Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diagua{6,6'-dimethoxy-2,2'-[ethane-1,2divlbis(nitrilomethylidyne)]diphenolato- $\kappa^2 O, N, N', O'$ manganese (III) perchlorate 18-crown-6 hemisolvate monohydrate

Zhan-Xian Li,^a Xia Li,^b Li-Feng Zhang^a and Ming-Ming Yu^a*

^aDepartment of Chemistry, Zhengzhou University, Zhengzhou 450001, People's Republic of China, and ^bCollege of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China Correspondence e-mail: yumm@zzu.edu.cn

Received 28 November 2008; accepted 30 December 2008

Key indicators: single-crystal X-ray study; T = 272 K; mean σ (C–C) = 0.026 Å; disorder in main residue; R factor = 0.077; wR factor = 0.239; data-to-parameter ratio = 13.6.

In the cation of the title compound, $[Mn(C_{18}H_{18}N_2O_4) (H_2O)_2$]ClO₄·0.5C₁₂H₂₄O₆·H₂O, the Mn^{III} ion is coordinated by two water O atoms, and two O atoms and two N atoms from 6,6'-dimethoxy-2,2'-[ethane-1,2-diylbisthe tetradentate (nitrilomethylidyne)]diphenolate ligand, completing а distorted octahedral geometry. One O atom of the 18-crown-6-ether is disordered over two positions with occupancies of 0.70 (2) and 0.30 (2).

Related literature

For background on manganese-containing complexes, see: Garnovskii et al. (1993); Huang et al. (2002); For related structures, see: Christou (1989); Yu et al. (2007).

Experimental

Crystal data

 $[Mn(C_{18}H_{18}N_2O_4)(H_2O)_2]$ - $\beta = 105.529 \ (2)^{\circ}$ ClO₄·0.5C₁₂H₂₄O₆·H₂O Z = 4 $M_{\rm r} = 666.94$ Monoclinic, $P2_1/n$ a = 11.7287 (12) Åb = 15.5814 (16) Å c = 16.8158 (16) Å

Data collection

Bruker SMART 1K CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2000) $T_{\min} = 0.781, \ T_{\max} = 0.857$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.077$ $wR(F^2) = 0.239$ S = 1.165198 reflections 382 parameters

V = 2960.9 (5) Å³ Mo $K\alpha$ radiation $\mu = 0.61 \text{ mm}^{-1}$ T = 272 (3) K $0.40 \times 0.35 \times 0.25 \text{ mm}$

14526 measured reflections 5198 independent reflections 3798 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.034$

1 restraint H-atom parameters constrained $\Delta \rho_{\rm max} = 1.71 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.99$ e Å⁻³

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008): program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This work was supported by the Natural Science Foundation of China (grant No. 50873093).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2451).

References

- Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Christou, G. (1989). Acc. Chem. Res. 22, 328-335.
- Garnovskii, A. D., Nivorozkhin, A. L. & Minkin, V. (1993). Coord. Chem. Rev. 126. 1-69.
- Huang, D. G., Zhu, H. P., Chen, C. N., Chen, F. & Liu, Q. T. (2002). Chin. J. Struct. Chem. 21, 64-66.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Yu, M.-M., Ni, Z.-H., Zhao, C.-C., Cui, A.-L. & Kou, H.-Z. (2007). Eur. J. Inorg. Chem. pp. 5670-5676.

Acta Cryst. (2009). E65, m153 [doi:10.1107/S1600536808044176]

Diaqua{6,6'-dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato- $\kappa^2 O, N, N', O'$ }manganese(III) perchlorate 18-crown-6 hemisolvate monohydrate

Z.-X. Li, X. Li, L.-F. Zhang and M.-M. Yu

Comment

Manganese can exhibit several oxidation states and may provide the basis of models for active sites of biological systems such as the oxygen-evolving complex of photosystem and enzymes like superoxide dismutase, catalase, arginase (Garnovskii, *et al.*, 1993; Huang, *et al.*, 2002). The progress in elucidating the strutural and functional aspects of manganese-containing systems, has essentially been connected to the vast number of inorganic model complexes reported during the last few decades (Christou, 1989; Yu, *et al.*, 2007). Here, the synthesis and crystal structure of the title complex (I) are reported.

The title complex (I) comprises one $[Mn(C_{18}H_{18}N_2O_4)(H_2O)_2]^+$ cation, one perchlorate anion, half 18-crown-6 and one uncoordinated water molecule. (Fig. 1). The Mn^{III} ion in each $[Mn(C_{18}H_{18}N_2O_4)(H_2O)_2]^+$ cation is coordinated by two O atoms from water molecules, two O atoms and two N atoms from 6,6'-dimethoxy-2,2'-(ethane-1,2-diyldiiminodimethylene)diphenol ligands, completing a distorted octahedral geometry. Mn—N bond lengths are 1.973 (13), 1.969 (13) Å, respectly. The Mn—O bond distances to the 6,6'-dimethoxy-2,2'-(ethane-1,2-diyldiiminodimethylene)diphenol ligand are each 1.876 (10) Å. They are much shorter than the Mn—O bond distances of coordinated water (Mn1—O3 = 2.274 (11) Å, Mn1—O4 = 2.270 (12)Å).

Experimental

A mixture of manganese(II) perchlorate (1 mmol, 253.8 mg), 6,6'-dimethoxy-2,2'-(ethane-1,2-diyldiiminodimethylene)diphenol (1 mmol, 326.4 mg) in 40 ml me thanol and 18-crown-6-ether (2 mmol, 528.6 mg) in water 40 ml was refluxed for one hour. The solution was cooled and filtrated. Crystals suitable for X-ray diffraction analysis were obtained by slow evaparation at room temperature for three weeks.

Refinement

All H atoms were placed in geometrically calculated positions with C—H = 0.97 Å for CH₂ H atoms, C—H = 0.93 Å for aromatic and CH H atoms and 0.82 Å for N—H H atoms and were refined isotropic with $U_{iso}(H) = 1.2U_{eq}(C)$ of parent atom using a riding model. H atoms of H₂O were located from difference maps and refined with a distance restraint O—H = 0.82 (1) Å. $U_{iso}(H) = 1.2U_{eq}(O)$. *DFIX* restraints were applied to O…H distances of [1.97 (1) Å] H24a and O14 to remain 18-crown-6 molecule in normal format.

Figures

Fig. 1. A view of complex (I), showing 30% probability displacement ellipsoids and the atomnumbering scheme. H atoms have been omitted for clarity.

Diaqua{6,6'-dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethylidyne)]diphenolato- $\kappa^2 O, N, N', O'$ }manganese(III) perchlorate 18-crown-6 hemisolvate monohydrate

Crystal data

$[Mn(C_{18}H_{18}N_2O_4)(H_2O)_2]ClO_4 \cdot 0.5C_{12}H_{24}O_6 \cdot H_2O$	$F_{000} = 1392$
$M_r = 666.94$	$D_{\rm x} = 1.496 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 5198 reflections
a = 11.7287 (12) Å	$\theta = 1.8 - 25.0^{\circ}$
b = 15.5814 (16) Å	$\mu = 0.61 \text{ mm}^{-1}$
c = 16.8158 (16) Å	T = 272 (3) K
$\beta = 105.529 \ (2)^{\circ}$	Block, brown
$V = 2960.9 (5) \text{ Å}^3$	$0.40\times0.35\times0.25~mm$
Z = 4	

Data collection

Bruker SMART 1K CCD area-detector diffractometer	5198 independent reflections
Radiation source: fine-focus sealed tube	3798 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.034$
T = 272(3) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2000)	$h = -13 \rightarrow 13$
$T_{\min} = 0.781, \ T_{\max} = 0.857$	$k = -18 \rightarrow 18$
14526 measured reflections	$l = -16 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.077$	H-atom parameters constrained
$wR(F^2) = 0.239$	$w = 1/[\sigma^2(F_o^2) + (0.1233P)^2 + 3.531P]$

	where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.16	$(\Delta/\sigma)_{\rm max} = 0.039$
5198 reflections	$\Delta \rho_{max} = 1.71 \text{ e} \text{ Å}^{-3}$
382 parameters	$\Delta \rho_{min} = -0.99 \text{ e } \text{\AA}^{-3}$
1 restraint	Extinction correction: none
Primary atom site location: structure-invariant direct	

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{\rm iso}^*/U_{\rm eq}$	Occ. (<1)
Mn1	0.8434 (2)	0.55184 (14)	0.55021 (12)	0.0362 (9)	
Cl1	0.7718 (11)	0.9782 (5)	0.5697 (5)	0.121 (3)	
01	0.8797 (10)	0.4346 (6)	0.5501 (6)	0.041 (2)	
02	0.8398 (9)	0.5661 (6)	0.4388 (6)	0.040 (2)	
03	1.0384 (9)	0.5863 (7)	0.5967 (6)	0.044 (3)	
H1O3	1.0942	0.5502	0.6017	0.053*	
H2O3	1.0556	0.6301	0.5721	0.053*	
O4	0.6460 (10)	0.5261 (9)	0.5206 (8)	0.061 (3)	
H204	0.6098	0.5451	0.4755	0.073*	
H104	0.6525	0.4730	0.5233	0.073*	
05	0.9243 (10)	0.2794 (7)	0.5141 (7)	0.050 (3)	
O6	0.8251 (11)	0.5434 (7)	0.2837 (6)	0.053 (3)	
O7	0.767 (3)	1.0480 (16)	0.616 (2)	0.194 (13)	
08	0.747 (4)	0.978 (3)	0.4889 (16)	0.235 (17)	
09	0.900 (5)	0.962 (4)	0.588 (3)	0.29 (2)	
O10	0.723 (4)	0.9145 (17)	0.598 (2)	0.225 (16)	
011	0.996 (4)	0.582 (3)	0.901 (3)	0.28 (2)	
H1O1	0.9215	0.5744	0.8843	0.339*	
H2O1	1.0292	0.5338	0.9001	0.339*	
O12	0.4518 (12)	0.6187 (9)	0.6164 (8)	0.070 (4)	
O13	0.4881 (17)	0.4407 (11)	0.6454 (10)	0.094 (5)	
O14	0.501 (4)	0.667 (3)	0.468 (3)	0.081 (5)	0.30 (2)
O14'	0.5994 (19)	0.3432 (15)	0.5508 (14)	0.081 (5)	0.70 (2)
N1	0.8421 (13)	0.5487 (8)	0.6673 (8)	0.046 (3)	
N2	0.8077 (13)	0.6740 (8)	0.5613 (8)	0.048 (3)	

C1	0.8610 (15)	0.4826 (11)	0.7146 (10)	0.049 (4)
H1	0.8574	0.4901	0.7687	0.059*
C2	0.8873 (14)	0.3984 (10)	0.6905 (9)	0.043 (4)
C3	0.8943 (12)	0.3779 (9)	0.6106 (9)	0.038 (3)
C4	0.9174 (13)	0.2922 (10)	0.5928 (9)	0.042 (4)
C5	0.9298 (16)	0.2298 (11)	0.6522 (11)	0.054 (4)
Н5	0.9434	0.1733	0.6392	0.065*
C6	0.9224 (17)	0.2496 (12)	0.7313 (12)	0.061 (5)
H6	0.9314	0.2066	0.7709	0.074*
C7	0.9019 (16)	0.3324 (12)	0.7510 (11)	0.055 (4)
H7	0.8974	0.3455	0.8040	0.066*
C8	0.940 (2)	0.1927 (11)	0.4890 (12)	0.067 (5)
H8A	1.0114	0.1694	0.5239	0.100*
H8B	0.9438	0.1926	0.4328	0.100*
H8C	0.8737	0.1584	0.4937	0.100*
C9	0.7780 (16)	0.7286 (10)	0.5019 (10)	0.049 (4)
Н9	0.7603	0.7839	0.5156	0.059*
C10	0.7695 (15)	0.7122 (10)	0.4161 (10)	0.046 (4)
C11	0.7284 (17)	0.7785 (11)	0.3594 (11)	0.057 (5)
H11	0.7083	0.8312	0.3778	0.068*
C12	0.7179 (18)	0.7665 (12)	0.2782 (12)	0.065 (5)
H12	0.6893	0.8105	0.2409	0.077*
C13	0.7498 (16)	0.6887 (12)	0.2505 (10)	0.056 (5)
H13	0.7435	0.6814	0.1946	0.067*
C14	0.7909 (14)	0.6217 (10)	0.3045 (9)	0.044 (4)
C15	0.8008 (13)	0.6326 (9)	0.3896 (9)	0.037 (3)
C16	0.815 (2)	0.5265 (14)	0.1996 (11)	0.075 (6)
H16A	0.7329	0.5305	0.1690	0.112*
H16B	0.8434	0.4699	0.1938	0.112*
H16C	0.8601	0.5678	0.1787	0.112*
C17	0.810 (3)	0.6315 (14)	0.6966 (13)	0.090 (7)
H17A	0.7287	0.6284	0.7004	0.108*
H17B	0.8603	0.6422	0.7516	0.108*
C18	0.820 (3)	0.6989 (15)	0.6465 (13)	0.096 (8)
H18A	0.8960	0.7260	0.6683	0.115*
H18B	0.7591	0.7410	0.6477	0.115*
C19	0.424 (3)	0.726 (2)	0.516 (2)	0.117 (8)
H19A	0.4749	0.7722	0.5444	0.140*
H19B	0.3598	0.7528	0.4747	0.140*
C20	0.375 (3)	0.6846 (18)	0.5747 (17)	0.101 (7)
H20A	0.2984	0.6600	0.5466	0.121*
H20B	0.3621	0.7262	0.6145	0.121*
C21	0.402 (2)	0.5692 (18)	0.6685 (16)	0.089 (7)
H21A	0.3270	0.5452	0.6368	0.107*
H21B	0.3860	0.6055	0.7113	0.107*
C22	0.481 (2)	0.5008 (17)	0.7058 (14)	0.087 (7)
H22A	0.5585	0.5240	0.7315	0.105*
H22B	0.4516	0.4731	0.7482	0.105*
C23	0.5581 (16)	0.3749 (14)	0.6760 (12)	0.083 (7)

 U^{23}

Mm1	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}
Atomic disp	lacement parameter	$rs(\AA^2)$			
H24B	0.6356	0.2754	0.644	1	0.124*
H24A	0.5004	0.2814	0.599	3	0.124*
C24	0.5727 (16)	0.3147 (1	4) 0.617	4 (12)	0.104 (9)
H23B	0.6354	0.3970	0.705	0	0.100*
H23A	0.5261	0.3457	0.716	2	0.100*

Mn1	0.0466 (15)	0.0324 (13)	0.0297 (13)	0.0031 (9)	0.0103 (10)	0.0027 (9)
Cl1	0.209 (10)	0.083 (5)	0.078 (5)	-0.017 (5)	0.051 (5)	0.001 (4)
01	0.055 (6)	0.036 (5)	0.034 (5)	0.002 (5)	0.013 (5)	0.007 (4)
O2	0.053 (6)	0.037 (5)	0.029 (5)	0.006 (5)	0.008 (4)	0.005 (4)
O3	0.047 (6)	0.042 (6)	0.043 (6)	0.001 (5)	0.011 (5)	0.001 (5)
O4	0.047 (7)	0.075 (8)	0.058 (8)	-0.004 (6)	0.009 (6)	0.006 (6)
05	0.066 (7)	0.033 (6)	0.049 (7)	0.001 (5)	0.015 (5)	0.002 (5)
O6	0.075 (8)	0.050 (7)	0.033 (6)	-0.005 (6)	0.014 (5)	0.001 (5)
O7	0.27 (4)	0.104 (18)	0.22 (3)	-0.020 (19)	0.08 (3)	-0.052 (18)
O8	0.33 (5)	0.28 (4)	0.079 (16)	-0.09 (3)	0.03 (2)	0.03 (2)
09	0.28 (4)	0.36 (5)	0.23 (4)	0.08 (4)	0.08 (4)	-0.07 (3)
O10	0.43 (5)	0.095 (16)	0.22 (3)	-0.03 (2)	0.20 (3)	-0.001 (18)
011	0.27 (5)	0.25 (5)	0.30 (5)	-0.01 (4)	0.04 (4)	0.01 (4)
012	0.068 (9)	0.077 (9)	0.060 (8)	0.004 (7)	0.008 (7)	-0.020(7)
013	0.121 (14)	0.089 (12)	0.064 (10)	0.015 (10)	0.010 (9)	-0.001 (8)
014	0.063 (10)	0.088 (12)	0.091 (12)	-0.001 (10)	0.021 (10)	-0.005 (10)
O14'	0.063 (10)	0.088 (12)	0.091 (12)	-0.001 (10)	0.021 (10)	-0.005 (10)
N1	0.065 (9)	0.043 (7)	0.032 (7)	0.005 (6)	0.017 (6)	0.001 (6)
N2	0.069 (9)	0.036 (7)	0.040 (7)	0.010 (6)	0.017 (6)	0.001 (6)
C1	0.059 (10)	0.056 (10)	0.036 (8)	0.002 (8)	0.018 (7)	0.006 (8)
C2	0.044 (9)	0.044 (9)	0.040 (8)	0.002 (7)	0.010 (7)	0.011 (7)
C3	0.031 (7)	0.040 (8)	0.041 (8)	-0.003 (6)	0.005 (6)	0.007 (6)
C4	0.040 (8)	0.040 (8)	0.043 (9)	-0.003 (7)	0.008 (7)	0.006 (7)
C5	0.062 (11)	0.038 (9)	0.062 (11)	0.007 (8)	0.014 (9)	0.017 (8)
C6	0.068 (12)	0.058 (11)	0.060 (11)	0.008 (9)	0.020 (9)	0.029 (9)
C7	0.061 (11)	0.059 (11)	0.047 (10)	0.004 (9)	0.017 (8)	0.022 (8)
C8	0.088 (15)	0.037 (9)	0.072 (13)	-0.003 (9)	0.017 (11)	-0.007 (9)
C9	0.065 (11)	0.032 (8)	0.053 (10)	0.009 (7)	0.021 (8)	0.001 (7)
C10	0.053 (10)	0.038 (8)	0.046 (9)	-0.001 (7)	0.012 (7)	0.008 (7)
C11	0.068 (12)	0.042 (9)	0.061 (11)	0.011 (8)	0.017 (9)	0.018 (8)
C12	0.077 (13)	0.055 (11)	0.058 (12)	0.011 (10)	0.011 (10)	0.028 (9)
C13	0.066 (11)	0.060 (11)	0.038 (9)	-0.003 (9)	0.009 (8)	0.020 (8)
C14	0.047 (9)	0.043 (9)	0.039 (8)	-0.007(7)	0.008 (7)	0.009 (7)
C15	0.036 (8)	0.036 (8)	0.037 (8)	-0.003 (6)	0.006 (6)	0.007 (6)
C16	0.113 (18)	0.071 (13)	0.040 (10)	-0.010 (12)	0.019 (11)	-0.009 (9)
C17	0.16 (2)	0.062 (12)	0.057 (11)	0.031 (13)	0.049 (13)	0.002 (10)
C18	0.17 (2)	0.064 (12)	0.061 (12)	0.030 (14)	0.039 (14)	0.000 (10)
C19	0.118 (8)	0.116 (9)	0.116 (8)	0.003 (3)	0.030 (4)	-0.001 (3)
C20	0.095 (13)	0.097 (14)	0.103 (14)	0.022 (12)	0.014 (11)	-0.034 (12)

C21 C22 C23 C24	0.080 (14) 0.107 (19) 0.074 (15) 0.093 (19)	0.099 (16) 0.101 (19) 0.12 (2) 0.093 (19)	0.091 (16) 0.059 (13) 0.061 (13) 0.12 (2)	-0.029 (13) -0.034 (16) 0.011 (14) 0.022 (15)	0.027 (13) 0.030 (13) 0.020 (11) 0.024 (16)	-0.041 (14) -0.014 (13) 0.020 (14) 0.043 (17)
Geometric paran	neters (Å, °)					
Mn1-O2		1 876 (10)	C6—C7	,	1.3	7 (3)
Mn1-01		1.876 (10)	С6—Н6	<u>í</u>	0.9	300
Mn1—N2		1.969 (13)	С7—Н7	7	0.9	300
Mn1—N1		1.973 (12)	С8—Н8	BA	0.9	600
Mn1—O4		2.270 (12)	С8—Н8	BB	0.9	600
Mn1—O3		2.274 (11)	C8—H8	8C	0.9	600
Cl1—O10		1.30 (3)	C9—C1	0	1.4	4 (2)
Cl1—O8		1.31 (3)	С9—Н9)	0.9	300
Cl1—07		1.34 (3)	C10—C	215	1.4	0 (2)
Cl1—O9		1.47 (5)	C10—C	211	1.4	0 (2)
O1—C3		1.323 (17)	C11—C	12	1.3	5 (3)
O2—C15		1.328 (17)	С11—Н	[11	0.9	300
O3—H1O3		0.8500	C12—C	213	1.3	9 (3)
O3—H2O3		0.8500	С12—Н	[12	0.9	300
O4—H204		0.8189	С13—С	214	1.3	8 (2)
O4—H104		0.8304	С13—Н	113	0.9	300
O5—C4		1.362 (18)	C14—C	215	1.4	1 (2)
O5—C8		1.44 (2)	С16—Н	[16A	0.9	600
O6—C14		1.359 (19)	С16—Н	[16B	0.9	600
O6—C16		1.41 (2)	С16—Н	[16C	0.9	600
011—H101		0.8505	C17—C	218	1.3	7 (3)
011—H2O1		0.8498	С17—н	117A	0.9	/00
012—C21		1.41 (3)	СГ/—Н	П7В	0.9	700
012-C20		1.42 (3)	С18—Н	118A	0.9	700
013-C23		1.33 (2)	С18—н	1188	0.9	700
		1.40 (3)	C19—C	.20	1.4	3 (4) 2 (4)
O14—C24 ⁴		1.50 (5)	C19—0	014" 10.1	1.5	3 (4)
014-019		1.65 (6)	С19—н	119A	0.9	/00
014'—C24		1.32 (3)	С19—н	(19B	0.9	700
O14'—C19'		1.53 (4)	С20—н	120A	0.9	/00
N1—C1		1.28 (2)	С20—Н	[20B	0.9	700
NI—CI7		1.47 (2)	C21—C	22	1.4	4 (4)
N2—C9		1.29 (2)	С21—н	121A	0.9	700
N2—C18		1.46 (2)	С21—н	121B	0.9	700
C1 - C2		1.45 (2)	C22—H	122A	0.9	700
C1 - H1		0.9300	C22—H	122B	0.9	/00
$C_2 = C_3$		1.41(2) 1.42(2)	C23—U	-24 123 A	1.4	700
$C_2 = C_1$		1.42(2)	C23—H	123A 173B	0.9	700
C_{3} C_{4}		1.41(2)	С25—П		0.9	0 (5)
C4—C3		1.37 (2)	C24—0	014	1.5	700
C5—C6		1.39 (3)	С24—Н	124A	0.9	/00

C5—H5	0.9300	C24—H24B	0.9700
O2—Mn1—O1	93.4 (4)	C12—C11—H11	119.8
O2—Mn1—N2	91.8 (5)	C10-C11-H11	119.7
O1—Mn1—N2	174.8 (5)	C11—C12—C13	120.1 (16)
O2—Mn1—N1	174.4 (5)	C11—C12—H12	119.9
O1—Mn1—N1	92.2 (5)	C13—C12—H12	119.9
N2—Mn1—N1	82.6 (5)	C14—C13—C12	121.2 (16)
O2—Mn1—O4	93.0 (5)	C14—C13—H13	119.4
O1—Mn1—O4	92.6 (5)	С12—С13—Н13	119.4
N2—Mn1—O4	87.8 (6)	O6—C14—C13	125.7 (15)
N1—Mn1—O4	86.2 (5)	O6-C14-C15	114.7 (13)
O2—Mn1—O3	93.8 (4)	C13—C14—C15	119.6 (16)
O1—Mn1—O3	91.3 (4)	O2-C15-C10	124.6 (13)
N2—Mn1—O3	87.6 (5)	O2-C15-C14	117.3 (13)
N1—Mn1—O3	86.5 (5)	C10-C15-C14	118.1 (13)
O4—Mn1—O3	171.9 (4)	O6—C16—H16A	109.4
O10-Cl1-O8	112 (2)	O6—C16—H16B	109.5
O10-Cl1-O7	108 (2)	H16A—C16—H16B	109.5
O8—Cl1—O7	125 (3)	O6—C16—H16C	109.5
O10-Cl1-O9	109 (3)	H16A—C16—H16C	109.5
O8—Cl1—O9	98 (3)	H16B—C16—H16C	109.5
O7—Cl1—O9	102 (3)	C18—C17—N1	113.2 (17)
C3—O1—Mn1	129.2 (10)	C18—C17—H17A	108.9
C15—O2—Mn1	128.8 (9)	N1-C17-H17A	108.9
Mn1—O3—H1O3	123.7	C18—C17—H17B	108.9
Mn1—O3—H2O3	111.7	N1-C17-H17B	108.9
H1O3—O3—H2O3	107.7	H17A—C17—H17B	107.8
Mn1—O4—H204	112.6	C17—C18—N2	113.6 (19)
Mn1—O4—H104	95.2	C17-C18-H18A	108.8
H204—O4—H104	115.4	N2—C18—H18A	108.9
C4—O5—C8	117.8 (13)	C17-C18-H18B	108.8
C14—O6—C16	118.2 (14)	N2—C18—H18B	108.8
H1O1-011-H2O1	107.8	H18A—C18—H18B	107.7
C21—O12—C20	113 (2)	C20-C19-O14' ⁱ	99 (3)
C23—O13—C22	113 (2)	C20-C19-O14	117 (3)
C24 ⁱ —O14—C19	96 (3)	C20—C19—H19A	107.2
C24—O14'—C19 ⁱ	110 (2)	O14' ⁱ —C19—H19A	148.9
C1—N1—C17	120.9 (14)	O14—C19—H19A	108.0
C1—N1—Mn1	126.3 (11)	C20-C19-H19B	108.0
C17—N1—Mn1	112.7 (11)	O14' ⁱ —C19—H19B	80.4
C9—N2—C18	121.6 (14)	O14—C19—H19B	108.0
C9—N2—Mn1	125.9 (11)	H19A—C19—H19B	106.8
C18—N2—Mn1	112.5 (11)	C19—C20—O12	110 (2)
N1—C1—C2	125.1 (14)	С19—С20—Н20А	109.7
N1—C1—H1	117.5	O12—C20—H20A	109.7
С2—С1—Н1	117.4	C19—C20—H20B	109.5
C3—C2—C1	123.5 (13)	O12-C20-H20B	109.6
C3—C2—C7	119.4 (15)	H20A—C20—H20B	108.1

C1—C2—C7	117.1 (15)	O12—C21—C22	110 (2)
O1—C3—C2	123.7 (14)	O12—C21—H21A	109.6
O1—C3—C4	117.5 (13)	C22—C21—H21A	109.6
C2—C3—C4	118.8 (13)	O12—C21—H21B	109.5
O5—C4—C5	125.4 (15)	C22—C21—H21B	109.6
O5—C4—C3	114.2 (13)	H21A—C21—H21B	108.1
C5—C4—C3	120.4 (15)	O13—C22—C21	110 (2)
C4—C5—C6	121.1 (16)	O13—C22—H22A	109.7
С4—С5—Н5	119.5	C21—C22—H22A	109.7
С6—С5—Н5	119.4	O13—C22—H22B	109.8
C7—C6—C5	120.0 (16)	C21—C22—H22B	109.7
С7—С6—Н6	120.0	H22A—C22—H22B	108.2
С5—С6—Н6	120.0	O13—C23—C24	115.01
C6—C7—C2	120.3 (17)	O13—C23—H23A	108.4
С6—С7—Н7	119.9	C24—C23—H23A	108.5
С2—С7—Н7	119.9	O13—C23—H23B	108.7
O5—C8—H8A	109.5	С24—С23—Н23В	108.5
O5—C8—H8B	109.5	H23A—C23—H23B	107.5
H8A—C8—H8B	109.5	O14 ⁱ —C24—O14'	47 (2)
O5—C8—H8C	109.5	O14 ⁱ —C24—C23	113 (2)
H8A—C8—H8C	109.5	O14'—C24—C23	118.2 (14)
H8B—C8—H8C	109.5	O14 ⁱ —C24—H24A	64.5
N2	126.2 (14)	O14'—C24—H24A	107.3
N2—C9—H9	116.9	C23—C24—H24A	108.5
С10—С9—Н9	116.9	O14 ⁱ —C24—H24B	137.7
C15-C10-C11	120.5 (15)	O14'—C24—H24B	106.3
C15—C10—C9	121.5 (14)	C23—C24—H24B	108.5
С11—С10—С9	118.0 (15)	H24A—C24—H24B	107.5
C12—C11—C10	120.5 (17)		

Symmetry codes: (i) -x+1, -y+1, -z+1.

Fig. 1