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Abstract: White blood cell (WBC) counts represent overall immunity. However, a few studies have
been conducted to explore the genetic impacts of immunity and their interaction with lifestyles.
We aimed to identify genetic variants associated with a low-WBC risk and document interactions
between polygenetic risk scores (PRS), lifestyle factors, and nutrient intakes that influence low-WBC
risk in a large hospital-based cohort. Single nucleotide polymorphisms (SNPs) were selected by
genome-wide association study of participants with a low-WBC count (<4 × 109/L, n = 4176; low-
WBC group) or with a normal WBC count (≥4 × 109/L, n = 36,551; control group). The best model
for gene-gene interactions was selected by generalized multifactor dimensionality reduction. PRS
was generated by summing selected SNP risk alleles of the best genetic model. Adjusted odds ratio
(ORs) of the low-WBC group were 1.467 (1.219–1.765) for cancer incidence risk and 0.458 (0.385–0.545)
for metabolic syndrome risk. Vitamin D intake, plant-based diet, and regular exercise were positively
related to the low-WBC group, but smoking and alcohol intake showed an inverse association.
The 7 SNPs included in the best genetic model were PSMD3_rs9898547, LCT_rs80157389, HLA-
DRB1_rs532162239 and rs3097649, HLA-C rs2308575, CDKN1A_rs3176337 and THRA_rs7502539. PRS
with 7 SNP model were positively associated with the low-WBC risk by 2.123-fold (1.741 to 2.589).
PRS interacted with fat intake and regular exercise but not with other nutrient intakes or lifestyles.
The proportion with the low WBC in the participants with high-PRS was lower among those with
moderate-fat intake and regular exercise than those with low-fat intake and no exercise. In conclusion,
adults with high-PRS had a higher risk of a low WBC count, and they needed to be advised to have
moderate fat intake (20–25 energy percent) and regular exercise.

Keywords: white blood cells; immunity; polygenetic risk scores; metabolic syndrome; vitamin D;
cancer

1. Introduction

The immune system is composed of innate and adaptive immunity systems. When
foreign materials and pathogens enter the body, innate immunity is activated, and adaptive
immunity is subsequently initiated. Immunity dysregulation results in immune deficiency
or immune system overactivation [1]. As encountered in lymphopenia, immune exhaustion
renders the individual susceptible to infection, certain cancers and sepsis, whereas its
overactivation is associated with autoimmune diseases. White blood cells (WBC), also
called leukocytes, are responsible for innate and adaptive immunity [2]. WBCs protect
the body against bacterial and viral infections and are more strongly linked to the innate
immune system [3]. Natural killer cells, mast cells, macrophages, eosinophils, basophils,
neutrophils, and dendritic cells are components of the innate immune system, whereas
other less numerous WBC, including B and T cells, are components of the adaptive immune
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system [4]. Therefore, WBC is associated mainly with innate immunity to fight against
pathogen attacks, and it is involved partly in adaptive immunity [4].

Immediate response to a noxious challenge is achieved by activating the innate im-
mune system, which manifests as the rapid induction of acute inflammation. However, low
immunity fails to fight against pathogens susceptible to severe infection and potential can-
cer risk, while subclinical immune overactivation induces persistent inflammation, called
chronic low-grade inflammation [5,6]. Persons with either low- or overactive immunity are
susceptible to infection severity and mortality during pathogen attack since persons with
low immunity cannot efficiently eliminate pathogens and those with overactive immunity
have a high chance of inducing cytokine storms [1]. Thus, optimal regulation of immunity
is a strategy used to reduce metabolic syndrome (MetS), infection, and cancer risk [3].

No promising biomarkers of immunity are available in clinical settings, but WBC
counts are generally used to assess the immune status [7]. WBC counts provide an easily
accessed and reliable biomarker of overall immunity in the clinical setting. Under normal
circumstances, WBC counts are considered to range from 4 to 11 × 109/L. However,
a WBC count of 6.2 × 109/L is determined as the cutoff point for elevated metabolic
syndrome risk in the Korean population [2]. Therefore, a WBC count of 4–6.2 × 109/L
is considered normal in a narrow definition. High WBC counts are related to cigarette
smoking, splenectomy, bacterial infection, inflammatory disease, leukemia, and tissue
damage. In contrast, low WBC counts are associated with bone marrow deficiency or
failure, liver or spleen diseases, viral infections, cancers, cancer medication, and severe
emotional or physical stress. Therefore, low and high WBC counts are involved in the
etiology of different diseases.

WBC counts are linked to genetic predisposition and lifestyle factors and their inter-
actions. At the genetic level, WBC counts are associated with human leukocyte antigen
(HLA)-C, HLA-G, HLA-DQA1/DRB1, interleukin (IL)-10, and cluster of differentiation 4
(CD4) polymorphisms, which are known to be involved in various immune-related dis-
eases [8–11]. Genetic variants of these polymorphisms have been mainly studied in the
context of immunodeficiency [8,12,13]. Individuals with the HLA-C rs9264942 TT geno-
type demonstrate significantly higher human immunodeficiency virus type 1 (HIV-1)
viral loads than those with the CC genotype [8]. The rs1518111 and rs1800872 poly-
morphisms of IL-10 (a potent anti-inflammatory cytokine) are associated with low CD4
T-cell counts in HIV patients [13]. HLA-B polymorphism has been reported to be asso-
ciated with penicillin allergy [12], and the HLA-DQA1/DRB1 polymorphism is found to
be significantly associated with hepatocellular carcinoma development (hazard ratio 4.91,
95% CI = 1.41–17.11, p = 0.01) [10]. WBC counts also interact with lifestyles, but only a
few studies have addressed their interactions. We aimed to identify the genetic variants
associated with low-WBC counts (<4 × 109) and the interaction of their polygenetic risk
scores (PRS) with lifestyles, including nutrient intake, smoking, and physical exercise in
a large hospital-based cohort. In addition, we examined the relation between PRS and
cancers and metabolic syndrome risk.

2. Methods
2.1. Participants

Korean adults >40 years old (n = 58,645) were voluntarily recruited to participate in
the hospital-based urban cohort of Korean Genome and Epidemiology Study (KoGES)
organized by the Korean Center for Disease and Control during 2004–2013. The replicate
study for determining obesity-related genetic variants was conducted in 5493 adults aged
40–79 years to have Korean Chip data in the Ansan/Ansung cohort. The institutional
review board of the Korean National Institute of Health approved KoGES (KBP-2015-055),
and the protocol of the present study was approved by the institutional review board
Hoseo University (1041231-150811-HR-034-01). Written informed consent was obtained
from all participants.
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2.2. Anthropometric and Biochemical Measurements

Information on age, gender, residence area over at least the previous six months, edu-
cational level, income, smoking status, physical activities, and daily alcohol consumption
were obtained during a health interview [14]. When the participants conducted moderate-
intensity exercise for 30 min more than three times a week (>150 min/week), they were
considered as having regular exercise (physical activity). Moderate-intensity exercise in-
cluded fast walking, mowing, badminton, swimming, tennis, and jogging. The participants
were divided into two groups with and without regular exercise. Smoking status was cate-
gorized as current smoker, past smoker, or never-smoker [15] and alcohol consumption as
nondrinker (0 g/day), mild drinker (0–20 g/day), and moderate drinker (>20 g/day) [15].

Trained technicians measured body weights, heights, and waist circumferences using
standard procedures [16]. Body mass index (BMI) was calculated by dividing weight (kg) by
height (m) squared. Blood was drawn after a ≥12 h fast (no food or water), and plasma and
serum were separated for biochemical analysis [16]. Fasting plasma glucose concentrations
and serum lipid profiles were measured using a Hitachi 7600 Automatic Analyzer (Hitachi,
Tokyo, Japan). Serum high-sensitive C-reactive protein (hs-CRP) concentrations were
measured by ELISA kit. WBC counts were conducted using EDTA-treated blood. Blood
pressures were measured on right arms at heart height in a sitting position after resting for
over 10 min.

2.3. Definition of Immunity and MetS

The participants were divided into two groups (<4 × 109/L and ≥4 × 109/L) accord-
ing to WBC counts for genetic analysis of the low-WBC risk. They were also categorized
into three immunity groups, including <4 × 109/L, 4–6.2 × 109/L, and ≥6.2 × 109/L for
metabolic analysis. The participants with MetS were categorized according to the 2005
revised National Cholesterol Education Program-Adult Treatment Panel III criteria for
Asia as described in the previous studies [17,18]. The participants answered the history of
immunity-related diseases, including allergy, gastritis, asthma, bronchitis, and arthritis,
used as confounding variables.

2.4. Dietary Pattern Analysis from Semi-Quantitative Food Frequency Questionnaire (SQFFQ)

Usual food intakes were determined using an SQFFQ developed and validated for
KoGES [19]. The questionnaire included 106 food items, and participants selected item
frequencies and serving sizes (from among 1/2, 1, or 2 serving sizes). Overall consumptions
were calculated by multiplying item frequencies by serving sizes, and nutrient intakes were
calculated from daily food intakes using a Computer-Aided Nutritional Analysis Program
(ver. 3.0) developed by the Korean Nutrition Society [19].

The 106 food items were categorized into 29 food types used as independent variables
in the factor analysis to determine dietary patterns. The number of factors retained after
principal component analysis (PCA) was determined using eigenvalues of >1.5 and the
orthogonal rotation procedure (Varimax) [20]. Food groups with factor loadings ≥0.40
significantly contribute to assigning dietary patterns. Four distinct dietary patterns, the
Korean balanced diet (KBD), plant-based diet (PBD), Western-style diet (WSD), and rice-
main diet (RMD), were selected for Korean dietary patterns. The factor loadings of food
groups in the four dietary patterns were presented in Supplemental Table S1.

2.5. Dietary Inflammatory Index (DII)

DII was calculated from individual food and nutrient intakes having the potential
for anti-inflammation using their dietary inflammatory weights for certain foods and
nutrients (energy, 32 nutrients, four food products, four spices, and caffeine), as previously
described [21]. It indicated the anti-inflammatory food intake of the participants. Since
the SQFFQ did not include spice intakes, we excluded garlic, ginger, saffron, and turmeric
intake from DII calculations. DIIs were calculated by multiplying the dietary inflammatory
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weights of the 38 food and nutrient components by daily intakes and dividing the sum of
these products of 38 items by 100.

2.6. Quality Control of Genotyping

Individual genetic variants were determined by the Center for Genome Science at the
Korea National Institute of Health and provided for further study. Genomic DNA was
extracted from whole blood, and genetic variants were determined using a Korean Chip
(Affymetrix, Santa Clara, CA, USA) designed for Korean genetic research that included
known disease-related SNPs [22]. Genotyping accuracy was confirmed with Bayesian
robust linear modeling with the Mahalanobis Distance Genotyping Algorithm [23]. In
quality control, genetic variants were selected with dish quality control (>0.82) and call
rates (>98%) and excluded low-quality SNPs by Axiom Analysis Suit Guideline from Ther-
moFisher (Waltham, MA, USA). All genetic variants satisfied Hardy-Weinberg equilibrium
(HWE) inclusion criteria (p > 0.05), and the genotype missing rate was less than 5% [22].

2.7. Genetic Variants for Low-WBC Count Risk

The flow chart used to generate polygenetic risk scores (PRS) for low WBC count
(<4 × 109/L) risk is shown in Figure 1. Participants were divided into low-WBC group
(n = 4176) or a control (n = 36,551) group in the hospital-based cohort. GWAS was conducted
to explore genetic variants associated with low-WBC risk at p < 0.00001 to have a big pool
of SNPs to generate the best model explaining immunity-related pathways using PLINK
2.0 (http://pngu.mgh.harvard.edu/~purcell/plink (accessed on 12 January 2021)). The
602 genetic variants were selected from the GWAS, and their gene names were identified
using g:Profiler (https://biit.cs.ut.ee/gprofiler/snpense (accessed on 26 January 2021)).
Fifty-three genetic variants without corresponding gene names were excluded. Genes of
the 549 SNPs selected were screened for immunity, and 21 genes were corresponding to
549 SNPs. The SNPs were then checked for linkage disequilibrium (LD) in the same chromo-
somes using LocusZoom (https://genome.sph.umich.edu/wiki/LocusZoom_Standalone
(accessed on 3 February 2021), and those with weak LD (r2 < 0.3) were included. Nine-
teen SNPs were left from LD analysis, and their genetic characteristics were shown in
Supplemental Table S2.

As the replicate study, the adjusted ORs of the selected SNPs for the best model
were analyzed for low-WBC risk in the 5493 participants in Ansan/Ansung cohort who
determined genetic variants with Korean Chip. The number of participants in the case and
control groups was 207 and 5286, respectively.

2.8. The Best Model for Gene–Gene Interactions of Genetic Variants by Generalized Multifactor
Dimensionality Reduction (GMDR)

The 19 SNPs were used to find the best model using GMDR, and the final best model
included 10 SNPs. The best model was chosen with the interactions of potential genetic
variants for the low-WBC count by GMDR [17]. Using GMDR, the best SNP-SNP interaction
model was selected using a p-value of <0.05 by the sign rank test with trained balanced
accuracy (TRBA) and testing balanced accuracy (TEBA) with adjustment for the covariates
of age and gender, living area, body mass, and serum hs-CRP concentration [24]. Ten-fold
cross-validation was used to check cross-validation consistency (CVC) since the sample
size was larger than 1000 [24]. The risk and non-risk alleles of each SNP were counted
as 1 [25]. For example, when the C allele was associated with an increased risk of the
low-WBC count, TT, CT, and CC were assigned 0, 1, and 2. PRS was obtained by summing
the number of risk alleles in the best model. PRS of the best model containing 2 or 7 SNPs
were categorized as (0–1, 2, and ≥3) and (0–5, 6–7, and ≥8) by PRS, referred to as low-,
medium-, and high-PRS groups. A high-PRS indicated a higher number of risk alleles in
the best genetic variant-genetic variant interaction model.

http://pngu.mgh.harvard.edu/~purcell/plink
https://biit.cs.ut.ee/gprofiler/snpense
https://genome.sph.umich.edu/wiki/LocusZoom_Standalone
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Figure 1. Flow chart for the generation of polygenetic variants increasing the risk of a low white
blood cell (WBC) count and interactions between polygenetic risk scores (PRS) and lifestyles.

2.9. Statistical Analyses

Statistical analysis was conducted using SAS version 9.3 (SAS Institute, Cary, NC,
USA). Descriptive statistics for categorical variables (e.g., gender and lifestyle) were cal-
culated based on frequency distributions according to WBC and PRS groups. Frequency
distributions of categorical variables were analyzed using the chi-squared test. WBC counts
were classified as <4.0 × 109, 4–6.2 × 109, and ≥6.2 × 109/L to determine the effects of
WBC counts on metabolic syndrome and its components. Adjusted means and standard
errors were determined for continuous variables of the control and low-WBC group. The
significant differences between the low-WBC and control groups were determined by
analyzing covariance (ANCOVA) with covariate adjustment. After covariate adjustment,
adjusted odds ratios (ORs) and 95% confidence intervals (CI) of metabolic syndrome and
its components for low-WBC risk were calculated by multiple logistic regression analysis.

Adjusted ORs and 95% confidence intervals (CIs) of PRS for low-WBC risk or MetS
and its components were analyzed after adjusting for covariates. According to the different
covariates, two models were included for PRS for low-WBC risk: model 1 included age,
gender, residence area, survey year, income, and education level as covariate and model 2
contained the variables in model 1 plus energy intake, smoking status, physical activity,
alcohol intake, autoimmune diseases, and serum hs-CRP concentrations as variates. In
other logistic regression analyses, covariates in model 2 were used. Participants were
categorized into high and low dietary intake groups to examine the interactions between
PRS and dietary intake parameters. Two-way ANCOVA with main effects and an interac-
tion term were used to investigate interactions between PRS and lifestyle parameters that
affect low-WBC risk after adjusting for covariates. Statistical significance was accepted for
p values < 0.05.
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3. Results
3.1. General Characteristics of Participants in the WBC Count Groups

The participants in the low-WBC group were older than those in the control group.
In the low-WBC group, men were much lower than women. Adjusted ORs for genders
were inversely associated with WBC counts after adjusting for MetS-related parameters,
indicating men were inversely associated with the low-WBC risk (Table 1). Mean serum
hs-CRP concentration was higher in the middle-WBC and high-WBC group than in the
low-WBC group, and serum hs-CRP concentration was inversely associated with WBC
counts by 0.542-fold. Cancer incidence was higher in the low-WBC group than in the other
groups, and adjusted ORs were positively associated with WBC count by 1.467-fold (cutoff:
<4.0) (Table 1). The prevalence of MetS was much higher in the low-WBC group than in
the other groups, and the components of MetS, including waist circumferences, plasma
glucose, total cholesterol, LDL, and TG, concentrations, SBP, and DBP, showed the same
trends. MetS was inversely associated with a low-WBC count (<4.0 × 109/L) by 0.458-fold.
Mean waist circumference was higher in the control group than in the low-WBC group,
and hip circumference was inversely associated with WBC by 0.86-fold (Table 1).

Table 1. Demographic, anthropometric, and biochemical characteristics of the participants according to the contents of
white blood cells (WBC) and their adjusted odds ratio (ORs) of low-WBC and 95% confidence intervals (CI).

Low (<4)
(n = 4176)

Normal (4≤ <6.2)
(n = 23,911)

High (<6.2)
(n = 12,640)

Adjusted ORs (95% CI)
of Low-WBC 16

Age 1 (years) 54.1 (53.9–54.3) 14,b 53.9 (53.8–54.0) b 53.2 (53.1–53.3) a,*** 1.134 (1.040–1.237)
Gender (N, male %) 742 (17.8) 15 7432 (31.1) 5682 (44.9) +++ 0.614 (0.534–0.706)
Cancer (N, Yes %) 283 (6.8) 981 (4.1) 423 (3.4) +++ 1.467 (1.219–1.765)

Serum hs-CRP 2 (ng/mL) 0.097 (0.083–0.113) c 0.111 (0.105–0.117) b 0.209 (0.201–0.217) a,*** 0.542 (0.416–0.706)
Metabolic syndrome (N, Yes %) 239 (5.7) 2860 (12.0) 2625 (20.7) +++ 0.458 (0.385–0.545)

BMI 3 (kg/m2) 23.0 (22.9–23.1) c 23.8 (23.7–23.8) b 24.3 (24.3–24.4) a,*** 0.561 (0.510–0.618)
Fat mass 4 (%) 1749 (41.9) 11848 (49.5) 6835(53.9) *** 0.541 (0.498–0.588)

Waist circumference 5 (cm) 79.8 (79.6–79.9) c 80.3 (80.3–80.4) b 80.8 (80.7–80.9) a,*** 0.548 (0.485–0.618)
Plasma glucose 6 (mg/dL) 92.7 (92.1–93.3) c 94.7 (94.4–94.9) b 97.3 (97.0–97.7) a,*** 0.464 (0.386–0.557)

HbA1c 7 (%) 5.56 (5.58–5.59) c 5.67 (5.66–5.68) b 5.85 (5.84–5.87) a,*** 0.376 (0.299–0.473)
Serum total cholesterol 8 (mg/dL) 193 (192–194) c 198 (197–198) b 199 (199–200) a,*** 0.670 (0.606–0.740

Serum HDL 9 (mg/dL) 56.9 (56.5–57.3) a 54.8 (54.6–54.9) b 53.3 (53.1–53.5) c,*** 0.725 (0.658–0.800)
Serum LDL 10 (mg/dL) 115 (114–116) b 119 (118–119) a 118 (117–119) a,*** 0.662 (0.588–0.744)
Serum TG 11 (mg/dL) 106 (103–109) c 122 (121–123) b 140 (139–142) a,*** 0.516 (0.464–0.574)

SBP (mmHg) 12 120.8 (120.4–121.3) c 122.4 (122.2–122.6) b 123.7 (123.4–123.9) a,*** 0.817 (0.746–0.895)
DBP (mmHg) 13 74.3 (74.0–74.6) c 75.3 (75.1–75.4) b 76.0 (75.8–76.1) a,*** 0.799 (0.674–0.946)

The cutoff points were as following: 1 <55 years old; 2 <0.5 mg/dL for high-sensitive C-reactive protein (hs-CRP), 3 <25 mg/kg2 for body
mass index (BMI), 4 <25% for men and <30% for women; 5 <90 cm for men <85 cm for women; 6 <126 mg/dL fasting serum glucose and
7 <6.5% HbA1c or taking hypoglycemic medication; 8 <230 mg/dL serum total cholesterol, 9 ≤40 mg/dL for men and ≤50 mg/dL serum
HDL; 10 <160 mg/dL serum LDL, 11 <150 mg/dL serum triglyceride; 12 <130 mmHg SBP and 13 <90 mmHg DBP or taking hypotensive
medication.14 Values represent adjusted means and 95% confidence intervals (CI) after adjusting for covariates or 15 the number of the
subjects and percentage. Covariates used were age, sex, body mass index (BMI), energy intake, income, education, residence area, survey
year, and autoimmunity-related diseases, including atopic dermatitis, asthma, allergy, and inflammation-related diseases, alcohol intake,
smoking status, and physical activity. 16 Adjusted odds ratio (ORs) and 95% confidence intervals of each parameter for the hypo-WBC
(<4.0 × 109/L) risk after adjusting for covariates in logistic regression analysis. a,b,c Different letters indicate significant differences among
the groups in the Tukey test at p < 0.05. *** Significantly different for WBC count groups by one-way ANCOVA in continuous variables at
p < 0.001. +++ Significantly different WBC count groups by χ2 test at p < 0.001. hs-CRP, high-sensitive C-reactive protein; HbA1c, blood
hemoglobin A1c; LDL, low-density lipoprotein; HDL, high-density lipoprotein; TG, triglyceride; SBP, systolic blood pressure; DBP, diastolic
blood pressure.

3.2. Lifestyles and Nutrient Intakes

Proportions of smokers and former smokers were much lower in the low-WBC group
than in the other groups, and smokers and former-smokers were inversely related to low-
WBC risk by 0.298- and 0.352-folds on the reference of the non-smokers (Table 2). However,
the proportion of individuals that exercised regularly was higher in the low-WBC group
than in the other groups, and regular exercise was positively associated with low-WBC risk
by 1.262-fold. There was a higher proportion in the low-WBC group in low alcohol and
coffee intake than the other groups (Table 2). Alcohol and coffee intakes were inversely
associated with low-WBC risk by 0.849- and 0.856-fold, respectively. Participants in the
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low-WBC group had lower energy intake and fat intakes than those in the high-WBC group.
However, protein intakes were non-significantly different. Interestingly, vitamin D intakes
were significantly higher in the low-WBC group than in the high-WBC group (Table 2), and
inflammation indices were not significantly different.

Table 2. Lifestyles and nutrient intake of the participants according to the contents of white blood cells (WBC) and adjusted
odds ratio (ORs) of low-WBC.

KERRYPNX Low (<4)
(n = 4176)

Normal (4≤ <6.2)
(n = 23,911)

High (<6.2)
(n = 12,640)

Adjusted ORs (95% CI)
of Low-WBC 3

Smoking (N, %)
Non-smoker 3630 (87.0) 1 18,216 (76.4) 7700 (61.2) +++ 1

Former-smoker 412 (9.90) 3902 (16.4) 2236 (17.8) 0.352 (0.271–0.458)
Smoker 121 (2.91) 1723 (7.23) 2656 (21.1) 0.298 (0.230–0.387) ###

Regular exercise 4 (%) 2430 (58.3) 13,354 (56.0) 6453 (51.2) +++ 1.262 (1.165–1.367) ###

Alcohol intake 5 (≥20g/week) 1413 (33.8) 14,234 (42.5) 1498 (48.7) *** 0.849 (0.768–0.936) ###

Coffee 6 (cups/week) 3.5 (3.4–3.6) c 3.7 (3.7–3.8) b 4.0 (3.9–4.0) a,*** 0.856 (0.790–0.928) ###

Energy intake 7 (%EER) 94.7 (93.7–95.6) 2,c 96.2 (95.9–96.6) b 95.4 (94.3–96.5) a,b,** 0.949 (0.876–1.028)
CHO intake 8 (energy %) 71.7 (71.5–71.9) a 71.7 (71.6–71.8) a 71.4 (71.3–71.5) b,* 0.983 (0.880–1.097)

Protein intake 9 (energy %) 13.4 (13.3–13.5) 13.4 (13.3–13.4) 13.4 (13.4–13.5) 0.993 (0.918–1.075)
Fat intake 10 (energy %) 13.9 (13.7–14.1) a 13.9 (13.9–14.0) a 14.1 (14.0–14.2) b,** 0.952 (0.875–1.036)
Vitamin D 11 (ug/day) 6.48 (6.34–6.61) a 6.39 (6.34–6.45) a 6.23 (6.15–6.31) b,** 1.080 (0.975–1.197)

Anti-inflammation index (scores) 12 1933 (1891–1975) 1926 (1908–1943) 1918 (1894–1943) 1.010 (0.917–1.113)
Korean balanced diet 13 (<66th per, N, %) 1176 (28.2) 7337 (30.7) 4245 (33.5) +++ 1.034 (0.893–1.198)

Plant-based diet 13 (N, %) 1625 (38.9) 8153 (34.1) 3611 (28.5) +++ 1.231 (1.041–1.456)
Western-style diet 13 (N, %) 1181 (28.3) 7728 (32.3) 4676 (37.0) +++ 1.032 (0.818–1.303)

Rice-main diet 13 (N, %) 1417 (33.9) 7672 (32.1) 4205 (33.2) + 1.079 (0.976–1.192)
1 Values represent the number (%) and 2 adjusted means ± standard deviations after adjusting for covariates or the number of the
subjects and percentage. Covariates used were age, sex, body mass index (BMI), energy intake, income, education, residence area, survey
year, having autoimmunity-related diseases including atopic dermatitis, asthma, allergy, having inflammation-related diseases including
gastritis, alcohol intake, smoking, and physical activity. 3 Adjusted odds ratio (ORs) and 95% confidence intervals of each parameter
for the hypo-WBC (<4.0 × 109/L) risk the after adjusting for covariates using logistic regression analysis. The cutoff points were as
follows: 4 < moderate intensity activity for 150 min/week; 5 <20 g alcohol/day, 6 <3 cups/week, 7 <estimated energy requirement (EER);
8 <65 carbohydrate (CHO) energy % (En%); 9 <15 protein En%; 10 <20 fat En%; 11 <9.4 ug V-D/day; 12 <2374 scores; 13 <66th percentiles.
a,b,c Different letters indicate significant differences among the groups in the Tukey test at p < 0.05. * Significantly different for white blood
cell (WBC) count groups by one-way ANCOVA in continuous variables at p < 0.05, ** at p < 0.01, and *** at p < 0.001. + Significantly different
WBC count groups by χ2 test at p < 0.05, +++ at p < 0.001. ### Significant association of WBC count groups with each variable at p < 0.001.

3.3. Genetic Variants Associated with Low-WBC Count Risk and Gene–Gene Interactions between
Genetic Variants by GMDR

Genetic variants associated with low-WBC risk were selected from GWAS results,
and ten genetic variants related to immunity and inflammation were selected. Table 3
listed ten selected genetic variants. Ten selected variants were located in chromosomes
2, 6, 7, 17, and 19, while six were located in 6p21 loci, and their LD was r2 < 0.3. Genetic
variant–variant interactions were investigated using GMDR (Table 3). All selected SNPs
satisfied HWE (p > 0.05) and MAF (>0.05) criteria (Table 3). In Ansan/Ansung cohort, the
selected 10 SNPs exhibited similar OR values to those in a hospital-based cohort, but the
significance levels were higher in Ansan/Ansung cohort than those in the hospital-based
cohort (Table 3) since the number of cases (n = 204), and control (n = 5286) was much
smaller in Ansan/Ansung cohort.

Gene–gene interaction models with 2, 7, 8, 9, or 10 SNPs met the best model criteria.
Among them, adjusted ORs of the 2 and 7 SNP models increased low-WBC risk (<4.0 × 109)
by 1.844 (1.165–2.918) and 2.123 (1.741–2.589) folds in participants with high-PRS than
those with low-PRS (Figure 2). The best model with 2 SNPs included proteasome 26S
Subunit, non-ATPase 3 (PSMD3)_rs9898547 and lactase (LCT)_rs80157389, while that with
7 SNPs contained the SNPs in the 2 SNP model, HLA-DRB1_rs532162239 and rs3097649,
HLA-C_rs2308575, cyclin-dependent kinase inhibitor 1A (CDKN1A)_rs3176337, and thy-
roid hormone receptor alpha (THRA)_rs7502539 (Table 4). Although the 2 SNPs model
sufficiently showed increases in the risk of a low-WBC count, we considered that 2 SNPs
might be too small to show associations with metabolic syndrome. Additionally, variation
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was much greater in the 2 SNP model than in the 7 SNP model. Therefore, we used the
7 SNP model to investigate interactions with lifestyles.

Table 3. The characteristics of the ten genetic variants of genes related to immunity in the risk of low WBC count
(<4.0 × 109/L) and used for the generalized multifactor dimensionality reduction analysis.

Chr.1 SNP 2 Position Mi 3 Ma 4 OR 5

(95% CI) 6 p-Value Adjusted 7 OR 8

(95% CI) p-Value Adjusted 9 MAF 10 HWE 11 Gene Functional Consequence

2 rs80157389 136546733 C G 0.75
(0.69–0.81) 1.90 × 10−13 0.73

(0.59–0.904) 0.004 0.179 0.79 LCT intron

6 rs2308575 31239057 T C 0.82
(0.77–0.88) 4.90 × 10−8 0.78

(0.54–0.96) 0.029 0.202 0.349 HLA-C missense

6 rs34791928 31781398 T C 0.81
(0.72–0.92) 7.10 × 10−4 0.75

(0.50–0.97) 0.043 0.062 0.887 HSPA1A near-gene-5

6 rs532162239 32558725 T C 0.85
(0.80–0.90) 3.30 × 10−8 0.76

(0.59–0.93) 0.015 0.346 0.523 HLA-
DRB1 upstream

6 rs112181319 33039694 T G 0.86
(0.78–0.94) 9.50 × 10−4 0.73

(0.55–0.95) 0.012 0.107 0.546 HLA-
DPA1 intron

6 rs3097649 33056962 T C 1.10
(1.04–1.16) 9.00 × 10−5 1.16

(1.01–1.32) 0.043 0.363 0.95 HLA-
DPB1 utr-3

6 rs3176337 36648920 A C 0.86
(0.81–0.92) 4.90 × 10−6 0.77

(0.60–0.97) 0.035 0.245 0.697 CDKN1A intron

7 rs445 92408370 T C 1.18
(1.12–1.25) 8.61 × 10−9 1.21

(1.02–1.40) 0.002 0.327 0.888 CDK6 intron

17 rs9898547 38136026 T G 1.23
(1.16–1.29) 2.40 × 10−13 1.45

(1.24–1.68) 2.2 × 10−6 0.399 0.475 PSMD3 near-gene-5

19 rs7502539 38219005 A G 1.18
(1.12–1.25) 3.60 × 10−9 1.21

(1.03–1.42) 0.017 0.347 0.669 THRA near-gene-5

1 Chromosome; 2 single nucleotide polymorphism; 3 minor allele; 4 major allele; 5 odds ratio (OR) for the hospital-based large cohort
(case, n = 4176 and control, n = 36,551); 6 lower and upper end of 95% confidence interval (CI); 7 p-value for OR in the hospital-based
large cohort after adjusting for age, gender, residence area, survey year, body mass index, daily energy intake, education, and income in
logistic regression analysis; 8 OR for the Ansan/Ansung cohort; 9 p-value for OR in Ansan/Ansung cohort (case, n = 207; control, n = 5286);
10 minor allele frequency; 11 p-value for Hardy-Weinberg equilibrium.
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autoimmune diseases, and serum high-sensitive C-reactive protein concentrations as variates. The 
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Figure 2. Adjusted odds ratios and 95% confidence intervals of the PRS of 2- and 7-SNP models
generated from assessing gene-gene interactions associated with a low white blood cell (WBC) count.
PRS of the 2- and 7-SNPs were calculated by summing the number of risk alleles of SNPs. PRS
calculated using the 2- and 7-SNPs models were divided into three categories (0–1, 2, and ≥3) or
(0–5, 6–7, and ≥8), respectively. Adjusted ORs were obtained by logistic regression after adjusting for
various covariates. Two models were composed of different covariates: Model 1 included age, gender,
residence area, survey year, income, and education level as covariates, and model 2 contained the
variables in model 1 plus energy intake, smoking status, physical activity, alcohol intake, autoimmune
diseases, and serum high-sensitive C-reactive protein concentrations as variates. The low-PRS group
was used as a reference for logistic regression. Based on the covariates, red and blue boxes indicated
adjusted ORs for models 1 and 2, respectively, and lines indicated 95% CIs.
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Table 4. The characteristics of the ten genetic variants of genes in the risk of low white blood cell count applied for the
generalized multifactor dimensionality reduction analysis (GMDR).

Adjusted for Gender and Age Adjusted for Gender, Age, Residence Area, BMI, and Serum CRP

Model TRBA TEBA p-Value CVC TRBA TEBA p-Value CVC

PSMD3_rs9898547 0.5270 0.5247 10 (0.0010) 9/10 0.5270 0.5225 10 (0.0010) 6/10
Model 1 plus

LCT_rs80157389 0.5391 0.5381 10 (0.0010) 10/10 0.5392 0.5383 10 (0.0010) 10/10

Model 2 plus
HLA-C_rs2308575 0.5421 0.5334 10 (0.0010) 5/10 0.5425 0.5328 10 (0.0010) 4/10

Model 2 plus
HLA-DRB1 _rs532162239
HLA_DPB1 _rs3097649

0.5486 0.5351 10 (0.0010) 7/10 0.5494 0.5349 10 (0.0010) 8/10

Model 4 plus
CDKN1A_rs3176337 0.5589 0.5273 10 (0.0010) 6/10 0.5597 0.5304 10 (0.0010) 7/10

Model 5 plus
HLA-C_rs2308575 0.5758 0.5177 10 (0.0010) 5/10 0.5768 0.5208 10 (0.0010) 5/10

Model 6 plus
THRA_rs7502539 0.6028 0.5259 10 (0.0010) 10/10 0.6040 0.5291 10 (0.0010) 10/10

Model 7 plus
HLA-DPA1_rs112181319 0.6254 0.5239 10 (0.0010) 10/10 0.6260 0.5248 10 (0.0010) 10/10

Model 8 plus
HSPA1A_rs34791928 0.6447 0.5189 9 (0.0107) 10/10 0.6452 0.5215 10 (0.0010) 10/10

Model 9 plus
CDK6_rs445 0.6559 0.5198 10 (0.0010) 10/10 0.6561 0.5218 10 (0.0010) 10/10

TRBA, trained balanced accuracy; TEBA, test balance accuracy; CVC, cross-validation consistency; sign test, result, and p-value for the
significance of GMDR model by sign test with and without adjusting for covariates designated; BMI, body mass index. Bold faces indicated
the best models.

3.4. Associations between PRS Derived from the 7-SNP Model and MetS and Its Components

There was no significant association between PRS and MetS after adjusting for covari-
ates (Supplementary Table S3). BMI and body fat mass also did not have an association
with PRS (Supplementary Table S3). MetS components including waist circumferences,
plasma glucose, HDL, triglyceride concentrations were not associated with PRS after ad-
justing for covariates (Supplementary Table S3). Serum hs-CRP concentrations did not
have any relation with PRS (Supplementary Table S3).

3.5. Interaction between PRS and Nutrient Intakes and a Low WBC Count Risk

No interactions were observed between PRS and age, gender, BMI, or metabolic
syndrome that affected low-WBC count risk (p > 0.05). There was no interaction between
lifestyles (except fat intake), PRS, and low-WBC risk (p = 0.008; Table 5). In participants
with a high fat intake, those with a low-PRS had much higher WBC counts than those
with a medium or high-PRS (Figure 3). This trend was similar in the low-fat intake. The
association between PRS and WBC counts was greater for participants with high-fat intakes
than low-fat intakes (Table 5).

Table 5. Adjusted odds ratios of polygenetic risk scores of the best model (PRS) for the hypo-WBC risk after covariate
adjustments according to lifestyles patterns and the interaction of PRS with lifestyles for the hypo-WBC risk.

Low-PRS
(n = 2719)

Medium-PRS
(n = 11,150)

High-PRS
(n = 26,899)

Gene-Nutrient Interaction
p-Value

Low energy 1

High energy
1 1.401(1.074–1.829)

1.625(1.158–2.280)
2.130(1.657–2.739)
2.104(1.522–2.909) 0.3184

Low CHO 2

High CHO
1 2.020 (1.132–3.606)

1.412 (1.128–1.767)
2.659 (1.525–4.635)
2.038 (1.648–2.521) 0.3799

Low protein 3

High protein
1 1.316(0.992–1.745)

1.547(1.276–1.875)
1.879(1.439–2.453)
1.718(1.256–2.349) 0.6677

Low fat 4

High fat
1 1.656 (1.165–1.819)

1.227(0.939–2.177)
2.085 (1.688–2.575)
2.638(1.307–4.184) 0.0170

Low KBD 5

High KBD
1 1.325 (1.044–1.682)

1.603 (1.232–2.086)
1.928 (1.539–2.415)
2.285 (1.780–2.935) 0.2819
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Table 5. Cont.

Low-PRS
(n = 2719)

Medium-PRS
(n = 11,150)

High-PRS
(n = 26,899)

Gene-Nutrient Interaction
p-Value

Low PBD 5

High PBD
1 1.266 (0.979–1.638)

1.454 (1.171–1.805)
1.924 (1.510–2.451)
2.089 (1.702–2.564) 0.2670

Low WSD 5

High WSD
1 1.434 (1.117–1.839)

1.428 (1.114–1.829)
2.118 (1.673–2.681)
1.937 (1.531–2.449) 0.1327

Low RMD 5

High RMD
1 1.533 (1.175–2.001)

1.468 (1.156–1.917)
2.210 (1.716–2.846)
2.126 (1.672–2.703) 0.4678

Low exercise 6

High exercise
1 1.287 (0.949–1.746)

1.651 (1.238–2.202)
1.799 (1.349–2.398)
2.371 (1.803–3.120) 0.0482

According to the low and high intake groups, values represent adjusted odds ratio (OR) and 95% confidence intervals. Covariates were age,
sex, body mass index (BMI), energy intake, income, education, residence area, survey year, taking immune-related medicine, alcohol intake,
smoking status, and physical activity. The cutoff points were as follows: 1 <estimated energy requirement (EER); 2 <65 carbohydrate (CHO)
energy % (En%); 3 <15 protein En%; 4 <20 fat En%; 5 <66th percentiles; 6 <moderate-intensity exercise for 150 min/week. KBD, Korean
balanced diet; PBD, plant-based diet; WSD, Western-style diet, and RMD, rice-main diet. PRS was divided into three categories (0–4, 5–6,
and ≥7) as the low-PRS, medium-PRS, and high-PRS groups of the best model of GMDR with 5 SNPs. Logistic regression models include
the corresponding main effects, interaction terms of gene and main effects, and covariates. Reference was the low-PRS.
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Figure 3. Adjusted means and standard errors of white blood cell counts among 7-SNP polygenetic
risk scores (PRS) according to low and high groups of fat intake and exercise. (A). Adjusted means
and standard errors of WBC in the participants were categorized by fat intake (cutoff value: 20 energy
% of fat intake). (B). Adjusted means and standard errors of participants categorized by exercise
(cutoff: moderate-intensity exercise at least for 30 min three times weekly). *** Significantly different
between those with low and high-PRS in ANCOVA at p < 0.001. a,b,c Different alphabetical letters on
the bar indicate significant differences among the groups in Tukey’s test at p < 0.05.



Nutrients 2021, 13, 2849 11 of 15

4. Discussion

Innate and adaptive immunity is critical in eliminating coronaviruses from the body,
but an uncontrolled immune response induces cytokine storms that aggravate acute lung
injury. Genetic and environmental factors influence immunity. However, the biomarkers
of immunity are difficult to define. WBC can be a biomarker for immunity. The present
study demonstrated that the best genetic model for immunity representing WBC counts
and the genetic impact interacted with nutrient intake. The best model with 7 SNP model
included PSMD3_rs9898547, LCT_rs80157389, HLA-DRB1_rs532162239 and rs3097649,
HLA-C rs2308575, CDKN1A_ rs3176337, and THRA_rs7502539. WBC counts should be
maintained within the 4–6.2 × 109/L range due to their relationships with cancer and
MetS risk, and individuals with a high-PRS for a low-WBC count should be advised to
moderate fat intake to 20–25% of total energy consumption. This study is the first to show
the interaction of genetic impact and lifestyles that can be applied to personalized nutrition.

At the beginning of infection, immune response by WBCs is critical. In a Mendelian
randomization study, WBC count (OR = 0.84, 95% CI = 0.72–0.98), myeloid WBC count
(OR = 0.81, 95% CI = 0.70–0.94), granulocyte count (OR = 0.84, 95% CI = 0.71–0.99), and
basophil count (OR = 0.75, 95% CI = 0.59–0.96) were found to exhibit inverse associations
with severe COVID 19 [26], suggesting that a low-WBC count is associated with increased
risk of severe infectious diseases. However, previous studies have reported that circulating
WBC counts, including leukocytes, neutrophils, lymphocytes, basophils, and monocytes,
are positively associated with MetS, BMI, hypertension, and serum triglyceride concentra-
tions but not glycemic index or insulin resistance [27]. However, in the present study, WBC
counts were positively associated with serum glucose concentrations and HbA1c contents.
As regards WBC subtypes, blood eosinophil counts were reported to be positively asso-
ciated with MetS (OR 1.41) and obesity (OR 1.16) [28]. Lymphocytes and neutrophils are
also associated with MetS risk [29]. Increases in WBC counts may be related to enhancing
antioxidant defense to remove oxidative products [26]. In the present study, a low-WBC
count (<4 × 109/L) was positively associated with cancer risk but inversely with MetS risk.
Since the cutoff for a low WBC count is 4.0 × 109/L, and that of MetS risk was found to be
6.2 × 109/L in our previous study, we suggest WBC counts better be maintained range 4 to
6.2 × 109/L to reduce the risks of cancer and MetS.

WBC contents are related to disease and nutrition statuses, but genetic predisposi-
tions also influence them. The best models generated by genetic variant-genetic variant
interactions included PSMD3_rs9898547, LCT_rs80157389, HLA-DRB1_rs532162239 and
rs3097649, HLA-C rs2308575, CDKN1A_rs3176337, and THRA_rs7502539. These selected
genetic variants arose in genes associated with immunity (HLA-DRB1, HLA-C, and PSMD3),
energy metabolism (THRA), and other functions (LCT and CDKN1A). MHC is a large gene
complex containing over 200 genes located on chromosome 6 at 6p21.3 and plays a vital
role in immunity [30]. The selected genes included HLA-C, DRB1, DPA1, and DPB1. HLA is
a human MHC-encoded glycoprotein and encodes HLA-peptide-T cell receptor, which in-
duces adaptive immunity, and HLA and HLA-DRB1 genetic variants reduce viral infection
susceptibility [31]. A recent study reported that HLA-B*15:03 has the greatest capacity to
present SARS-CoV-2 peptides to immune cells [32], whereas HLA is known to be associated
with inflammatory, autoimmune, and malignant disorders. Furthermore, PSMD3 at 17q21
has been reported to be associated with WBC count in African Americans, Europeans, and
Japanese [33]. PSMD3 promotes nuclear factor kappa-light-chain-enhancer of activated
B cells protein expression in chronic myeloid leukemia cells and, thus, promotes disease
progression to a chronic state [34]. Therefore, the genetic variants selected for low-WBC
risk in the current study.

Interestingly, genetic variants related to THRA and LCT were associated with low-
WBC risk in the present study. Thyroid hormone plays a critical role in thermoregulation
and energy expenditure through THRA and THRB [35]. THRA is known to be related to
erythropoiesis [36], and its mutation displays the characteristics of hypothyroidism, anemia,
and abnormal bone growth [36]. On the other hand, hyperthyroidism has been associated
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with low WBC counts [37]. THRA polymorphisms may influence energy metabolism and
WBC production by modulating thyroid hormone activity [38]. LCT is an enzyme that con-
verts lactose to glucose and galactose, and LCT deficiency induces lactose intolerance and is
possibly involved in allergy by modulating immunity. Furthermore, LCT polymorphisms
are associated with WBC regulation and genetic disposition to CD14 expression, a marker
of monocytes and macrophages [39]. In the present study, PRS of the 7-SNP model were
positively associated with WBC count by 2.9-fold, but no association was found between
PRS and MetS or its components. Asians, including Koreans, are at risk of MetS despite
being less obese than Caucasians [40], and, thus, genetic predisposition may explain MetS
susceptibility in Korean adults.

Immunity has been reported to be associated with lifestyles. The present study
indicates lifestyles could modulate immunity, as reflected by WBC counts: low-WBC
counts were inversely associated with current smoking (OR = 0.298), alcohol drinking
(OR = 0.849), and coffee drinking (OR = 0.856), but positively associated with regular
exercise (OR = 1.262) and a PBD (OR = 1.231) in Korean adults. These results suggest that
immunity may be promoted to remove oxidative and pro-inflammatory products elevated
in MetS. Immunity, inflammation, oxidative stress, and MetS are known to compose an
inter-related vicious cycle, and, thus, reductions in oxidative stress may lower WBC counts.
Many studies have reported an association between MetS and lifestyles [41], but not
between MetS and WBC counts. The present study showed that the associations between
WBC count and lifestyles are similar to those between MetS and lifestyles. However, the
impact of the interaction between lifestyles and PRS on low-WBC counts was not significant.
Only fat intake interacted with PRS to influence low-WBC counts. In adults, a 20–25% fat
intake was optimal in reducing the risks of low-WBC count and MetS.

The present study is the first study to show an association between PRS and low-WBC
count and the interaction of PRS with fat intake to modulate WBC counts. However,
the present study has several limitations that should be mentioned. First, the study
was conducted using a case-control design in a large city hospital cohort study, and
data were collected cross-sectionally, which prevented our accessing cause-and-effect
relationships. Second, usual intakes of nutrients and foods may have been underestimated
or overestimated since they were obtained from SQFFQ results of the consumption of 106
common Korean foods. However, the SQFFQ has been shown to estimate usual intakes
reliably and validated using 3-day food records [40]. Third, WBCs were not classified
by cellular subtypes, and subtypes may be differentially associated with PRS and MetS.
Fourth, the present study did not show the direct effect of WBC counts on immunity since
the incidence of cold or virus infection, immunity-related diseases, was not provided in the
hospital-based cohort study. However, low WBC counts had an inverse relation with cancer
risk in the present study. Recent studies have demonstrated that WBC counts are inversely
correlated with fever and severity from coronavirus disease 2019 (COVID-19) infection
in the chest damage showing by imaging analysis, including ground-glass opacities and
multiple patchy shadows [42,43].

In conclusion, low WBC counts exhibited a positive association with cancer risk and
an inverse relation with MetS risk. The best genetic model for low WBC count included
the genes related to immunity. Participants with a high-PRS of the best genetic model for
low-WBC had a 2.123-fold higher risk of a low WBC count. Furthermore, PRS and fat intake
interacted to modulate the risk of low-WBC. Thus, we recommend that Korean adults
with low-PRS adopt diets containing 20–25% fat to maintain WBC counts in the range
4–6.2 × 109/L, where the risk of cancer and severity from infectious diseases including
COVID-19 might be minimized. This study is the first study to show the interaction of
genetic impact and lifestyles to influence a low-WBC risk, and the results can be applied to
personalized nutrition. Further study is needed to investigate the effects of high PRS for
low WBC and infectious diseases.
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