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Abstract: There is an increase in the incidence of early onset colorectal carcinoma (EOCRC). To better
understand if there is any difference in molecular pathogenesis of EOCRC and late onset colorectal
carcinoma (LOCRC), we compared the clinical, histological, transcriptome, and methylome profile
of paired CRC and healthy colonic tissue from 67 EOCRC and 98 LOCRC patients. The frequency
of stage 3 CRC, lymph node involvement, lymphovascular invasion, and perineural invasion was
higher in the EOCRC group. Many of the cancer related pathways were differentially expressed in
CRC tissue in both EOCRC and LOCRC patients. However, the magnitude of differential expression
for some groups of genes, such as DNA damage repair genes and replication stress genes, were
significantly less pronounced in the EOCRC group, suggesting less efficient DNA damage repair to
be associated with EOCRC. A more marked methylation of “growth factor receptor” genes in LOCRC
correlated with a more pronounced down-regulation of those genes in that group. From a therapeutic
point of view, more over-expression of fatty acid synthase (FASN) among the LOCRC patients may
suggest a better response of FASN targeted therapy in that group. The age of onset of CRC did not
appear to modify the response of cis-platin or certain immune checkpoint inhibitors. We found some
differences in the molecular pathogenesis in EOCRC and LOCRC that may have some biological and
therapeutic significance.

Keywords: colorectal carcinoma; early onset CRC; multi-omics; lymphovascular invasion; perineural
invasion; DNA damage repair; DNA replication repair; MMR; base excision repair; FASN; CTLA4;
HAVCR2

1. Introduction

Incidence of colorectal cancer (CRC) among young adults has increased over the last
25 years [1]. In a study involving a large cohort of 143.7 million people aged 20–49 years
from 20 European countries, a total of 187,918 individuals (0.13%) were diagnosed with CRC.
From 2004 to 2016, on average, CRC incidence incrteased by 7.9% per year among subjects
aged 20–29 years, 4.9% per year among subjects aged 30–39 years, and 1.6% per year in the
age group of 40–49 years [1]. Considering the current practice of a preventive colonoscopy
recommendation at 50 years of age, some considered CRC before the age of 50 years as early
onset CRC (EOCRC) [1–5]. Other studies have used 40 years as a cut-off for EOCRC and
late onset CRC (LOCRC) [6–8]. There are some interesting findings, such as the association
of EOCRC and obesity [9,10], the cause of which is undetermined. In a previous study,
we also reported a high proportion of CRC patients in Bangladesh presenting at or below
the age of 40 years [11]. There is a growing interest in exploring the underlying causes
of EOCRC. Like some other studies [6–8], we divided the cases as EOCRC and LOCRC
as =<40 years and >40 years, respectively.
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The clinical features of EOCRC may be different from those of LOCRC. Some studies
suggested that EOCRC is usually detected in the distal colon and rectum, whereas in the
older age group it is in the proximal colon [3,12]. The anatomical location of EOCRC
may provide important insights into the underlying disease processes and treatment
responses, since embryologically the proximal and distal colon are different. EOCRC
display different histopathological features when compared to late onset cases. Poor
differentiation, perineural invasion (PNI), venous invasion, and mucinous and/or signet
cell morphology, all of which are suggestive of an unfavorable tumor biology and associated
with worse oncological outcomes, are more common among patients with EOCRC [6,8]. It
was also found that EOCRC patients present with higher rates of metastasis and recurrence
compared to their older counterparts. Regarding the outcome of EOCRC and LOCRC,
some studies reported a worse prognosis for EOCRC, while others found equivalent or
superior outcomes among the younger patients [8,13–16].

A study showed that, among EOCRC, approximately 30% of patients were affected
by tumors harboring mutations causing hereditary cancer predisposing syndromes, and
20% have familial CRC [17]. Others also found this incidence among 19.7% to 29.4% of
EOCRC, depending on the age of onset [7,18]. Chang et al. found that, among EOCRC,
17% demonstrated abnormalities in DNA mismatch repair and 5% had known germline
genetic disorders [6]. Therefore, the remaining 50% of cases were of sporadic EOCRC.
The rate of EOCRC is increasing, and it shows some distinct characteristics regarding
the location, anatomical features, and pathological features. There is a growing interest
to explore the findings at the molecular level, which can potentially lead to improved
treatment and survival.

It is largely unclear if there are any differences in the transcriptome or methylome
profile among the EOCRC and LOCRC patients that can (a) shed light on the difference
in the molecular pathogenesis in these two groups and (b) provide a molecular basis of
potential use of different treatment options. To address these research questions, in this
study, we compared the clinical, histological, transcriptome, and methylome profiles of
paired CRC and surrounding healthy colonic tissue from the same patients who presented
with CRC at =<40 years of age and those who presented after 40 years of age.

2. Results

In this collection of 165 CRC patients from Bangladesh, we included all consecutive
patients during the multiple time periods spanning between December 2009 and May 2016,
irrespective of the age of onset of CRC. Of the 165 patients, 67 of them (40% of the patients)
were of age =< 40 years. The comparison of clinical and histological features among
the patients with LOCRC (age > 40 years) and EOCRC (age =< 40 years) is shown in
Table 1. We did not find any statistically significant difference for sex, tumor location,
tumor grading, presence of tumor infiltrating leukocyte (TIL) status, presence of signet ring
appearance, CEA level, microsatellite instability (MSI), KRAS mutation, BRAF mutation,
EGFR mutation, and relative telomere length (RTL) shortening. It may be noted that the
frequency of BRAF mutation was low in this population, and we did not find an EGFR
mutation in any patient. The analysis showed that the EOCRC patients more frequently
had advanced stage CRC and lymph node involvement than LOCRC patients (see Table 1).
In fact, we also found that the EOCRC patients more frequently had a lympho-vascular
invasion (LVI) and PNI than the LOCRC patients did (see Table 1).

Histological staging has a strong association with LVI (13.5%, 23.8%, and 50% in
stage 1, stage 2, and stage 3, respectively, p = 0.0001, Chi square test) and PNI (2.7%, 7.1%,
and 20.9% in stage 1, stage 2, and stage 3, respectively, p = 0.01, Chi-square test). Therefore,
we looked at the association between the age of onset and LVI and PNI by stratifying the
data by stage (see Table 2). Compared to LOCRC, EOCRC more frequently had LVI only in
the presence of the stage 2 disease and more frequently had PNI only in the presence of
stage 3 disease. In other words, these associations of LVI and EOCRC or PNI and EOCRC
were not independent of staging.
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Table 1. Comparison of histological and molecular changes in LOCRC and EOCRC.

Characteristic Category Late-Onset (>40 Years) Early-Onset (<40 Years)
Chi-Square Test

p-Value

Sex
Male 57 (58.2%) 39 (58.2%)

0.995
Female 41 (41.8%) 28 (41.8%)

Location

Right Colon 22 (22.4%) 11 (16.4%)

0.327Left Colon 20 (20.4%) 10 (14.9%)

Rectum 56 (57.1%) 46 (68.7%)

Stage

Stage-1 30 (30.6%) 7 (10.4%)

0.004 *Stage-2 26 (26.5%) 16 (23.9%)

Stage-3 42 (42.9%) 44 (65.7%)

Grade
Low 51 (52%) 27 (40.3%)

0.138
High 47 (48%) 40 (59.7%)

Lymph Node
Present 56 (57.1%) 23 (34.3%)

0.004 *
Absent 42 (42.9%) 44 (65.7%)

TIL
0 58 (59.2%) 41 (61.2%)

0.796
1 40 (40.8%) 26 (38.8%)

Signet Ring
Absent 70 (71.4%) 43 (64.2%)

0.325
Present 28 (28.6%) 24 (35.8%)

LV Invasion
Absent 71 (72.4%) 36 (53.7%)

0.013 *
Present 27 (27.6%) 31 (46.3%)

PN Invasion
Absent 90 (91.8%) 53 (79.1%)

0.018 *
Present 8 (8.2%) 14 (20.9%)

CEA (ng/mL)
Mean 50.221 30.133

0.180 #
(SD) 100.584 65.732

Microsatellite
MSI 26 (26.5%) 15 (22.4%)

0.545
MSS 72 (73.5%) 52 (77.6%)

KRAS (rs112445441)
Wild 68 (70.8%) 47 (70.1%)

0.925
Mutant 28 (29.2%) 20 (29.9%

BRAFV600E
Wild 89 (92.7%) 62 (93.9%)

0.76
Mutant 7 (7.3%) 4 (6.1%)

EGFR
Wild 96 (100%) 67 (100%)

NA
Mutant 0 (0%) 0 (0%)

Telomere Absent 28 (30.8%) 23 (37.7%)
0.375

Shortening Present 63 (69.2%) 38 (62.3%)

* Significant at <0.05 level; # t-test.
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Table 2. LVI and PNI stratified by stage.

Characteristic Stage Status Late-Onset (>40 Years) Early-Onset (<40 Years) Chi-Square Test
p-Value

LV Invasion

Stage-1 LVI Absent 26 (86.7%) 6 (85.7%)
0.947

LVI Present 4 (13.3%) 1 (14.3%)

Stage-2 LVI Absent 23 (88.5%) 9 (56.3%)
0.017 *

LVI Present 3 (11.5%) 7 (43.8%)

Stage-3 LVI Absent 22 (52.4%) 21 (47.7%)
0.666

LVI Present 20 (47.6%) 23 (52.3%)

PN Invasion

Stage-1 PNI Absent 29 (96.7%) 7 (100%)
0.624

PNI Present 1 (3.3%) 0 (0%)

Stage-2 PNI Absent 24 (92.3%) 15 (93.8%)
0.860

PNI Present 2 (7.7%) 1 (6.3%)

Stage-3 PNI Absent 37 (88.1%) 31 (70.5%)
0.044 *

PNI Present 5 (11.9%) 13 (29.5%)

* Significant at <0.05 level.

2.1. Differential Gene Expression in CRC
2.1.1. Age of Onset of CRC and Differential Gene Expression of Cancer Related Gene Sets

In the next step, we asked if the differential expression (CRC tissue vs. paired normal
colonic tissue) of some known cancer related gene sets were different in magnitude in
EOCRC and LOCRC patients. The detailed list of these gene sets is shown in Supplementary
Table S1. Table 3 shows that the “Growth factor receptor” genes were significantly down-
regulated in tumor tissue only in LOCRC [fold change −1.12 (95% CI: from −1.16 to
−1.08%), p = 1.21 × 10−8], but not in EOCRC patients (see Figure 1). Tumor suppressor
genes (TSG) were significantly down-regulated in both LOCRC and EOCRC patients by
a similar magnitude. However, anti-TSG (cyclin D group of genes) were significantly
up-regulated, both in LOCRC and EOCRC patients, but the magnitude of over-expression
was significantly more pronounced in LOCRC than in EOCRC patients [fold change 1.46
(95% CI 1.38–1.55) vs. 1.29 (95% CI 1.20–1.39), ANOVA interaction p = 0.007] (see Figure 2).
DNA repair genes as a whole were significantly over-expressed in both groups, but to a
lesser extent in the young onset group. Therefore, in the next step, we tested the gene sets
involved in different DNA repair mechanisms separately.

Figure 1. Differential gene expression of growth factor receptor genes in paired CRC tissue (in blue)
and healthy colonic mucosa (in red). Gene probes are arranged on the x-axis by expression level, and
the mean of log2 transformed expression value is shown on the y-axis. For many genes, there were
multiple probes on the chip. Gene symbols for all of the gene probes could not be shown on the x-axis.
Data from patients from the LOCRC group are shown on the left (A) showing down-regulation; and
data from EOCRC group are shown on the right (B), where there was no differential expression found.



Int. J. Mol. Sci. 2022, 23, 14261 5 of 22

Table 3. Differential expression of cancer-related pathways in LOCRC and EOCRC.

Gene Set Interaction
p

Late-Onset (>40 Years) Early-Onset (<40 Years)

Fold
Change (95% CI) p Fold

Change (95% CI) p

Growth Factor
Receptors 6.64 × 10−3 −1.12 (−1.16 to −1.08) 1.21 × 10−8 −1.02 (−1.08 to 1.03) 0.34

Anti-TSG 7.59 × 10−3 1.46 (1.38 to 1.55) 5.23 × 10−35 1.29 (1.20 to 1.39) 3.8 × 10−11

DNA Repair 0.06 1.07 (1.05 to 1.08) 2.28 × 10−19 1.04 (1.02 to 1.06) 5.4 × 10−6

Pro-Apoptosis 0.10 1.03 (1.01 to 1.05) 7.46 × 10−3 −1.00 (−1.03 to 1.03) 0.99

Tumor Suppressor
Gene 0.10 −1.18 (−1.23 to −1.13) 3.41 × 10−12 −1.11 (−1.17 to −1.04) 8.1 × 10−4

Hexokinase 0.32 −1.20 (−1.26 to −1.14) 5.64 × 10−13 −1.15 (−1.23 to −1.08) 1.6 × 10−5

Warburg Effect 0.36 1.32 (1.21 to 1.43) 1.22 × 10−10 1.24 (1.11 to 1.38) 1.2 × 10−4

Anti-Apoptosis 0.58 −1.10 (−1.15 to −1.05) 1.27 × 10−4 −1.07 (−1.14 to −1.01) 0.02

Caspases Initiator 0.69 1.03 (1.01 to 1.05) 1.27 × 10−3 1.02 (−1.00 to 1.05) 0.05

p53 suppressor 0.76 1.00 (−1.01 to 1.02) 0.66 −1.00 (−1.02 to 1.02) 9.6 × 10−1

Caspases Executor 0.77 −1.18 (−1.23 to −1.14) 4.29 × 10−18 −1.19 (−1.25 to −1.14) 2.2 × 10−12

Growth Factors 0.78 −1.18 (−1.26 to −1.10) 3.51 × 10−6 −1.20 (−1.31 to −1.09) 9.1 × 10−5

Figure 2. Differential gene expression of anti-TSG genes in paired CRC tissue (in blue) and healthy
colonic mucosa (in red). Gene probes are arranged on the x-axis by expression level, and the mean
of log2 transformed expression value is shown on the y-axis. For many genes, there were multiple
probes on the chip. Gene symbols for all the gene probes could not be shown on the x-axis. Data from
patients from the LOCRC group are shown on the left (A), and data from patients of the EOCRC
group are shown on the right (B). The average magnitude of over-expression was significantly higher
(p = 7.59 × 10−3) if the patient had LOCRC [1.46-fold change (95% CI 1.38 to 1.55)] compared to those
with EOCRC [1.29-fold change (95% CI 1.20 to 1.39)].

2.1.2. Age of Onset of CRC and Differential Gene Expression of DNA Damage Repair
Gene Sets

The detailed gene list is shown in Supplementary Table S2. Except for genes for transle-
sion synthesis (TLS), genes involved in all other DNA repair mechanisms were significantly
over-expressed in CRC tissue, irrespective of the age of onset (see Table 4). However, in
comparison to the magnitude of over-expression in LOCRC, the over-expression of genes re-
lated to “mismatch repair” (see Supplementary Figure S1), “Fanconi anemia” (see Figure 3),
“non-homologous end joining (NHEJ)”(see Figure 4), and “microhomology mediated end
joining (MMED)” was less pronounced in EOCRC patients (see Table 4). This may suggest
a potentially low efficiency of the DNA damage repair mechanism in EOCRC.
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Table 4. Differential expression of DNA damage repair genes in LOCRC and EOCRC.

Gene Set Interaction
p

Late-Onset (>40 Years) Early-Onset (<40 Years)

Fold
Change (95% CI) p Fold

Change (95% CI) p

Mismatch Repair
(MMR) 1.16 × 10−4 1.12 (1.10 to 1.14) 2.02 × 10−33 1.06 (1.03 to 1.08) 7.01 × 10−6

Fanconi Anemia
(FA) 4.86 × 10−4 1.15 (1.13 to 1.17) 1.50 × 10−46 1.09 (1.06 to 1.12) 1.42 × 10−11

Non-homologous
end joining (NHEJ) 6.13 × 10−4 1.12 (1.10 to 1.14) 5.60 × 10−34 1.06 (1.04 to 1.09) 3.28 × 10−7

Microhomology
mediated
end joining (MMEJ)

9.09 × 10−4 1.26 (1.22 to 1.30) 1.29 × 10−49 1.16 (1.12 to 1.21) 4.24 × 10−14

Translesion
Synthesis (TLS) 0.03 1.01 (−1.01 to 1.03) 0.30 −1.02 (−1.05 to 1.00) 0.05

Homologous
Recombination (HR) 0.15 1.09 (1.07 to 1.10) 5.92 × 10−39 1.07 (1.05 to 1.09) 1.82 × 10−16

Nucleotide Excision
Repair (NER) 0.19 1.08 (1.07 to 1.09) 1.76 × 10−41 1.07 (1.05 to 1.09) 2.56 × 10−18

Checkpoint
Signaling 0.21 1.08 (1.06 to 1.09) 6.56 × 10−18 1.06 (1.03 to 1.08) 4.55 × 10−7

Base Excision Repair
(BER) 0.40 1.06 (1.04 to 1.07) 4.12 × 10−15 1.05 (1.03 to 1.07) 7.80 × 10−7

Direct Reversal
Repair (DRR) 0.49 1.20 (1.12 to 1.28) 2.96 × 10−7 1.15 (1.05 to 1.26) 2.01 × 10−3

Figure 3. Differential gene expression of Fanconi anemia genes in paired CRC tissue (in blue) and
healthy colonic mucosa (in red). Gene probes are arranged on the x-axis by expression level, and
the mean of log2 transformed expression value is shown on the y-axis. For many genes, there were
multiple probes on the chip. Gene symbols for all of the genes could not be shown on the x-axis. Data
from patients from the LOCRC group are shown on the left (A), and data from patients of the young
onset group are shown on the right (B). The average magnitude of over-expression was significantly
higher (p = 4.86 × 10−4) if the patient had old onset [1.15-fold change (95% CI 1.13 to 1.17)] compared
to those with young onset [1.09-fold change (95% CI 1.06 to 1.12)].
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Figure 4. Differential gene expression of non-homologous end joining genes in paired CRC tissue
(in blue) and healthy colonic mucosa (in red). Gene probes are arranged on the x-axis by expression
level, and the mean of log2 transformed expression value is shown on the y-axis. For many genes,
there were multiple probes on the chip. Gene symbols for all of the genes could not be shown on the
x-axis. Data from patients from the LOCRC group are shown on the left (A), and data from patients
of the young onset group are shown on the right (B). The average magnitude of over-expression was
significantly higher (p = 6.13 × 10−4) if the patient had old onset [1.12-fold change (95% CI 1.10 to
1.14)] compared to those with EOCRC [1.06-fold change (95% CI 1.04 to 1.09)].

2.1.3. Age of Onset of CRC and Differential Expression of Replication Stress Gene-Sets

In the light of the above results for the association of the age of onset of CRC and
DNA damage repair machinery, we explored if the genes involved in different biological
processes in replication stress are different depending on the age of onset of CRC. The
total list of genes at the replication stress site and their functional group [19,20] that we
tested are shown in Supplementary Table S3. Analyses of our data (see Table 5) suggested
that, in response to the cancer, on average, the genes related to “DNA replication repair”
were over-expressed in CRC tissue, irrespective of the age of onset. However, it was
significantly less pronounced in EOCRC patients compared to LOCRC patients [fold change
1.09 (95%CI 1.08–1.10) vs. 1.14 (95%CI 1.13–1.15), ANOVA interaction p = 2.54 × 10−8] (see
Supplementary Figure S2). In the same line, the metabolism related genes were also
over-expressed in both, but less pronounced in EOCRC (see Supplementary Figure S3).

Table 5. Differential expression of replication stress genes in LOCRC and EOCRC.

Gene Set Interaction
p

Late-Onset (>40 Years) Early-Onset (<40 Years)

Fold
Change (95% CI) p Fold

Change (95% CI) p

DNA Replication
Repair 2.54 × 10−8 1.14 (1.13 to 1.15) 9.40 × 10−184 1.09 (1.08 to 1.10) 2.60 × 10−53

Metabolism 5.96 × 10−6 1.12 (1.10 to 1.14) 1.34 × 10−24 1.03 (1.00 to 1.06) 0.03

Cell Movement 6.86 × 10−4 −1.06 (−1.07 to −1.05) 3.59 × 10−26 −1.03 (−1.04 to −1.01) 1.25 × 10−4

RNA Processing 0.11 1.05 (1.03 to 1.06) 6.29 × 10−13 1.06 (1.05 to 1.08) 5.88 × 10−14

GF Signaling 0.13 −1.04 (−1.06 to −1.02) 8.99 × 10−5 −1.01 (−1.04 to 1.01) 0.28

Development
Regulation 0.16 1.05 (1.03 to 1.08) 4.04 × 10−7 1.03 (1.00 to 1.06) 0.04
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Table 5. Cont.

Gene Set Interaction
p

Late-Onset (>40 Years) Early-Onset (<40 Years)

Fold
Change (95% CI) p Fold

Change (95% CI) p

Cell Survival 0.27 1.02 (1.01 to 1.03) 3.17 × 10−4 1.01 (−1.00 to 1.02) 0.18

Immune
Regulation 0.63 −1.02 (−1.03 to −1.01) 6.66 × 10−3 −1.02 (−1.04 to −1.01) 7.48 × 10−3

Protein
Translation 0.65 −1.04 (−1.06 to −1.03) 4.68 × 10−9 −1.05 (−1.07 to −1.03) 4.50 × 10−7

Stress Responses 0.73 1.04 (1.02 to 1.06) 4.78 × 10−5 1.04 (1.01 to 1.06) 7.67 × 10−3

Cell Cycle 0.8 1.04 (1.03 to 1.06) 1.08 × 10−8 1.04 (1.02 to 1.06) 5.14 × 10−5

Angiogenesis 0.91 −1.03 (−1.07 to 1.01) 0.18 −1.03 (−1.08 to 1.03) 0.37

Chromatin TF
Transcription 0.93 1.01 (−1.00 to 1.02) 0.21 1.01 (−1.01 to 1.02) 0.40

2.1.4. Age of Onset of CRC and Differential Expression of Notch4-GATA4-IRG1 axis
Gene-Sets

A recent study suggested the possible association of “NOTCH4-GATA4-IRG1 axis”
genes and “leptin and other obesity related genes” with CRC [21,22]. The gene list is
shown in Supplementary Table S4. We tested that in our data (see Figure 5). We found that
the “Notch4-GATA-IRG” set of genes were over-expressed in tumor tissue by the same
magnitude in LOCRC [fold change 1.09 (95% CI 1.07–1.12)] and in EOCRC [fold change
1.08 (95% CI 1.06–1.12)] (ANOVA interaction p = 0.71).

Figure 5. Differential gene expression of NOTCH4_GATA4-IRG1 genes in paired CRC tissue (in blue)
and healthy colonic mucosa (in red). Gene probes are arranged on the x-axis by expression level,
and the mean of log2 transformed expression value is shown on the y-axis. For many genes, there
were multiple probes on the chip. Gene symbols for all the genes could not be shown on the x-axis.
Data from patients from the LOCRC group are shown on the left (A), and data from patients of the
young onset group are shown on the right (B). The genes were similarly over-expressed in both of
the groups.

We observed the down-regulation of LEPR and GHRL in CRC, but it was not dif-
ferent by the age of onset (see Supplementary Figure S4). However, we found that
the fatty acid synthase (FASN) gene was significantly over-expressed in LOCRC [fold
change 1.69 (95%CI 1.41–2.03)] compared to a non-significant increase in EOCRC patients
[1.25-fold (95% CI: −1.009 to 1.59)] (see Supplementary Figure S5). The over-expression of
FASN has been reported in CRC [23,24]. The data may suggest FASN as a therapeutic target
in the LOCRC group, as has been suggested by others [25,26].
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2.1.5. Age of Onset of CRC and Differential Expression of KEGG Pathways

In addition to examining the selective biologically relevant gene sets, as shown above,
we also tested all of the KEGG pathways to see if the magnitude of the differential expres-
sion (CRC vs. normal colon tissue) of any pathway was different in LOCRC and EOCRC
patients. The detailed result is shown in Supplementary Table S5. It was interesting to see
that, among all of the KEGG pathways, the most significant interaction was seen in the
“DNA replication pathway”. Genes in the “DNA replication pathway” were over-expressed
by 1.27-fold (95%CI 1.25–1.28) in LOCRC patients compared to 1.16-fold (95% CI 1.14–1.18)
in EOCRC patients (ANOVA interaction p = 2.73 × 10−15).

2.1.6. Association of Differentially Expressed “Gene Sets” with Histology in CRC

Considering the significance of the tumor stage, LVI and PNI, we tried to see if the
gene expression of some of the top most differentially expressed gene sets (CRC vs. normal
tissue, EORC and LOCRC combined) were different in magnitude by these histological
changes. Assuming that the cancer cells respond to the DNA damage by increasing the
DNA damage repair and DNA replication machinery, one can expect that these gene sets
will be up-regulated in CRC tissue compared to normal colon tissue. Our data suggests
that these cellular responses for repairing the DNA damage are lower in magnitude in the
presence of LVI, PNI, and advanced stage. For example, in the absence of LVI, the base
excision repair (BER) genes are on average 1.13-fold (95% CI 1.11–1.14) over-expressed, but
in the presence of LVI, it is 1.07-fold (95% CI 1.05–1.08). The details are shown in Table 6,
which shows that perhaps LVI had the strongest influence on the magnitude of differential
expression for these DNA repair machineries. A photomicrograph example of LVI and PNI
is shown in Supplementary Figure S6A,B, respectively.

Table 6. Association of differential expression of DNA damage repair gene sets and histological
finding of LVI and PNI in CRC tissue.

Stratification
Base Excision Repair Genes Mismatch Repair Genes Non-Homologous End-Joining

Fold Change (95% CI) Fold Change (95% CI) Fold Change (95% CI)

LV Invasion
Absent 1.13 (1.11 to 1.14) 1.18 (1.16 to 1.19) 1.11 (1.09 to 1.13)
Present 1.07 (1.05 to 1.08) 1.12 (1.11 to 1.14) 1.07 (1.05 to 1.09)

p 1.39 × 10−8 1.02 × 10−5 1.60 × 10−3

PN Invasion
Absent 1.11 (1.09 to 1.12) 1.16 (1.15 to 1.17) 1.09 (1.08 to 1.11)
Present 1.07 (1.05 to 1.09) 1.12 (1.09 to 1.15) 1.07 (1.04 to 1.10)

p 2.93 × 10−3 6.58 × 10−3 0.23

Stage
Stage-1 1.13 (1.1 to 1.15) 1.18 (1.16 to 1.21) 1.11 (1.08 to 1.15)
Stage-2 1.1 (1.08 to 1.12) 1.15 (1.13 to 1.17) 1.09 (1.06 to 1.11)
Stage-3 1.09 (1.07 to 1.10) 1.14 (1.13 to 1.16) 1.08 (1.06 to 1.10)

p 0.01 0.04 0.18

2.1.7. Gene Expression Profiling from Therapeutic Point of View

T-cell inflamed gene expression profile (GEP): This group of genes has been used
to predict immunotherapy targeting programmed cell death protein-1 (PD-1, also known
as CD274)) [27,28]. We looked at the gene expression of these genes in our patients to
see if they were different by age of onset (see Figure 6A,B). In both EOCRC and LOCRC
groups, these genes were down-regulated to a similar extent. However, stratification by
MSI status showed that the down-regulation was more pronounced (ANOVA interaction
p = 1.7 × 10−7) in the MSS group [fold change −1.32 (95% CI from −1.28 to −1.36)] than in
the MSI group [fold change −1.19 (95% CI from −1.13 to −1.25)].
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Figure 6. Differential gene expression of few groups of genes related to immune target therapy
in paired CRC tissue (in blue) and healthy colonic mucosa (in red). Gene probes are arranged
on the x-axis by expression level, and the mean of log2 transformed expression value is shown
on the y-axis. For many genes, there were multiple probes on the chip. T-cell inflamed GEP was
equally down-regulated in both LOCRC and EOCRC and are shown in (A) and (B), respectively.
Differential expression of few target genes for available check-point inhibitors in LOCRC and EOCRC
are shown in (C) and (D), respectively. Note that the magnitude of difference was similar by age of
onset. However, when we divided the patients by MSI status, the difference was seen. Differential
expression of the same few target genes in MSS and MSI patients are shown in (E) and (F), respectively.
Over-expression of CTLA4 and HAVCR2 was seen only in the MSI patients, but not in the MSS group.
Differential expression of “Platinum drug resistance” genes in LOCRC and EOCRC are shown in (G)
and (H), respectively. These were equally down-regulated in LOCRC and EOCRC and are shown in
(G) and (H), respectively.
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Other ICI target genes: We also looked at targets of some other immune check-point
inhibitors—LAG3, PDCD1, CD274, CTLA4, and HAVCR2. Again, the age of onset did
not influence the differential expression (interaction p = 0.17) (see Figure 6C,D), but the
MSI status influenced the overall differential expression, as we reported in an earlier
publication [11]. LAG3, PDCD1, and CD274 (PDL-1) were down-regulated in CRC (see
Figure 6E,F), but CTLA4 and HAVCR2 were up-regulated only in the MSI–CRC group,
suggesting a potential benefit from CTLA4 and HAVCR2 inhibitors in that subset only [11]
(see Figure 6F).

Platinum drug resistance genes: The differential expression was similar in magni-
tude in EOCRC and LOCRC. The MSI status also did not have any influence either (see
Figure 6G,H). The overall slight down-regulation of these genes in CRC suggested a low
potential chance of development of cis-platin resistance.

In summary, on the basis of the gene expression profile of genes relevant to therapy (a),
it may not be surprising if PD1 blockers do not show promising results in this CRC
population, but some other ICI, such as CTLA4 or HAVCR2 blockers, may have promising
results in the MSI subgroup; (b) the possibility of platinum drug resistance may be low,
irrespective of age of onset in this population.

2.2. DNA Methylation
Age of Onset of CRC and Differential DNA Methylation

First, we carried out the differential methylation analysis (paired CRC tissue vs.
corresponding healthy colon tissue) at the individual probe level data. Using paired
analysis, we found a large number of differentially methylated loci (DML), both in LOCRC
(n = 143,646, at FDR 0.05) and in EOCRC (n = 111,066, at FDR 0.05) (see Figure 7A). A large
number of these DML (n = 100,370, which is 69.8% of those found in LOCRC and 90.36%
of those found in EOCRC) were common between the two groups (see Figure 7A). These
lists of DML do not take the magnitude of the differential methylation (delta beta = beta
value of CRC tissue—beta value of normal) into account. Considering our aim to detect
the DML, the magnitudes of delta beta of which are significantly different among LOCRC
and EOCRC, we used an ANOVA model that included an interaction term “tissue x age of
onset of CRC”. Our analysis suggested that there were 5607 loci with interaction p =< 0.05.
These three lists were used in the Venn diagram (Figure 7B). The intersections of the Venn
diagram allowed us to identify the following groups of DML:

I. DML common in both EOCRC and LOCRC and the magnitude of delta beta was not
different (n = 97,939) as the interaction p was >=0.05. This represents the largest group
of DML in CRC. The scatterplot in Figure 7C shows the magnitude of delta beta of
these DML in LOCRC and EOCRC and the cut-off lines on both axes show a large
number of loci with delta beta > 0.1 or <−0.1, indicating hyper- or hypo-methylation
exceeding 10%.

II. DML common in both EOCRC and LOCRC, but the magnitude of delta beta was
significantly different between EOCRC and LOCRC patients (n = 2431).

III. DML found only in EOCRC, but the magnitude of the delta beta was not different
between the EOCRC and LOCRC (n = 9925). The scatterplot in Figure 7D shows that
the magnitudes of delta beta of these DML were low and not different among LOCRC
and EOCRC.

IV. DML specific to EOCRC (n = 771): these DML are differentially methylated only
in EOCRC, and the magnitude of the delta beta is significantly more pronounced
from that seen in LOCRC. The details of these DML are presented in Supplementary
Table S6. The scatterplot in Figure 7E shows the magnitudes of delta beta of these
DML; only a few exceeded 0.1 or 10% differential methylation. Regardless of the low
magnitudes of delta beta of these 771 EOCRC specific DML, because of specificity,
these markers were able to separate CRC from normal among the EOCRC patients
(see the PCA plot in Figure 7F). The only hypermethylated DML with delta beta >= 0.1
was the SOX8 gene. Among the three hypomethylated loci with delta beta =< 0.1,
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one was the TACC1 gene (see Figure 7E), which is known to be associated with other
cancers. The methylation status of the TACC1 gene in LOCRC and EOCRC is shown in
Figure 7G,H, respectively, showing that TACC1 was hypomethylated only in EOCRC,
but not in LOCRC.

V. DML specific to old age onset CRC (1946): these DML are differentially methylated
only in LOCRC, and the magnitude of the delta beta is significantly more pronounced
from that seen in EOCRC. The details of these DML are presented in Supplementary
Table S7. For many of these DML, the magnitudes of delta beta exceeded 0.1 or 10%
differential methylation.

In the next step, we tried to identify if the magnitude of the differential methylation of
some gene set(s) was different among the patients with LOCRC compared to those with
EOCRC patients. We included an interaction term “tissue x age of onset” in the gene set
ANOVA model(s); the p-value of that interaction term identified pathways/gene sets that
were differentially methylated depending on the age of onset.

Among the cancer related gene sets, the genes involved in “Growth factor receptors”
and “DNA repair” showed different magnitudes of differential methylation among EOCRC
and LOCRC (see Supplementary Table S8). This methylation data for “Growth factor
receptor” genes also correlate to our gene expression data in a sense that, for these genes,
on average, we observed the hypermethylation of DNA in CRC tissue in general (more in
LOCRC than EOCRC) and the down-regulation in mRNA in CRC tissue (more pronounced
in LORC than in EOCRC). Among the DNA damage related gene sets, “Direct reversal
Repair” genes were differentially methylated depending on the age of onset (see Supple-
mentary Table S9). Among the replication stress site gene sets, “Immune regulation” genes
were differentially methylated depending on the age of onset (see Supplementary Table S10).
Finally, the top KEGG pathways which showed different magnitudes of differential methy-
lation among EOCRC and LOCRC were “Antigen processing and presentation”, “Type I
diabetes mellitus”, “JAK-STAT signaling pathway” etc. (see Supplementary Table S11).

Figure 7. Cont.
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Figure 7. Differential methylation analysis of CRC. The overlap of DML (based on FDR <0.05 only
without taking the delta beta into account) in LOCRC and EOCRC is shown in (A). In (B), we
also overlapped the methylation markers that showed different magnitude of delta beta in EOCRC
and LOCRC. We identified these markers through the “tissue x age of onset” interaction p =< 0.05
in the ANOVA models. (C) shows the 97,939 common markers in EOCRC and LOCRC that also
had similar magnitude of delta beta in both age groups (because the interaction p was >0.05). The
scatterplot shows the delta beta of these markers in LOCRC on x−axis and the delta beta of these
markers in EOCRC on the y−axis. (D) shows the 9925 DML that were found only in EOCRC, but
the delta beta was equally small; I shows the 771 EOCRC specific DML. (E) The scatterplot shows
the delta beta of these markers in LOCRC on x−axis and the delta beta of these markers in EOCRC
on the y−axis. Although they are greater than LOCRC, the majority of these DML had small delta
beta, even in EOCRC. PCA plot using these 771 EOCRC-specific DML is shown in (F). Among the
three hypomethylated loci with delta Beta =< 0.1, one was TACC1 gene. The methylation status of
TACC1 gene in LOCRC and EOCRC are shown in (G) and (H), respectively, showing TACC1 was
hypomethylated only in EOCRC.

In summary, (a) the vast majority of the DML in CRC were common in EOCRC and
LOCRC; (b) the vast majority of the robust DML [the one with the magnitude of delta
beta => 0.2 (20%)] were common between EOCRC and LOCRC; (c) although the EOCRC
specific DML were relatively small in number and also small in the magnitude of delta beta.
These EOCRC specific markers could potentially differentiate cancer from healthy tissue.

3. Discussion

The incidence of CRC among young adults has increased globally [1,29–31]. Siegel RL
et al. published a comprehensive overview of current CRC statistics in the United States,
including the estimated numbers of new cases and deaths in 2020 by age and incidence,
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survival, and mortality rates and trends by age and race/ethnicity based on incidence data
through 2016 and mortality data through 2017 [31].

In this study from a Bangladeshi population, we attempted to find any histological
and transcriptome wide and methylome wide differences in CRC tissue compared to corre-
sponding normal tissue among EOCRC and LOCRC patients. We acknowledge that such a
study cannot shed light on the etiology of the increase in incidence in EOCRC. Additionally,
we did not have any post-surgical follow-up data to comment on the difference in prog-
nosis of EOCRC, if any. From the histology perspective, we documented that EOCRC is
associated with an advanced stage. This association has been seen in other populations as
well. However, the greater proportion of patients with advanced stage could not be simply
explained by a delay in diagnosis. The other two histological features associated with
EOCRC were LVI and PNI. The significance of KRAS and BRAF mutations in CRC is well
known [32]. However, we did not see any difference in the frequency of these mutations
between EOCRC and LOCRC in our series.

The histological diagnosis of LVI on examination of the hematoxylin & eosin (H&E)-
stained slide includes the presence of tumor cells within a vascular space; erythrocytes
surrounding the tumor cells; the identification of endothelial cells lining the space; the
presence of an elastic lamina surrounding the tumor; and the attachment of tumor cells to
the vascular wall [33]. PNI is a pathologic process characterized by a tumor invasion of
nervous structures and spread along nerve sheaths. The pathogenesis of PNI likely involves
complex signaling between tumor cells, stromal cells, and the nerves. PNI is known to be a
marker for a more aggressive tumor phenotype and poor prognosis in several malignancies,
most notably head and neck and prostate cancers. PNI was defined as tumor cells within
any layer of the nerve sheath or tumor in the perineural space that involved at least one
third of the nerve circumference [34]. To our knowledge, our study is the first to show the
association of these histological markers of advanced disease (stage, LVI, and PNI) with
an underlying transcriptomic profile of impairment in DNA damage repair machinery in
CRC tissue.

In one retrospective study among LOCRC, 207 right sided and 207 left sided tumors
are compared after curative resection, the authors found that the left-sided tumor exhibited
better survival outcomes than the right-sided ones after curative resection [4]. Survival
data for EOCRC is conflicting. Survival rates among the young and older groups also
show variation depending on the CRC stages. The right sided tumor exhibited a more
advanced stage, increased tumor size, more frequently poorly differentiated tumors, more
harvested lymph nodes, and more positivity of LVI than left sided ones. They also found
better 5-year survival outcomes for the group with left sided CRC [4]. Right sided CRC
presents more with iron deficiency anemia [35]. Powell et al. compared 134 (33%) right
sided, 125 (30%) left sided, and 152 (37%) rectal tumors. Emergency presentation (p < 0.001),
anemia (p < 0.001), advanced stage (p < 0.001), poor differentiation (p < 0.001), and older
age (p < 0.05) were more commonly observed in right sided cancers [36].

There are some differences in the clinicopathological characteristics among EOCRC
and LOCRC. The differences between the 94 EOCRC (avg. 27 years) and 275 LOCRC (avg.
67 years) were studied [37]. There were differences in the stage at diagnosis—stage III and
IV (76% vs. 46%), signet ring-cell (13% vs. 1%), poorly differentiated (37% vs. 8%), MSI
status (27% vs. 13%), and the 5-year disease specific survival (48% vs. 78%) in EOCRC and
LOCRC, respectively [37], and no difference was found in KRAS and BRAF mutations. Low
BRAF mutations were reported among Bangladeshi immigrants to the UK [38]. Another
study also found that, in sporadic CRC, independent of the age, the LVI and PNI were
associated with a poor prognosis and recurrence [39]. In our study, we found advanced
stage, LVI, and PNI to be significantly associated with EOCRC compared to LOCRC.

Very few studies have compared the gene expression difference between the EOCRC
and LOCRC. Tunca B et al. looked at the expression profiles of 114 different genes which
were evaluated using mRNA PCR arrays in 39 tumors and 20 surgical margin tissue samples
from 39 sporadic CRC patients diagnosed at less than 50 years of age [40]. The expression
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levels of IMPDH2, CK20, MAP3K8, and EIF5A were strongly up-regulated in CRC tissues
compared with normal colorectal tissues, but not compared to the LOCRC. A similar study
was carried out on sporadic EOCRC and healthy controls (<50 years old). Seven genes,
CYR61, UCHL1, FOS, FOS B, EGR1, VIP, and KRT24, were consistently up-regulated in the
mucosa of all six patients compared with the mucosa from four healthy controls [41].

Gene expression variation between FFPE tissues from six EOCC patients (<50 years)
and six LOCRC patients (>65 years) were examined. Among the 770 genes assayed, changes
in expression levels of 88 genes were unique (28 up- and 60 down-regulated) to EOCC (using
the cutoff criteria of expression level differences > 2-fold and p value < 0.01) [42]. At the
pathway level, RAS, MAPK, WNT, and DNA repair pathways were similarly deregulated
in both age groups, whereas PI3K-AKT signaling was more specific to EOCC and cell cycle
pathways to LOCC [42]. Berg M et al. performed an integrated analysis of copy number
changes and gene expression in 23 sporadic EOCRC patients with a median age of 44 years
and 17 LOCRC patients with median age of 79 years [43]. Tissues were preserved in
buffer RLT. In the younger group, CLC, LTBP4, and ZNF574 were up-regulated and PPAT,
RG9MTD2, EIF4E, and PLA2G12A were down-regulated compared to the older group.
Agesen TH et al. compared gene expression in EOCRC and LOCRC and found that a good
number of genes are over- or under-expressed in EOCRC [44]. Among those, Charcot–
Leyden crystal protein (CLC) was 10 times over-expressed and interferon (alpha, beta, and
omega) receptor-1 (IFNAR1) was under-expressed.

Gene expression data in EOCRC were analyzed by Mo X et al. [45]. A total of
140 module hub genes were identified and found to be enriched in the ‘mitochondrial
large ribosomal subunit’, ‘structural constituent of ribosome’, ‘poly (A) RNA binding’,
‘collagen binding’, ‘protein ubiquitination’, and ‘ribosome pathway’. Twenty-six module
hub genes were found to have a degree score > 5 in the PPI network, seven of which
[secreted protein acidic and cysteine rich (SPARC), decorin (DCN), fibrillin 1 (FBN1), WW
domain containing transcription regulator 1 (WWTR1), transgelin (TAGLN), DEAD-box
helicase 28 (DDX28), and cold shock domain containing C2 (CSDC2)], had good prognostic
values for patients with early-onset CRC, but not late-onset CRC. Therefore, the authors
suggested that SPARC, DCN, FBN1, WWTR1, TAGLN, DDX28, and CSDC2 may contribute
to the development of early-onset CRC and may serve as potential diagnostic biomarkers.

Structurally, leptin has similarity with other proteins of the cytokine family, belong-
ing to the group of cytokines commonly called adipocytokines or adipokines. Initially
described as an anti-obesity hormone, leptin has subsequently been shown to also influence
hematopoiesis, thermogenesis, reproduction, angiogenesis, and immune homeostasis [46].
Some variants of the Leptin gene have been found to be associated with CRC in females [9].
There is an inverse correlation between adiponectin and leptin in obesity [47]. In our study,
we observed the down-regulation of LEPR GHRL in both EOCRC and LOCRC without a
significant difference; however FASN was significantly over-expressed in LOCRC compared
to a non-significant increase in EOCRC patients.

In a recent paper, Joo JE et al. compared the DNA methylation of tumor and healthy
mucosa in 110 EOCRC (<50 years), 334 intermediate onset CRC (IOCRC) (50–70 years), and
325 LOCRC (>70 years) [48]. They used FFPE samples on Methylation 450K chips using
the DNA restoration kit. They found extensive DNA methylation alterations in all CRCs,
including EOCRCs. They identified DNA methylation-related changes specific to EOCRC,
including TFAP2A and GSX1 genes, and 12 differentially methylated genes associated
with the MODY pathway. In our study, we found a relatively smaller number of EOCRC
specific DML, but those could cluster the CRC samples well from normal tissue. Some of
our methylation findings also correlated with gene expression findings in EOCRC.

We did not have any CRC patients with distal metastasis in this series and we did not
have chemotherapy or immunotherapy data. However, we tried to look for the molecular
basis in the CRC tissue for the potential use of ICI in these EOCRC and LOCRC patients.
The age of onset did not appear to be a factor that can modify the choice of ICI. Rather, the
MSI status can be used to select a potential subset of CRC patients for certain ICI. With all of
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the limitations of our study in mind, some of the strengths of the study may be noted. First,
paired tumor-normal samples from the same individual for comparison is the most robust
method for detecting any gene expression and methylation changes in cancer. Second, we
used tissue samples preserved in RNA later for RNA and fresh frozen samples for DNA,
which are the gold standard for such assays. Third, to our knowledge, this is one of the first
studies from native Bangladeshi patients with CRC to comprehensively see a difference
between EOCRC and LOCRC pathogenesis from the molecular perspective.

4. Materials and Methods

For this study, we included 330 paired (tumor and adjacent normal) samples from
165 CRC patients (m = 96, f = 69). Of them, 33 had right-sided CRC (cecum 8, ascending
colon 17, hepatic flexure 4, and transverse colon 4) and 132 had left-sided CRC (descending
colon 8, sigmoid colon 15, recto-sigmoid junction 7, and rectum 102). Sixty-seven of
the patients (39 male and 28 female) were aged =<40 years. The fresh frozen samples
were collected from 165 CRC patients from the department of Pathology, Bangabandhu
Sheikh Mujib Medical University (BSMMU), Dhaka, Bangladesh at different times spanning
between December 2009 and May 2016. The patients were at different stages of CRC (stage-
1: 37, stage 2: 42 stage 3: 86). From each patient, the specimens were collected from the
surgically resected tumor and the surrounding unaffected part of the colon about 5–10 cm
away from the tumor mass. A surgical pathology fellow collected all samples from the
operating room immediately after the surgical resection. A histopathology examination was
performed on H&E stained slides in routinely processed paraffin impregnated tissue blocks.
The slides were examined independently by two pathologists and there was concordance
in all 165 cases. For the staging and grading of the CRC, the World Health Organization
Classification of tumors was followed [49]. From each individual, we obtained a pair of
tumor and normal tissues, which were frozen immediately and shipped on dry ice to the
molecular genomics lab at The University of Chicago for subsequent DNA, RNA extraction,
and molecular assay.

For each patient, we also abstracted key demographic and clinical data and tumor char-
acteristics from hospital medical records. Written informed consent was obtained from all
participants. The research protocol was approved by the “Ethical Review Committee, Banga-
bandhu Sheikh Mujib Medical University”, Dhaka, Bangladesh (BSMMU/2010/10096), and
by the “Biological Sciences Division, University of Chicago Hospital Institutional Review
Board”, Chicago, IL, USA (10-264-E).

4.1. DNA and RNA Extraction and Quality Control

DNA was extracted from fresh frozen tissue using a Puregene Core kit (Qiagen, MD,
USA). The electropherogram from Agilent BioAnalyzer with Agilent DNA 12,000 chips
showed the fragment size to be >10,000 bp. RNA was extracted from RNA Later preserved
colonic tissue using a Ribopure tissue kit (Ambion, Austin, TX, USA, Cat# AM1924).

4.2. Relative Telomere Length (RTL) Measurement

For RTL measurement, we used a Luminex-based assay using QuantiGene Plex
chemistry (Invitrogen, Santa Clara, CA, USA). The details of the assay are described
earlier [50,51]. Briefly, the assay requires ~50 ng of DNA, which is hybridized to sequence-
specific probes for the telomere repeat sequence (TEL) and reference gene sequence
(ALK). The TEL and ALK gene signals are amplified using branched DNA technology
and detected using Luminex technology. We used custom designed probes to mea-
sure the abundance of the telomere repeat sequence. The 24-mer probe targeted four
repeats–“TTAGGGTTAGGGTTAGGGTTAGGG”. As a reference single gene, we used
ALK which showed very stable copy numbers (CN = 2) in all the DNA samples detected
by oligonucleotide-based microarray SNP chips from our previous study. The result is
a ratio, and hence there is no unit. The assay precision was good to excellent, with an
intra-class correlation coefficient (ICC) of 0.91 (95% CI 0.86–0.94) [50]. The RTL assay failed
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in 17 samples (nine CRC and eight normal tissue) out of the total 330 samples tested. This
failure rate (5.1%) was similar to what we have seen previously in a larger scale study
using the same Luminex-based RTL measurement assay [52]. RTL data of this series of
CRC patients was recently published [53].

4.3. Genome-Wide Gene Expression Assay

We used microarray data (Illumina HT12 v4 BeadChip) from the first 71 paired tumor
and normal tissue RNA (of the same set of 165 patients used for RTL assay in this study).
The chip contains a total of 47,231 probes covering 31,335 genes. Therefore, for many genes,
there were multiple probes on the chip targeting different genomic regions of the same
gene, that also enables the covering of multiple isoforms, if any. We used the probe level
data. Paired samples were processed in the same chip (12 samples/chip). One sample from
the normal tissue failed on the microarray. Therefore, we had gene expression data from
71 CRC tissues and 70 corresponding normal tissues. Gene expression data was normalized
using quantile normalization in the GenomeStudio software.

4.4. Genome-Wide Methylation Assay

We also have methylation data (Illumina HumanMethylation450 DNA analysis Bead-
Chip v1.0 Assay) from the first 125 paired tumor-normal samples (125 pairs out of the same
set of 165 patients used for this study) [11]. The DNA samples were subjected to bisulfite
conversion using EZ-96 DNA Methylation Kit (Zymo Research, Irvine, CA, USA). The chip
presents 485,577 loci of which there are 150,254 in CpG Island, 112,067 in Shore (0–2 kb
from island), 47,114 in Shelf (2–4 kb from the island), and 176,112 in deep sea (>4 kb from
CpG island). We did not include the markers in the deep sea region in the final differential
methylation analysis. Paired samples (CRC and corresponding normal) were processed
on the same chip to avoid a batch effect. From this assay, on average 17 loci per gene were
interrogated. A Tecan Evo robot was used for automated sample processing and the chips
were scanned on a single iScan reader. If the intensity of the methylated loci is X and the
intensity of the unmethylated loci is Y, then, the methylation score (beta value) is X/X + Y.
If all are unmethylated (X = 0), then the methylation level is 0/0 + Y = 0. If all loci are
methylated (Y = 0), then the beta value is X/X + 0 = 1. If 50% of probes are hybridized at
the methylated loci and 50% are hybridized at the unmethylated loci, then the methylation
score is 50/50 + 50 = 0.5.

4.5. Microsatellite Instability (MSI) Detection

A high-resolution melting (HRM) analysis method was used for the detection of
two mononucleotide MSI markers—BAT25 and BAT26 [54,55]. A tumor was defined as
having MSI when it showed instability with at least one of these markers (BAT25 and
BAT26), and as MSS when it showed no instability for both of the markers. We used
published primer sequences [54]. The amplification conditions included the polymerase
activation step at 95 ◦C for 2 min, followed by five cycles of denaturation at 95 ◦C for 15 s,
annealing starting at 60 ◦C for 30 s, extension at 72 ◦C for 30 s, and an additional 33 cycles
of denaturation at 95 ◦C for 15 s, annealing at 53 ◦C for 30 s, and extension at 72 ◦C for 30 s.
Before the HRM step, the products were heated to 95 ◦C for 1 min and cooled to 40 ◦C for
1 min, to allow for the heteroduplex formation. HRM was carried out and the data was
collected over the range from 60 to 95 ◦C, with temperature increments of 0.2 ◦C/s at each
0.05 s. The BAT25 and BAT26 products were sequenced for validation. In this way, a total
of 30 tumor samples showed MSI and all were confirmed by another relatively novel MSI
marker CAT25 [56,57].

4.6. KRAS and BRAF Mutation Detection:

Tumor and adjacent healthy colonic tissue from 165 paired (tumor and normal) tissues
were tested for KRAS (rs 112445441) and BRAFV600E mutations by high resolution melt
analysis, as described previously [55].
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4.7. Statistical Analysis

To compare the continuous variables, we used a t-test or one-way analysis of variance
(ANOVA). The principal component analysis (PCA) and sample histograms were checked
as a part of quality control analyses of the microarray data. Mixed-model multi-way
ANOVA (which allows more than one ANOVA factor to be entered in each model) was used
to compare the individual probe level expression data (for gene expression) or the beta value
of CpG loci (for methylation data) across different groups. For statistical analysis, we used
Partek Genomics Suite (version 7.0) (https://www.partek.com/partek-genomics-suite/,
accessed on 14 November 2022). In general, “tissue” (tumor/adjacent normal), age of
onset of CRC (0: =<40 years, 1: >40 years), LVI (0 = no, 1 = yes), PNI (0 = no, 1 = yes),
telomere shortening (0 = no, 1 = yes), and MSI status (MSI/MSS) were used as categorical
variables with fixed effect. These levels represent all conditions of interest, whereas “person
ID#” (as proxy of inter-person variation) was treated as a categorical variable with random
effect, since the person ID is only a random sample of all of the levels of that factor. The
method of moments estimation was used to obtain estimates of variance components for
mixed models [58]. As per the study design, we processed both the CRC tissue and the
corresponding adjacent normal sample from one individual in a single chip. In the ANOVA
model, the log2-transformed gene expression or beta-value for the CpG loci were used as
the response variable (Y), and “Tumor” (tumor or normal), person ID#, “MSI-status”, and
“age of onset” were entered as ANOVA factors.

For the paired analysis, we used the following model:

Yijk = µ + Tumori + Personj + εijk

where Yijk represents the k-th observation on the i-th tumor j-th person. M is the common
effect for the whole experiment. Eijk represents the random error present in the k-th
observation on the i-th tumor j-th person. The errors εijk are assumed to be normally and
independently distributed with mean 0 and standard deviation δ for all measurements.
Person is a random effect.

For the detection of the interaction between tumor and age of onset, the following
model was used:

Yijk = µ + Tumori + Age o f onset o f CRCJ + Tumor ∗ Age o f onset o f CRCij + εijk

where Yijk represents the k-th observation on the i-th tumor j-th age of onset. M is the
common effect for the whole experiment. Eijk represents the random error present in the
k-th observation on the i-th tumor j-th age of onset of CRC. The errors εijk are assumed to
be normally and independently distributed with mean 0 and standard deviation δ for all
measurements.

Gene ontology (GO) was used to group a set of genes into a category. In GO Enrichment
analysis, we tested if the genes found to be differentially expressed or methylated fell into
a gene ontology category more often than expected by chance [59]. We used a chi-square
test to compare the “number of significant genes from a given category/total number of
significant genes” vs. “number of genes on chip in that category/total number of genes
on the microarray chip”. The negative log of the p-value for this test was used as the
enrichment score. Therefore, a GO group with a high enrichment score represents a lead
functional group. The enrichment scores were analyzed in a hierarchical visualization and
in tabular form.

Gene set ANOVA is a mixed model ANOVA to test the expression or methylation of
a set of genes (sharing the same category or functional group) instead of an individual
gene in different groups (https://www.partek.com/partek-genomics-suite/, accessed on
14 November 2022). The analysis is performed at the gene level, but the result is expressed
at the level of the gene set-category by averaging the member genes’ results. The equation
for the model was:

Model: Y = µ + T + P + G + S (T ∗ P) + ε

https://www.partek.com/partek-genomics-suite/
https://www.partek.com/partek-genomics-suite/


Int. J. Mol. Sci. 2022, 23, 14261 19 of 22

where Y represents the expression or methylation status of a gene set category, µ is the
common effect or average expression/methylation of the gene set category, T is the tissue-
to-tissue (tumor/normal) effect, P is the patient-to-patient effect, G is the gene-to-gene effect
(differential expression or methylation of genes within the gene set category independent
of tissue types), S (T*P) is the sample-to-sample effect (this is a random effect, and nested in
the tissue and patient), and ε represents the random error. All of the figures were generated
using Partek Genomics Suite (version 7.0) (https://www.partek.com/partek-genomics-
suite/, accessed on 14 November 2022).

5. Conclusions

We found that a high proportion of CRC patients presented at =<40 years of age.
Histologically, EOCRC was more frequently associated with advanced stage, LVI, and PNI.
As for molecular mechanisms for pathogenesis, the genome-wide gene expression and
methylation suggested that the EOCRC was associated with an impaired DNA damage
repair response, DNA replication repair, and immune response. From a therapeutic per-
spective, the study suggested the potential use of FASN targeted therapy, especially in the
LOCRC group in this population.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/ijms232214261/s1, Figure S1: Differential expression of
MMR genes in LOCRC and EOCRC; Figure S2: Differential expression of DNA replication repair
genes in LOCRC and EOCRC; Figure S3: Differential expression of metabolism genes in LOCRC
and EOCRC; Figure S4: Differential expression of obesity related genes in LOCRC and EOCRC;
Figure S5: Differential expression of FASN gene in LOCRC and EOCRC; Figure S6: Photo micrograph
HE stain at 200× magnification showing LVI (Shown in S6A) and PNI (shown in S6B); Table S1:
Cancer related genes; Table S2: DNA damage genes; Table S3: Replicative stress sensitive site genes;
Table S4: NOTCH 4 axis leptin related genes; Table S5: KEGG pathway in EOCRC and LOCRC;
Table S6: DML early onset CRC; Table S7: DML late onset CRC; Table S8: Methylation cancer genes
interaction; Table S9: Methylation DNA damage genes; Table S10: Methylation DNA RSS genes;
Table S11: Methylation KEGG genes.

Author Contributions: Conceptualization, M.G.K., F.J., and H.A.; methodology, F.J.; formal analysis,
M.G.K. and F.J.; investigation, F.J., M.R., and M.K.; resources, M.K. and H.A.; data curation, M.G.K.;
writing—original draft preparation, M.G.K., F.J., and A.Q.; writing—review and editing, M.R. and
H.A.; supervision, M.G.K. and H.A.; funding acquisition, H.A. All authors have read and agreed to
the published version of the manuscript.

Funding: This study was partially supported by NIH funds P20CA210305 and P30ES027792.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the “Biological Sciences Division, University of Chicago
Hospital Institutional Review Board”, Chicago, IL, USA (10-264-E).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: All supporting data are presented in the tables presented in the main
manuscript and as supplemental material.

Acknowledgments: We acknowledge the support and help from all of the patients included in this
study. We thank Zahidul Haq, Rupash Paul, and Mustafizur Rahman for their support. We thank the
University of Chicago Research, Bangladesh (URB) staff for the handling and shipping of all of the
study material to the University of Chicago molecular genomics laboratory.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

https://www.partek.com/partek-genomics-suite/
https://www.partek.com/partek-genomics-suite/
https://www.mdpi.com/article/10.3390/ijms232214261/s1


Int. J. Mol. Sci. 2022, 23, 14261 20 of 22

References
1. Vuik, F.E.; Nieuwenburg, S.A.; Bardou, M.; Lansdorp-Vogelaar, I.; Dinis-Ribeiro, M.; Bento, M.J.; Zadnik, D.; Pellisé, M.; Esteban,

L.; Kaminski, M.F.; et al. Increasing incidence of colorectal cancer in young adults in Europe over the last 25 years. Gut 2019, 68,
1820–1826. [CrossRef] [PubMed]

2. Burnett-Hartman, A.N.; Powers, J.D.; Chubak, J.; Corley, D.A.; Ghai, N.R.; McMullen, C.K.; Pawloski, P.A.; Sterrett, A.T.; Feigelson,
H.S. Treatment patterns and survival differ between early-onset and late-onset colorectal cancer patients: The patient outcomes to
advance learning network. Cancer Causes Control 2019, 30, 747–755. [CrossRef] [PubMed]

3. Crosbie, A.B.; Roche, L.M.; Johnson, L.M.; Pawlish, K.S.; Paddock, L.E.; Stroup, A.M. Trends in colorectal cancer incidence among
younger adults-Disparities by age, sex, race, ethnicity, and subsite. Cancer Med. 2018, 7, 4077–4086. [CrossRef] [PubMed]

4. Lim, D.R.; Kuk, J.K.; Kim, T.; Shin, E.J. Comparison of oncological outcomes of right-sided colon cancer versus left-sided colon
cancer after curative resection: Which side is better outcome? Medicine 2017, 96, e8241. [CrossRef] [PubMed]

5. Perea, J.; García, J.L.; Corchete, L.; Tapial, S.; Olmedillas-López, S.; Vivas, A.; García-Olmo, D.; Urioste, M.; Goel, A.; González-
Sarmiento, R. A clinico-pathological and molecular analysis reveals differences between solitary (early and late-onset) and
synchronous rectal cancer. Sci. Rep. 2021, 11, 2202. [CrossRef] [PubMed]

6. Chang, D.T.; Pai, R.K.; Rybicki, L.A.; Dimaio, M.A.; Limaye, M.; Jayachandran, P.; Koong, A.; Kunz, P.A.; Fisher, G.A.;
Ford, J.M.; et al. Clinicopathologic and molecular features of sporadic early-onset colorectal adenocarcinoma: An adenocarcinoma
with frequent signet ring cell differentiation, rectal and sigmoid involvement, and adverse morphologic features. Mod. Pathol.
2012, 25, 1128–1139. [CrossRef] [PubMed]

7. Liang, J.T.; Huang, K.C.; Cheng, A.L.; Jeng, Y.M.; Wu, M.S.; Wang, S.M. Clinicopathological and molecular biological features of
colorectal cancer in patients less than 40 years of age. Br. J. Surg. 2003, 90, 205–214. [CrossRef] [PubMed]

8. O′Connell, J.B.; Maggard, M.A.; Liu, J.H.; Etzioni, D.A.; Livingston, E.H.; Ko, C.Y. Do young colon cancer patients have worse
outcomes? World J. Surg. 2004, 28, 558–562. [CrossRef]

9. Li, H.; Boakye, D.; Chen, X.; Hoffmeister, M.; Brenner, H. Association of Body Mass Index With Risk of Early-Onset Colorectal
Cancer: Systematic Review and Meta-Analysis. Am. J. Gastroenterol. 2021, 116, 2173–2183. [CrossRef]

10. Liu, P.-H.; Wu, K.; Ng, K.; Zauber, A.G.; Nguyen, L.; Song, M.; He, X.; Fuchs, C.S.; Ogino, S.; Willett, W.C.; et al. Association of
obesity with risk of early-onset colorectal cancer among women. JAMA Oncol. 2019, 5, 37–44. [CrossRef]

11. Jasmine, F.; Haq, Z.; Kamal, M.; Raza, M.; da Silva, G.; Gorospe, K.; Paul, R.; Strzempek, P.; Ahsan, H.; Kibriya, M.G. Interaction
between Microsatellite Instability (MSI) and Tumor DNA methylation in the pathogenesis of colorectal carcinoma. Cancers 2021,
13, 4956. [CrossRef]

12. Saltzstein, S.L.; Behling, C.A. Age and time as factors in the left-to-right shift of the subsite of colorectal adenocarcinoma: A study
of 213,383 cases from the California Cancer Registry. J. Clin. Gastroenterol. 2007, 41, 173–177. [CrossRef] [PubMed]

13. Bs, A.K.; George, T.; Hughes, S.J.; Delitto, D.; Allegra, C.J.; Hall, W.A.; Chang, G.J.; Tan, S.A.; Shaw, C.M.; Iqbal, A. Rectal cancer
patients younger than 50 years lack a survival benefit from NCCN guideline-directed treatment for stage II and III disease. Cancer
2018, 124, 3510–3519. [CrossRef]

14. Saraste, D.; Järås, J.; Martling, A. Population-based analysis of outcomes with early-age colorectal cancer. Br. J. Surg. 2020, 107,
301–309. [CrossRef] [PubMed]

15. REACCT Collaborative; Zaborowski, A.M.; Abdile, A.; Adamina, M.; Aigner, F.; D’Allens, L.; Allmer, C.; Álvarez, A.; Anula,
R.; Andric, M.; et al. Characteristics of Early-Onset vs Late-Onset Colorectal Cancer: A review. JAMA Surg. 2021, 156, 865–874.
[CrossRef]

16. Zaborowski, A.M.; Murphy, B.; Creavin, B.; Rogers, A.C.; Kennelly, R.; Hanly, A.; Martin, S.T.; O’Connell, P.R.; Sheahan, K.;
Winter, D.C. Clinicopathological features and oncological outcomes of patients with young-onset rectal cancer. Br. J. Surg. 2020,
107, 606–612. [CrossRef] [PubMed]

17. Mauri, G.; Sartore-Bianchi, A.; Russo, A.G.; Marsoni, S.; Bardelli, A.; Siena, S. Early-onset colorectal cancer in young individuals.
Mol. Oncol. 2019, 13, 109–131. [CrossRef] [PubMed]

18. Losi, L.; Di Gregorio, C.; Pedroni, M.; Ponti, G.; Roncucci, L.; Scarselli, A.; Genuardi, M.; Baglioni, S.; Marino, M.; Rossi, G.; et al.
Molecular genetic alterations and clinical features in early-onset colorectal carcinomas and their role for the recognition of
hereditary cancer syndromes. Am. J. Gastroenterol. 2005, 100, 2280–2287. [CrossRef]

19. Barlow, J.H.; Faryabi, R.B.; Callén, E.; Wong, N.; Malhowski, A.; Chen, H.T.; Gutierrez-Cruz, G.; Sun, H.-W.; McKinnon, P.;
Wright, G.; et al. Identification of early replicating fragile sites that contribute to genome instability. Cell 2013, 152, 620–632.
[CrossRef]

20. Macheret, M.; Bhowmick, R.; Sobkowiak, K.; Padayachy, L.; Mailler, J.; Hickson, I.D.; Halazonetis, T.D. High-resolution mapping
of mitotic DNA synthesis regions and common fragile sites in the human genome through direct sequencing. Cell Res. 2020, 30,
997–1008. [CrossRef]

21. Qiao, L.; Wong, B.C. Role of Notch signaling in colorectal cancer. Carcinogenesis 2009, 30, 1979–1986. [CrossRef] [PubMed]
22. Scheurlen, K.M.; Chariker, J.H.; Kanaan, Z.; Littlefield, A.B.; George, J.B.; Seraphine, C.; Rochet, A.; Rouchka, E.C.; Galandiuk, S.

The NOTCH4-GATA4-IRG1 axis as a novel target in early-onset colorectal cancer. Cytokine Growth Factor Rev. 2022, 67, 25–34.
[CrossRef] [PubMed]

http://doi.org/10.1136/gutjnl-2018-317592
http://www.ncbi.nlm.nih.gov/pubmed/31097539
http://doi.org/10.1007/s10552-019-01181-3
http://www.ncbi.nlm.nih.gov/pubmed/31102084
http://doi.org/10.1002/cam4.1621
http://www.ncbi.nlm.nih.gov/pubmed/29932308
http://doi.org/10.1097/MD.0000000000008241
http://www.ncbi.nlm.nih.gov/pubmed/29049212
http://doi.org/10.1038/s41598-020-79118-z
http://www.ncbi.nlm.nih.gov/pubmed/33500439
http://doi.org/10.1038/modpathol.2012.61
http://www.ncbi.nlm.nih.gov/pubmed/22481281
http://doi.org/10.1002/bjs.4015
http://www.ncbi.nlm.nih.gov/pubmed/12555297
http://doi.org/10.1007/s00268-004-7306-7
http://doi.org/10.14309/ajg.0000000000001393
http://doi.org/10.1001/jamaoncol.2018.4280
http://doi.org/10.3390/cancers13194956
http://doi.org/10.1097/01.mcg.0000225550.26751.6a
http://www.ncbi.nlm.nih.gov/pubmed/17245216
http://doi.org/10.1002/cncr.31527
http://doi.org/10.1002/bjs.11333
http://www.ncbi.nlm.nih.gov/pubmed/31925793
http://doi.org/10.1001/jamasurg.2021.2380
http://doi.org/10.1002/bjs.11526
http://www.ncbi.nlm.nih.gov/pubmed/32149397
http://doi.org/10.1002/1878-0261.12417
http://www.ncbi.nlm.nih.gov/pubmed/30520562
http://doi.org/10.1111/j.1572-0241.2005.00223.x
http://doi.org/10.1016/j.cell.2013.01.006
http://doi.org/10.1038/s41422-020-0358-x
http://doi.org/10.1093/carcin/bgp236
http://www.ncbi.nlm.nih.gov/pubmed/19793799
http://doi.org/10.1016/j.cytogfr.2022.06.002
http://www.ncbi.nlm.nih.gov/pubmed/35941043


Int. J. Mol. Sci. 2022, 23, 14261 21 of 22

23. Ogino, S.; Kawasaki, T.; Ogawa, A.; Kirkner, G.J.; Loda, M.; Fuchs, C.S. Fatty acid synthase overexpression in colorectal cancer
is associated with microsatellite instability, independent of CpG island methylator phenotype. Hum. Pathol. 2007, 38, 842–849.
[CrossRef] [PubMed]

24. Uddin, S.; Hussain, A.R.; Ahmed, M.; Abubaker, J.; Al-Sanea, N.; Abduljabbar, A.; Ashari, L.H.; Alhomoud, S.; Al-Dayel, F.;
Bavi, P.; et al. High prevalence of fatty acid synthase expression in colorectal cancers in Middle Eastern patients and its potential
role as a therapeutic target. Am. J. Gastroenterol. 2009, 104, 1790–1801. [CrossRef] [PubMed]

25. Drury, J.; Young, L.E.A.; Scott, T.L.; Kelson, C.O.; He, D.; Liu, J.; Wu, Y.; Wang, C.; Weiss, H.L.; Fan, T.; et al. Tissue-specific
downregulation of fatty acid synthase suppresses intestinal adenoma formation via coordinated reprograming of transcriptome
and metabolism in the mouse model of Apc-driven colorectal cancer. Int. J. Mol. Sci. 2022, 23, 6510. [CrossRef]

26. Lu, T.; Sun, L.; Wang, Z.; Zhang, Y.; He, Z.; Xu, C. Fatty acid synthase enhances colorectal cancer cell proliferation and metastasis
via regulating AMPK/mTOR pathway. Onco Targets Ther. 2019, 12, 3339–3347. [CrossRef]

27. Ayers, M.; Lunceford, J.; Nebozhyn, M.; Murphy, E.; Loboda, A.; Kaufman, D.R.; McClanahan, T.K. IFN-γ-related mRNA profile
predicts clinical response to PD-1 blockade. J. Clin. Investig. 2017, 127, 2930–2940. [CrossRef]

28. Cristescu, R.; Mogg, R.; Ayers, M.; Albright, A.; Murphy, E.; Yearley, J.; Sher, X.; Liu, X.Q.; Lu, H.; Nebozhyn, M.; et al. Pan-tumor
genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 2018, 362, eaar3593. [CrossRef]

29. Lee, J.K.; Merchant, S.A.; Jensen, C.D.; Murphy, C.C.; Udaltsova, N.; Corley, D.A. Rising early-onset colorectal cancer incidence is
not an artifact of increased screening colonoscopy use in a large, diverse healthcare system. Gastroenterology 2022, 162, 325–327.
[CrossRef]

30. Nikolic, N.; Spasic, J.; Stanic, N.; Nikolic, V.; Radosavljevic, D. Young-onset colorectal cancer in Serbia: Tertiary cancer center
experience. J. Adolesc. Young Adult Oncol. 2022. [CrossRef]

31. Siegel, R.L.; Miller, K.D.; Sauer, A.G.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal
cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 145–164. [CrossRef] [PubMed]

32. Ottaiano, A.; Berretta, M.; Von Arx, C.; Capozzi, M.; Caraglia, M. Editorial: The Treatment of RAS or BRAF Mutated Metastatic
Colorectal Cancer: Challenges and Perspectives. Front. Oncol. 2022, 12, 852445. [CrossRef] [PubMed]

33. Harris, E.I.; Lewin, D.N.; Wang, H.L.; Lauwers, G.Y.; Srivastava, A.; Shyr, Y.; Shakhtour, B.; Revetta, F.; Washington, M.K.
Lymphovascular invasion in colorectal cancer: An interobserver variability study. Am. J. Surg. Pathol. 2008, 32, 1816–1821.
[CrossRef] [PubMed]

34. Liebig, C.; Ayala, G.; Wilks, J.; Verstovsek, G.; Liu, H.; Agarwal, N.; Berger, D.H.; Albo, D. Perineural invasion is an independent
predictor of outcome in colorectal cancer. J. Clin. Oncol. 2009, 27, 5131–5137. [CrossRef] [PubMed]

35. Beale, A.L.; Penney, M.D.; Allison, M.C. The prevalence of iron deficiency among patients presenting with colorectal cancer. Color.
Dis. 2005, 7, 398–402. [CrossRef] [PubMed]

36. Powell, A.G.M.T.; Wallace, R.; McKee, R.F.; Anderson, J.H.; Going, J.J.; Edwards, J.; Horgan, P.G. The relationship between tumour
site, clinicopathological characteristics and cancer-specific survival in patients undergoing surgery for colorectal cancer. Color.
Dis. 2012, 14, 1493–1499. [CrossRef]

37. Khan, S.A.; Morris, M.; Idrees, K.; Gimbel, M.I.; Rosenberg, S.; Zeng, Z.; Li, F.; Gan, G.; Shia, J.; LaQuaglia, M.P.; et al. Colorectal
cancer in the very young: A comparative study of tumor markers, pathology and survival in early onset and adult onset patients.
J. Pediatr. Surg. 2016, 51, 1812–1817. [CrossRef]

38. Sengupta, N.; Yau, C.; Sakthianandeswaren, A.; Mouradov, D.; Gibbs, P.; Suraweera, N.; Cazier, J.-B.; Polanco-Echeverry, G.;
Ghosh, A.; Thaha, M.; et al. Analysis of colorectal cancers in British Bangladeshi identifies early onset, frequent mucinous
histotype and a high prevalence of RBFOX1 deletion. Mol. Cancer 2013, 12, 1. [CrossRef]

39. Nikberg, M.; Chabok, A.; Letocha, H.; Kindler, C.; Glimelius, B.; Smedh, K. Lymphovascular and perineural invasion in stage II
rectal cancer: A report from the Swedish colorectal cancer registry. Acta Oncol. 2016, 55, 1418–1424. [CrossRef]

40. Tunca, B.; Tezcan, G.; Cecener, G.; Egeli, U.; Zorluoglu, A.; Yilmazlar, T.; Ak, S.; Yerci, O.; Ozturk, E.; Umut, G.; et al. Overexpres-
sion of CK20, MAP3K8 and EIF5A correlates with poor prognosis in early-onset colorectal cancer patients. J. Cancer Res. Clin.
Oncol. 2013, 139, 691–702. [CrossRef]

41. Hong, Y.; Ho, K.S.; Eu, K.W.; Cheah, P.Y. A susceptibility gene set for early onset colorectal cancer that integrates diverse signaling
pathways: Implication for tumorigenesis. Clin. Cancer Res. 2007, 13, 1107–1114. [CrossRef] [PubMed]

42. Jandova, J.; Xu, W.; Nfonsam, V. Sporadic early-onset colon cancer expresses unique molecular features. J. Surg. Res. 2016, 204,
251–260. [CrossRef] [PubMed]

43. Berg, M.; Ågesen, T.H.; Thiis-Evensen, E.; Merok, M.A.; Teixeira, M.R.; Vatn, M.H.; Nesbakken, A.; Skotheim, R.I.; Lothe, R.A.; the
INFAC-Study Group. Distinct high resolution genome profiles of early onset and late onset colorectal cancer integrated with gene
expression data identify candidate susceptibility loci. Mol. Cancer 2010, 9, 100. [CrossRef] [PubMed]

44. Agesen, T.H.; Berg, M.P.V.D.; Clancy, T.; Thiisevensen, E.; Cekaite, L.; Lind, G.E.; Nesland, J.M.; Bakka, A.; Mala, T.;
Hauss, H.J.; et al. CLC and IFNAR1 are differentially expressed and a global immunity score is distinct between early- and
late-onset colorectal cancer. Genes Immun. 2011, 12, 653–662. [CrossRef] [PubMed]

45. Mo, X.; Su, Z.; Yang, B.; Zeng, Z.; Lei, S.; Qiao, H. Identification of key genes involved in the development and progression of
early-onset colorectal cancer by co-expression network analysis. Oncol. Lett. 2020, 19, 177–186. [CrossRef] [PubMed]

46. La Cava, A.; Alviggi, C.; Matarese, G. Unraveling the multiple roles of leptin in inflammation and autoimmunity. J. Mol. Med.
2004, 82, 4–11. [CrossRef] [PubMed]

http://doi.org/10.1016/j.humpath.2006.11.018
http://www.ncbi.nlm.nih.gov/pubmed/17350669
http://doi.org/10.1038/ajg.2009.230
http://www.ncbi.nlm.nih.gov/pubmed/19491830
http://doi.org/10.3390/ijms23126510
http://doi.org/10.2147/OTT.S199369
http://doi.org/10.1172/JCI91190
http://doi.org/10.1126/science.aar3593
http://doi.org/10.1053/j.gastro.2021.09.034
http://doi.org/10.1089/jayao.2021.0230
http://doi.org/10.3322/caac.21601
http://www.ncbi.nlm.nih.gov/pubmed/32133645
http://doi.org/10.3389/fonc.2022.852445
http://www.ncbi.nlm.nih.gov/pubmed/35372063
http://doi.org/10.1097/PAS.0b013e3181816083
http://www.ncbi.nlm.nih.gov/pubmed/18779725
http://doi.org/10.1200/JCO.2009.22.4949
http://www.ncbi.nlm.nih.gov/pubmed/19738119
http://doi.org/10.1111/j.1463-1318.2005.00789.x
http://www.ncbi.nlm.nih.gov/pubmed/15932566
http://doi.org/10.1111/j.1463-1318.2012.03048.x
http://doi.org/10.1016/j.jpedsurg.2016.07.015
http://doi.org/10.1186/1476-4598-12-1
http://doi.org/10.1080/0284186X.2016.1230274
http://doi.org/10.1007/s00432-013-1372-x
http://doi.org/10.1158/1078-0432.CCR-06-1633
http://www.ncbi.nlm.nih.gov/pubmed/17317818
http://doi.org/10.1016/j.jss.2016.04.068
http://www.ncbi.nlm.nih.gov/pubmed/27451894
http://doi.org/10.1186/1476-4598-9-100
http://www.ncbi.nlm.nih.gov/pubmed/20459617
http://doi.org/10.1038/gene.2011.43
http://www.ncbi.nlm.nih.gov/pubmed/21716316
http://doi.org/10.3892/ol.2019.11073
http://www.ncbi.nlm.nih.gov/pubmed/31897128
http://doi.org/10.1007/s00109-003-0492-1
http://www.ncbi.nlm.nih.gov/pubmed/14556053


Int. J. Mol. Sci. 2022, 23, 14261 22 of 22

47. Matsubara, M.; Maruoka, S.; Katayose, S. Inverse relationship between plasma adiponectin and leptin concentrations in normal-
weight and obese women. Eur. J. Endocrinol. 2002, 147, 173–180. [CrossRef]

48. Joo, J.; Clendenning, M.; Wong, E.; Rosty, C.; Mahmood, K.; Georgeson, P.; Winship, I.; Preston, S.; Win, A.; Dugué, P.-A.; et al.
DNA methylation signatures and the contribution of age-associated methylomic drift to carcinogenesis in early-onset colorectal
cancer. Cancers 2021, 13, 2589. [CrossRef]

49. Hamilton, S.R. Tumours of the Colon and Rectum; World Health Organization Classification of Tumours-Pathology and Genetics of
Tumours of the Digestive System; World Health Organization: Lyon, France, 2000.

50. Jasmine, F.; Shinkle, J.; Sabarinathan, M.; Ahsan, H.; Pierce, B.L.; Kibriya, M.G. A novel pooled-sample multiplex luminex assay
for high-throughput measurement of relative telomere length. Am. J. Hum. Biol. 2018, 30, e23118. [CrossRef]

51. Kibriya, M.G.; Jasmine, F.; Roy, S.; Ahsan, H.; Pierce, B. Measurement of telomere length: A new assay using QuantiGene
chemistry on a Luminex platform. Cancer Epidemiol. Biomark. Prev. 2014, 23, 2667–2672. [CrossRef]

52. Demanelis, K.; Jasmine, F.; Chen, L.S.; Chernoff, M.; Tong, L.; Delgado, D.; Zhang, C.; Shinkle, J.; Sabarinathan, M.; Lin, H.; et al.
Determinants of telomere length across human tissues. Science 2020, 369, 1333. [CrossRef] [PubMed]

53. Kibriya, M.G.; Raza, M.; Kamal, M.; Haq, Z.; Paul, R.; Mareczko, A.; Pierce, B.L.; Ahsan, H.; Jasmine, F. Relative telomere length
change in colorectal carcinoma and its association with tumor characteristics, gene expression and microsatellite instability.
Cancers 2022, 14, 2250. [CrossRef] [PubMed]

54. Janavicius, R.; Matiukaite, D.; Jakubauskas, A.; Griskevicius, L. Microsatellite instability detection by high-resolution melting
analysis. Clin. Chem. 2010, 56, 1750–1757. [CrossRef] [PubMed]

55. Kibriya, M.G.; Raza, M.; Jasmine, F.; Roy, S.; Paul-Brutus, R.; Rahaman, R.; Dodsworth, C.; Rakibuz-Zaman, M.; Kamal, M.;
Ahsan, H. A genome-wide DNA methylation study in colorectal carcinoma. BMC Med. Genom. 2011, 4, 50. [CrossRef] [PubMed]

56. Deschoolmeester, V.; Baay, M.; Wuyts, W.; Van Marck, E.; Van Damme, N.; Vermeulen, P.; Lukaszuk, K.; Lardon, F.; Vermorken,
J.B. Detection of microsatellite instability in colorectal cancer using an alternative multiplex assay of quasi-monomorphic
mononucleotide markers. J. Mol. Diagn. 2008, 10, 154–159. [CrossRef] [PubMed]

57. Findeisen, P.; Kloor, M.; Merx, S.; Sutter, C.; Woerner, S.M.; Dostmann, N.; Benner, A.; Dondog, B.; Pawlita, M.; Dippold, W.; et al.
T25 repeat in the 3’ untranslated region of the CASP2 gene: A sensitive and specific marker for microsatellite instability in
colorectal cancer. Cancer Res. 2005, 65, 8072–8078. [CrossRef] [PubMed]

58. Eisenhart, C. The assumptions underlying the analysis of variance. Biometrics 1947, 3, 1–21. [CrossRef]
59. Downey, T. Analysis of a multifactor microarray study using Partek genomics solution. Methods Enzymol. 2006, 411, 256–270.

[CrossRef]

http://doi.org/10.1530/eje.0.1470173
http://doi.org/10.3390/cancers13112589
http://doi.org/10.1002/ajhb.23118
http://doi.org/10.1158/1055-9965.EPI-14-0610
http://doi.org/10.1126/science.aaz6876
http://www.ncbi.nlm.nih.gov/pubmed/32913074
http://doi.org/10.3390/cancers14092250
http://www.ncbi.nlm.nih.gov/pubmed/35565379
http://doi.org/10.1373/clinchem.2010.150680
http://www.ncbi.nlm.nih.gov/pubmed/20852132
http://doi.org/10.1186/1755-8794-4-50
http://www.ncbi.nlm.nih.gov/pubmed/21699707
http://doi.org/10.2353/jmoldx.2008.070087
http://www.ncbi.nlm.nih.gov/pubmed/18258928
http://doi.org/10.1158/0008-5472.CAN-04-4146
http://www.ncbi.nlm.nih.gov/pubmed/16166278
http://doi.org/10.2307/3001534
http://doi.org/10.1016/s0076-6879(06)11013-7

	Introduction 
	Results 
	Differential Gene Expression in CRC 
	Age of Onset of CRC and Differential Gene Expression of Cancer Related Gene Sets 
	Age of Onset of CRC and Differential Gene Expression of DNA Damage Repair Gene Sets 
	Age of Onset of CRC and Differential Expression of Replication Stress Gene-Sets 
	Age of Onset of CRC and Differential Expression of Notch4-GATA4-IRG1 axis Gene-Sets 
	Age of Onset of CRC and Differential Expression of KEGG Pathways 
	Association of Differentially Expressed “Gene Sets” with Histology in CRC 
	Gene Expression Profiling from Therapeutic Point of View 

	DNA Methylation 

	Discussion 
	Materials and Methods 
	DNA and RNA Extraction and Quality Control 
	Relative Telomere Length (RTL) Measurement 
	Genome-Wide Gene Expression Assay 
	Genome-Wide Methylation Assay 
	Microsatellite Instability (MSI) Detection 
	KRAS and BRAF Mutation Detection: 
	Statistical Analysis 

	Conclusions 
	References

