and absence of bands from one

seed to the next for a given protein fraction. While each of the seeds with glutenous properties

had high molecular weight disulfide linked insoluble proteins, it is evident that the composi-

tion of these high molecular weight proteins varied. As demonstrated by these data, there are

many different routes to achieved gluten-like properties. One of the key parameters for achiev-

ing this, seems to be high molecular weight disulfide linked proteins capable of spontaneously

forming protein networks in the presence of water. Aside from biochemical aspects, rheologi-

cal properties are another important factor to understand for application of proteins in the

production of wheat-like dough. The G’, G”, and crossover values of this study demonstrated

an elastically dominated system, which fits with the polymeric protein extraction and Osborne

fractionation data. This is particularly evident in the mesquite and lab produced carob sam-

ples, where the lab made carob germ flour and mesquite germ flour were found to be in similar

ratios for both extraction techniques (Table 1 & Fig 1). It is also logical that these samples were

dominated by elastic properties when compared to wheat since they have low prolamin con-

tent, the protein fraction known to provide extensibility to wheat gluten [5].

For frequency sweep tests, as the frequency increased, the difference between the Ǵ and Ǵ´

values became larger (Fig 5), suggesting a less solid-like behavior for all protein samples, except

for vital wheat gluten. Furthermore, the consistent ratio between Ǵ and Ǵ´ values with respect

to increasing frequencies revealed a relatively stable network for vital wheat gluten compared

to the other protein samples. This was likely due to the lack of prolamins in the tree seeds sam-

ples, which are predominately gliadins and glutenins in wheat, which aide in cohesiveness of

the system [25].

Kentucky coffee germ showed the highest Ǵ and Ǵ´ values for the whole frequency range,

while vital wheat gluten represented the lowest Ǵ and Ǵ´ values which concurs with the data

obtained through the strain sweep tests in the linear region. At low frequencies, carob and

honey locust represented similar Ǵ values; however, the relatively higher Ǵ´ observed for

honey locust demonstrated a more viscously dominated viscoelastic behavior. Mesquite,

carob, and commercial carob samples exhibited the most elastic behavior at low frequencies

due to having the largest difference between Ǵ and Ǵ´ values. This might be explained by the

presence of disulfide linked IP polymers and the lack of prolamins. Increasing frequencies

resulted in a greater increase in the viscous components of mesquite and carob samples, which

made the commercial carob sample the most elastically dominated protein sample among the

proteins studied.

The information obtained through tanδ values concurs with the frequency sweep results

(Fig 5A). indicating vital wheat gluten had the lowest elastically dominated linear viscoelastic

Table 3. Phase angle (δ) values obtained at certain frequencies for the protein dispersions.

ω (rad/sec) δ (˚)

Vital gluten Commercial carob Carob Honey locust Mesquite Kentucky coffee

0.1 42.38 14.94 11.49 18.31 11.69 17.7

1 28.51 15.34 16.78 20.22 20.08 22.7

10 29.61 16.62 18.48 21.91 21.8 25.4

100 29.91 19.25 21.4 25.03 24.25 27.9

https://doi.org/10.1371/journal.pone.0249427.t003
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behavior, while having the most stable network among the other protein samples against the

applied frequency range. Even though, Kentucky coffee tree proteins showed the highest Ǵ

values within the applied strain and frequency ranges, its viscous component (Ǵ´) showed the

highest values among the protein samples tested. Kentucky coffee tree germ also represented a

crossover point (Ǵ´> Ǵ ) as the amplitude of strain increased. The dominance of the viscous

component in the rheological behavior of Kentucky coffee tree samples resulted in high tanδ
values in comparison with the other protein samples studied, suggesting that Kentucky coffee

has the highest elastic properties with a weaker network structure that was affected by the

applied strain and frequency the most. This was also supported by the biochemical data

(Table 1 & Fig 1), demonstrating low quantities of high molecular weight proteins, little disul-

fide cross-linking, and little prolamin and glutelin in the Kentucky coffee germ samples. Com-

mercial and laboratory carob germ showed similar tanδ trends and had the lowest range of

tanδ, suggesting a more rigid structure. Locust and mesquite proteins showed similar behavior

for most of the applied frequency range. However, increasing frequency caused a sharper

increase in tanδ for mesquite, which means it behaved more elastic at lower frequencies, but

the viscous component became more dominant against increasing frequencies compared to

honey locust protein. This was further supported by a larger increase in the phase angle values

for mesquite compared to that of the honey locust as the frequency increased (Table 3).

In conclusion, most proteins were found in the soluble and albumin-globulin fractions with

disulfide cross linkage and molecular weights around 28 and 63 kDa. Samples were rich in

acidic and polar amino acids, such as glutamic acid, arginine. Vital wheat gluten showed the

lowest elastically dominated linear viscoelastic behavior, while showing the most stable net-

work among the other protein samples. Kentucky coffee tree seed proteins showed the highest

elastic properties with a weaker network structure that was affected by the applied strain and

frequency the most. From this, it is apparent that glutenous proteins are a common feature in

pod bearing leguminous trees. However, results from the Kentucky coffee tree demonstrate

that this feature is not universal among trees of this type. Information on the composition,

molecular weight distribution, and rheological properties of carob, honey locust, mesquite,

and Kentucky coffee tree seeds’ protein fractions, provides vital information for the discovery

and potential applications of glutenous proteins in food systems.

Materials and methods

Materials

Mesquite of the variety Algarrobo, Carob, and Kentucky coffee tree seeds were obtained from

Sheffield’s Seed Co., Inc (Locke, NY, USA). Honey locust seeds were collected locally in the

area of Moscow, ID, USA during the 2017 growing year. A commercially available carob germ

flour under the market name Grindsted Veg Pro Carob Protein was obtained from Danisco

and was used a standard for comparison. Vital wheat gluten (GluVital™) was obtained from

Cargill (Wayzata, MN).

Sample preparation

All seeds were removed from the pod and the testa was removed with a 60˚C 9.2 M sulfuric

acid solution. The sulfuric acid was used to carbonize the testa as described by Battle and Tous

[26]. All seeds were treated with sulfuric for 5 hours, except for the Kentucky coffee tree seeds.

After treatment with sulfuric acid, the carbonized testa was removed with a water rinse. The

Kentucky coffee tree seeds were quite robust and had a 3–4 mm thick testa layer, which took

22 hours to carbonize. The testa removal was optimized so that no endosperm or germ was

carbonized. The endosperms were easily removed by hand, leaving only the cotyledons
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(germ). The germ was then ground into a flour with a lab scale coffee grinder (Krups model

F203, China) for 1 minute. For analyses, rheological properties tests were done in triplicates.

All other analyses were carried out in duplicates.

Polymeric protein extraction

Proteins of the various seed germs were extracted by the polymeric protein extraction protocol

described by Smith et al. [5]. Proteins were sequentially extracted into soluble proteins (SP)

and insoluble proteins (IP). To accomplish this, 20 mg of seed flour was extracted twice with

15 minutes of continuous vortexing in 1 mL of 50mM sodium phosphate, pH 7.0 buffer con-

taining 1% SDS (w/v) to obtain the SP fraction. This extract was collected after 5 min of centri-

fugation at 9300 x g. The supernatants of the two SP extracts were pooled in a 1:1 ratio. The IP

extraction was carried out with 1 mL of the same extraction buffer as the SP extraction, but

with the addition of sonication for 30 s at 10 W. This was repeated twice, and extracts were

pooled in a 1:1 ratio after centrifuging for 5 min at 9300 x g. To determine how much protein

was remaining, the residue proteins (RP) were extracted twice with the same buffer as the SP

extraction, but with the addition of 2% 2-mercaptoethanol (2-ME) (v/v) and pooled as above.

Osborne fractionation

A modified Osborne fractionation was completed as described by Smith et al. [5]. Briefly,

proteins were sequentially extracted into four protein classes based on solubility. In order of

extraction, the fractions were albumins/glubulins, prolamins, reduced prolamins, and glute-

lins. The first faction was completed to extract both the albumin and globular proteins using

20 mg of seed flour and a 50 mM Tris-HCl pH 7.8 buffer containing 100 mM KCl and 4 mM

EDTA extraction solution. The prolamin fraction was extracted with 50% n-propanol. The

reduced prolamin was carried out with 50% n-propanol containing 2% 2-ME (v/v), and the

glutelin fractions was completed with a pH 10.0 12.5 mM sodium borate buffer containing 2%

SDS (w/v) and 2% 2-ME (v/v). Each extraction used 1 mL of extraction solvent and was carried

out with 15 minutes of continuous vortexing, followed by centrifugation for 5 min at 9300 x g.

Each fraction was extracted twice and pooled in a 1:1 ratio.

Protein quantifications

Quantification of total protein was carried out via nitrogen combustion according to AACCI

method 46–30.01 [27] using a LECO 628 Nitrogen Determinator (LECO, St. Joseph, MI). A

conversion factor of 6.25 was used to convert percent nitrogen to percent protein.

Size exclusion chromatography

An Agilent 1100 Series HPLC system equipped with an auto-sampler (model G1313A) and a

UV detector at 210 nm was used. The separation was carried out on a 30 x 7.8 mm (L x D) Bio-

Sep s4000 column (Phenomenex Inc. USA) with exclusion range of 15,000–500,000 Da (0.5%

SDS) and using 1% SDS pH 7.0 mobile phase at the flow rate of 1 mL/min. The OpenLAB

CDS (ChemStation Edition) software was used to analyze, integrate, and collect data.

Microfluidic analysis

Microfluidic analysis was performed on the Osborne and polymeric protein extractions on an

Agilent Bioanalyzer 2100 (Agilent, Santa Clara, CA). Extracted samples were analysed reduced

and unreduced. Analysis was completed in accordance to the instrument manufacturer’s
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specifications. For reduced samples, 2-ME was used as the reducing agent and added at a rate

of 2% (v/v).

Amino acid analysis

For all samples, 19 common amino acids were determined by HPLC using an Agilent 1100

equipped with a diode array detector. Hydrolysis and amino acid analysis followed methods

described by Yufei [28] which used updated protocols first described in the Hewlett Packard

Amino Quant Operator’s Handbook [29]. Cysteine was assessed by the creation of Cysteine-

3-mercaptopropionic acid (Cys-MPA) complexes as described by the Amino Quant Operator’s

Handbook [29]. This was done to limit the degradation of cysteine during hydrolysis, which

was an issue during preliminary optimization. Signal to noise ratios of 10:1 and 3:1 defined the

LOQ and LOD, respectively.

Water hydration capacity

The water hydration capacity of samples was measured according to AACC method [30] num-

ber 56–37.01, which determines that amount of water a 1 g of sample can retain under low

speed centrifugation. Only enough distilled water is added to saturate the sample without pro-

ducing a liquid phase. Water hydration capacity was expressed as grams of water retained per

gram of sample.

Dynamic oscillatory shear analysis

Dynamic oscillatory shear tests were conducted using Physica MCR 301 rheometer (Anton

Paar, Germany) to study the linear rheological properties of the protein samples Strain sweeps

in the strain range of 0.01–100% using the frequency of 1 Hz were conducted to determine

the linear region ranges for the samples. Frequency sweep tests were carried out using the fre-

quency range of 0.1–100 rad/sec at a strain value of 0.02% selected in the linear region for each

protein sample. All rheological measurements were carried out in triplicate at 20˚C. A 25 mm

parallel plate geometry and a gap of 2 mm were used. Samples were rested prior to measure-

ment for about 15 minutes until the axial force value decreased to 0.1 N. Samples were coated

with vacuum grease in order to prevent moisture loss during the measurements. The average

data was plotted using Microsoft Excel (Microsoft Office 365 ProPlus).
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