
Identification of aberrantly
methylated differentially
expressed genes and
pro-tumorigenic role of KIF2C in
melanoma

Chun-Hui Huang1,2†, Wei Han3†, Yi-Zhu Wu1,2† and
Guo-Liang Shen1,2*
1Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou,
China, 2Department of Surgery, Soochow University, Suzhou, China, 3Institute of Regenerative Biology
and Medicine, Helmholtz Zentrum München, Munich, Germany

Background: Skin Cutaneous Melanoma (SKCM) is known as an aggressive

malignant cancer, which could be directly derived from melanocytic nevi.

However, the molecular mechanisms underlying the malignant

transformation of melanocytes and melanoma tumor progression still

remain unclear. Increasing research showed significant roles of epigenetic

modifications, especially DNA methylation, in melanoma. This study focused

on the identification and analysis of methylation-regulated differentially

expressed genes (MeDEGs) between melanocytic nevus and malignant

melanoma in genome-wide profiles.

Methods: The gene expression profiling datasets (GSE3189 and GSE114445)

and gene methylation profiling datasets (GSE86355 and GSE120878) were

downloaded from the Gene Expression Omnibus (GEO) database.

Differentially expressed genes (DEGs) and differentially methylated genes

(DMGs) were identified via GEO2R. MeDEGs were obtained by integrating

the DEGs and DMGs. Then, a functional enrichment analysis of MeDEGs was

performed. STRING and Cytoscape were used to describe the protein-protein

interaction (PPI) network. Furthermore, survival analysis was implemented to

select the prognostic hub genes. Next, we conducted gene set enrichment

analysis (GSEA) of hub genes. To validate, SKCM cell culture and lentivirus

infectionwas performed to reveal the expression and behavior pattern of KIF2C.

Patients and specimens were collected and then immunohistochemistry (IHC)

staining was conducted.
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Results: We identified 237 hypomethylated, upregulated genes and

182 hypermethylated, downregulated genes. Hypomethylation-upregulated

genes were enriched in biological processes of the oxidation-reduction

process, cell proliferation, cell division, phosphorylation, extracellular matrix

disassembly and protein sumoylation. Pathway enrichment showed

selenocompound metabolism, small cell lung cancer and lysosome.

Hypermethylation-downregulated genes were enriched in biological

processes of positive regulation of transcription from RNA polymerase II

promoter, cell adhesion, cell proliferation, positive regulation of

transcription, DNA-templated and angiogenesis. The most significantly

enriched pathways involved the transcriptional misregulation in cancer,

circadian rhythm, tight junction, protein digestion and absorption and Hippo

signaling pathway. After PPI establishment and survival analysis, seven

prognostic hub genes were CKS2, DTL, KIF2C, KPNA2, MYBL2, TPX2, and

FBL. Moreover, the most involved hallmarks obtained by GSEA were E2F

targets, G2M checkpoint and mitotic spindle. Importantly, among the 7 hub

genes, we found that down-regulated level of KIF2C expression significantly

inhibited the proliferative ability of SKCM cells and suppressed the metastasis

capacity of SKCM cells.

Conclusions:Our study identified potential aberrantly methylated-differentially

expressed genes participating in the process of malignant transformation from

nevus to melanoma tissues based on comprehensive genomic profiles.

Transcription profiles of CKS2, DTL, KIF2C, KPNA2, MYBL2, TPX2, and FBL

provided clues of aberrantly methylation-based biomarkers, which might

improve the development of precision medicine. KIF2C plays a pro-

tumorigenic role and potentially inhibited the proliferative ability in SKCM.
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Background

Skin cutaneous melanoma (SKCM) is an aggressive tumor

that is the fifth and sixth most common malignant tumor in men

and women respectively (Siegel et al., 2020). Each year,

melanoma accounts for over 80% of skin cancer-related

deaths in the world (Schadendorf van Akkooi et al., 2018).

According to the Clark model, the pathogenesis of melanoma

assumes that numerous steps are required for the progression

from melanocytes to malignant melanoma, including the

formation of banal nevi, dysplastic nevi, melanoma in situ,

and invasive melanoma (Wallace et al., 1984). However, the

molecular mechanisms underlying the malignant transformation

of melanocytes and melanoma tumor progression still remain

unclear. Nowadays, as for the primary tumors, surgical resection

is usually preferred, while metastatic melanoma is much more

difficult to treat with radiotherapy and chemotherapy, which

means that early diagnosis is essential (Gadeliya Goodson and

Grossman, 2009). Recently developed immunotherapies and

targeted therapies show promise for improving the prognosis

of patients with advanced melanoma (Flaherty et al., 2012).

Identification of melanoma-associated oncogenes informs

different therapeutic strategies, and small molecule inhibitors

are available to target specific proteins involved in the

pathogenesis of melanoma (Mohammadpour et al., 2019).

Unfortunately, most patients with melanoma, which are

initially diagnosed with highly aggressive and progressive

disease, are not candidates for curative therapies (Schadendorf

van Akkooi et al., 2018).

DNA methylation is known as a central epigenetic

modification, and a significant regulator of gene expression,

which can inhibit the binding of transcription factors or the

recruitment of repression proteins (Moore et al., 2013). Aberrant

promoter methylation of genes that control cell cycle and

apoptosis can contribute to the disruption of normal cell

division and carcinogenesis (Schinke et al., 2010). Importantly,

aberrant DNA methylation is regarded as an epigenetic hallmark

of melanoma and plays a significant part in the formation as well

as progression of melanoma (Schinke et al., 2010; Goran Micevic

et al., 2017). Methylation of CpG islands appears early in

tumorigenesis and the epigenetic changes can be identified in

serum, sputum, and urine samples which means it might

contribute to the development of molecular strategies for

cancer detection as well as function as a biomarker of cancer
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recurrence after excision (James and Herman, 2003).

Furthermore, it was reported that hypermethylation correlated

with worse prognosis as well as drug resistance (Mori et al., 2005).

Increasing evidence showed a vital role for both global

hypomethylation of oncogenes and hypermethylation of

tumor suppressor genes in tumor development and

progression, including in melanoma. For example, methylation

silencing of PTEN, an inhibitor of PI3K signaling, was closely

related to a worse prognosis in melanoma patients (Lahtz et al.,

2010). In addition, the hypermethylation of WIF1, TFPI2,

RASSF1A, and SOCS1 has been considered as significant

participants in the melanoma initiation and progression

(Tanemura et al., 2009). Although research on the

identification of separate genes with specific hypermethylation

or hypomethylation in SKCM are available, comprehensive

network studies based on gene expression, methylation

profiles and associated pathways have been greatly insufficient.

Over the last decade, bioinformatics technology has emerged

as an indispensable tool for tumor research. It mainly focuses on

genomics and proteomics to identify genotypes and phenotypes

associated with immune infiltration, tumorigenesis and

progression of melanoma to guide the development of

targeted therapy (Fan et al., 2018; Zhang et al., 2019). For

example, Weiyang Cai et al. (2018) identified many

differentially methylated genes (DMGs) related to lymph node

metastasis in melanoma and were closely associated with the

prognosis of melanoma patients. Duan et al. (2018) found three

methylated genes (ARX, DDB2, and MBP) that may be closely

associated with the underlying mechanism in melanoma

progression. Although methylation changes in SKCM were

studied in many research, countless issues are still unclear.

Here, we performed an integrated bioinformatics analysis based

on gene expression profiling by high-throughput sequencing

(GSE3189 and GSE114445) and gene methylation profiling

microarray (GSE86355 and GSE120878). The methylation-

regulated differentially expressed genes (MeDEGs) were screened

and performed functional enrichment analysis. Furthermore,

protein-protein interaction (PPI) networks and survival analysis

were used to identify new prognostic biomarkers and therapeutic

targets for future research in melanoma.

Methods

Acquisition and standardization of raw
microarray dataset

We downloaded the gene expression profiling datasets generated

by high-throughput sequencing (GSE3189 and GSE114445) and the

microarray-based gene methylation profiling datasets

(GSE120878 and GSE86355) from the Gene Expression Omnibus

database (GEO, https://www.ncbi.nlm.nih.gov/geo/). Totally 18 nevi

and 45 melanoma samples were included in GSE3189 (platform:

GPL96 Affymetrix Human Genome U133A Array) while 5 nevi and

16 melanoma samples were enrolled in GSE114445 (platform:

GPL570 Affymetrix Human Genome U133 Plus 2.0 Array). As

for the DNA methylation datasets, GSE120878 included a total of

73 nevi and 89 primary SKCM tissues, while GSE86355 included

altogether 14 nevi and 33 primary SKCM tissues. Both of these two

methylation microarrays were based on the GPL13534 platform

(Illumina HumanMethylation450 BeadChip).

Identification of methylation-regulated
differentially expressed genes

GEO2R (http://www.ncbi.nlm.nih.gov/geo/geo2r/) is a web

tool to make a comparison of two or more groups of samples in a

GEO Series to screen genes that are differentially expressed

across specific experimental conditions. In the present study,

GEO2R was used to identify the differentially expressed genes

(DEGs) as well as the differentially methylated genes (DMGs). |t|

>2 and p < 0.05 were considered statistically significant. Then,

hypomethylation-high expression genes were obtained after the

overlap of upregulated and hypomethylated genes, and

hypermethylation-low expression genes were obtained after

the overlap of downregulated and hypermethylated genes. The

hypomethylation-high expression genes and hypermethylation-

low expression genes were identified as methylation-regulated

differentially expressed genes (MeDEGs).

Functional enrichment analysis

The Database for Annotation, Visualization and Integrated

Discovery (DAVID, https://david.ncifcrf.gov/) is a

straightforward web tool that can provide integrative and

systematic annotation for users to unravel biological

interactions of multiple genes. It was utilized to perform

functional and pathway enrichment analyses. Gene ontology

(GO) analysis including the biological process (BP), cellular

component (CC), molecular function (MF) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analysis were conducted for the selected MeDEGs

by DAVID (Ashburner et al., 2000; Huang et al., 2007). p-value <
0.05 was considered statistically significant.

Protein-protein interaction network
construction and identification of hub
genes

In this study, STRING (http://string-db.org; version 11.0)

was adopted to describe protein co-regulation of

hypomethylation-high expression genes and
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hypermethylation-low expression genes respectively and

measure functional interactions among nodes (Franceschini

et al., 2013). The interaction specificity score >0.4 (the default

threshold in the STRING database) was considered statistically

significant. Cytoscape (version 3.6.0) was used to visualize

interaction networks obtained from STRING (Smoot et al.,

2011). MCODE (version 1.4.2) of Cytoscape is a plug-in to

cluster a given network to identify densely connected regions

based on topology (Bandettini et al., 2012). It was utilized to find

the most related module network with selection threshold as

follows: MCODE scores >5, degree cutoff=2, node score cut-off=
0.2, Max depth=100 and k-score=2.

Survival analysis

Gene Expression Profiling Interactive Analysis (GEPIA,

http://gepia.cancer-pku.cn/) is an online tool that can provide

customizable functionalities based on data from The Cancer

Genome Atlas (TCGA; https://tcga-data.nci.nih.gov/tcga/) and

the Genotype-Tissue Expression project (GTEx; https://www.

gtexportal.org/home/index.html) (Tang et al., 2017). GEPIA

performs survival analysis based on gene expression levels,

using a log-rank test for the hypothesis evaluation. The

horizontal axis (x-axis) represented the time in days, and the

vertical axis (y-axis) showed the probability of surviving or the

proportion of people surviving. The lines presented the survival

curves of two groups.

Validation of hub genes

Oncomine (https://www.oncomine.org) is an online database

that allows users to collect, normalize, and analyze gene expression

profiling data for tumor samples (Rhodes et al., 2007). Oncomine

database was utilized to validate the differential expression of hub

genes between SKCM and nevus samples. After choosing the catalog

of SKCM and nevus tissue, a comparison of mRNA expression levels

was made. The cBioPortal (http://cbioportal.org) is an open-access

resource for users to search for multidimensional cancer genomics

datasets which provide access to data for over 5000 tumor samples

from 20 cancer studies (Cerami et al., 2012). We used cBioPortal to

investigate the genetic alterations of hub genes as well as the

correlation between methylation status and gene expression.

Transcription factor network and data
processing of gene set enrichment
analysis

Transcription factor regulation networks of hub genes were

constructed by using R software (Version 3.3.2). Significant

nodes involved in co-regulation of CKS2, DTL, KIF2C,

KPNA2, MYBL2, TPX2 and FBL were described in circle plots

(including transcription factor regulation-DNA binding, related

lncRNA, targeted miRNA and protein-protein interaction).

Based on data from the TCGA database, GSEA tool (version

2.10.1 package) was used to predict associated up- and down-

regulated genes and their significantly involved hallmarks

pathways (Subramanian et al., 2005). Student’s-t-test statistical

score was implemented in consistent pathways and the mean of

the differentially expressed genes was calculated for each analysis.

A permutation test with 1000 times was utilized to recognize the

greatly involved pathways. The adj. P using Benjamini and

Hochberg (BH) and false discovery rate (FDR) method by

default were used to correct for the occurrence of false-

positive results. Significantly related genes were defined with

an adj. p < 0.01 and FDR < 0.25.

Cell culture and lentivirus infection

The human SKCM cell lines (A375) are widely used and

representative in various SKCM studies, which were obtained

from the Cell Bank of Shanghai Institutes of Biological Sciences,

Chinese Academy of Sciences (Shanghai, China). The SKCM

cells were cultured in RPMI 1640 medium (Gibco, CA, United

States) with 10% fetal bovine serum (Gibco, United States) and

1% penicillin-streptomycin solution (Gibco, CA, United

States) at 37°C in a humidified incubator containing 5%

CO2. The medium was refreshed every 2 days. To establish

a stable cell line and intervene the expression of KIF2C,

lentiviral vectors and small interfering RNA (siRNA;

siRNA-1: 5′-GCCCACTGAATAAGCAAGAAT-3’; siRNA-2:

5′-GCCCGAATGATTAAAGAATTT-3′) targeting KIF2C

(NM_006845) were obtained from GeneChem (Shanghai,

China). Cells were transfected and underwent sterility

testing with lentivirus, strictly following the manufacturer’s

instructions (GeneChem, China).

Quantitative reverse transcriptase-
polymerase chain reaction

We used TRIzol reagent (Solarbio, China) to extract total

RNA from A375 cells, and transcribed them into complementary

DNA. Subsequently, SYBR green PCR Master Kit (QIAGEN,

Germany) was used for qRT-PCR. The primer sequences for

KIF2C and β-actin were designed and displayed in

Supplementary Table S1. The reaction conditions of qRT-PCR

were conducted according to manufacturers’ protocols (Livak

and Schmittgen, 2001) and briefly shown as follows: initial heat

activation at 95°C for 2 min and denaturation at 95°C for 5 s,

consecutively followed by 40 cycles of 60°C for 30 s and a final

extension step. The level of RNA expression was determined by

the original Ct value and the 2−ΔΔCt method.
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Patients and specimens collection

All procedures performed in this study involving human

participants were in accordance with the Declaration of Helsinki.

The study was approved by the ethics committee of the First

Affiliated Hospital of Soochow University and informed consent

was taken from all the patients. We collected fresh samples from

33 patients at the First Affiliated Hospital of Soochow University

from 2019 to 2021. All patients underwent surgeries, had not

received preoperative therapy, and were pathologically diagnosed

with SKCM. Tissue specimens were obtained during surgery and

immediately preserved at −80°C.

Immunohistochemistry staining

We collected 33 SKCM tissues from patients undergoing

surgery at the First Affiliated Hospital of Soochow University. All

of the tissues were pathologically confirmed to be SKCM and

fixed in 4% paraformaldehyde overnight and embedded in

paraffin. Sections were deparaffinized with xylene and

hydrated with graded alcohols. Subsequently, the sections

were incubated with 3% H2O2 for 10 min at 37°C and washed

in phosphate-buffered saline (PBS). The sections were then

incubated with 50 μl of rabbit monoclonal anti-KIF2C

antibody (No. ab71706, Abcam, United States) at 4°C

overnight. The dilution ratio of the antibody was dependent

on the recommended dilution ratio in the specifications. Next,

the sections were incubated with PV-6001 (ZSBG, Beijing,

China) for 30 min at 25°C. Finally, we stained the slices with

3,3′-diaminobenzidine and hematoxylin for detection. A positive

reaction was defined as cytoplasm showing a brown signal. The

degree of immunostaining was performed independently by

2 experienced pathologists. The immunostaining score

depended on the percentage of positive cells (range: 0–4%;

0, <5%; 1%, 5–25%; 2%, 25–50%; 3%, 51–75%; and

4%, >75%) multiplied by the immunostaining intensity (range:

0–4; 0, non-staining; 1, low intensity; 2 median intensity; and 3,

high intensity).

Cell proliferation and migration assays

The stably transfected A375 were divided into different

groups and seeded onto a 96-well plate at a density of 5 ×

104 cells/ml. We used the Cell Counting Kit-8 (CCK-8 Kit;

Dojindo, Japan), based on the manufacturer’s instructions, to

determine the proliferative capacity of cells. Optical density (OD)

values were obtained at 450 nm after 24, 48, 72, 96, and 120 h. A

transwell cell migration assay was used to test the ability of cells

to metastasize. The cell density of different groups was adjusted

to 2 × 105 cells/ml, and 100 μl cell suspension of different groups

was added to the upper chamber with or without Matrigel

(Corning, United States). The cells were cultured for 48 h in a

humidified incubator containing 5% CO2 at 37°C. The cells were

then removed, fixed with 4% paraformaldehyde for 30 min,

washed 3 times with PBS, stained with 1% crystal violet for

30 min, and rewashed with PBS. Each sample was viewed and

photographed under a microscope in 5 fields. Crystal violet was

eluted with 300 μl of 33% acetic acid, and 100 μl cell suspension

of different groups was added to each of the 96-well plates. OD

value at 450 nm was determined. Migrated cells were imaged in a

randomly chosen field of view and counted utilizing

the ×200 microscope.

Results

Identification of methylation-regulated
differentially expressed genes in skin
cutaneous melanoma

GEO2R was adopted to identify the DEGs and DMGs,

respectively. For DEGs of gene expression microarray,

554 overlapping up-regulated genes (1,088 in GSE3189,

4,096 in GSE114445) and 462 overlapping down-regulated

genes (1,224 in GSE3189, 4,152 in GSE114445) were screened.

For DMGs of gene methylation microarray,

15,052 overlapping hypermethylation genes (17,016 in

GSE86355, 22,767 in GSE120878) and 17,888 overlapping

hypomethylation genes (18,944 in GSE86355, 25,934 in

GSE120878) were found. As shown in Figure 1, we

identified 237 hypomethylated, upregulated genes and

182 hypermethylated, downregulated genes after integrating

the DEGs and DMGs. The flowchart was illustrated in

Figure 2. The representative heat map of the MeDEGs of

GSE3189 (including the top 50 up-regulated and down-

regulated genes) was present in Figure 3.

Functional enrichment analysis of
methylation-regulated differentially
expressed genes

The results of the GO enrichment analysis for the

MeDEGs were shown in Tables 1, 2. For hypomethylation-

upregulated genes, changes in biologic processes were mostly

enriched in the oxidation-reduction process, cell proliferation,

cell division, phosphorylation, extracellular matrix

disassembly and protein sumoylation. The

hypermethylation-downregulated genes were mainly

enriched in positive regulation of transcription from RNA

polymerase II promoter, cell adhesion, cell proliferation,

positive regulation of transcription, DNA-templated and

angiogenesis. We also found that the hypomethylated,

upregulated genes were related to cytosol, extracellular
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FIGURE 1
Identification of methylation-regulated differentially expressed genes(MeDEGs) in gene expression datasets (GSE3189 and GSE114445) and
gene methylation datasets (GSE86355 and GSE120878). (A) hypomethylation and upregulated genes; (B) hypermethylation and down-regulated
genes.

FIGURE 2
Flowchart of bioinformatics analysis. DEGs, Differentially expressed genes;DMGs, differentially methylated genes; MeDEGs, methylation-
regulated differentiallyexpressed genes; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene setenrichment analysis.

Frontiers in Genetics frontiersin.org06

Huang et al. 10.3389/fgene.2022.817656

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.817656


exosome, membrane and nucleoplasm, while

hypermethylated, downregulated genes to cytoplasm,

plasma membrane, cytosol and cell junction in the cellular

component group. For hypomethylated, upregulated genes,

changes in molecular function were primarily enriched in

protein binding, ATP binding, enzyme binding and GTPase

activity, and for hypermethylated, downregulated genes,

changes were significantly enriched in protein binding,

transcriptional activator activity, RNA polymerase II core

promoter proximal region sequence-specific binding and

transcription factor activity, sequence-specific DNA

binding. Pathway enrichment was also performed using

KEGG, and the results were shown in Table 3. We found

that hypomethylated genes predominantly participated in

selenocompound metabolism, small cell lung cancer and

lysosome. For hypermethylated genes, the most significantly

enriched pathways involved the transcriptional misregulation

in cancer, circadian rhythm, tight junction, protein digestion

and absorption and Hippo signaling pathway.

Protein-protein interaction network
establishment and hub genes
selection

The PPI network of hypomethylation-upregulated

genes and hypermethylation-downregulated genes was

visualized by Cytoscape (version 3.6.0) (Smoot et al.,

2011). MCODE (version 1.4.2) is a plug-in of Cytoscape

to cluster a given network to select densely connected

FIGURE 3
Representative heat map of the top 100 differentially expressed genes indataset GSE3189 (50 up-regulated genes and 50 down-regulated
genes). Red: upregulation; blue: down-regulation.
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regions based on topology (Bandettini et al., 2012). The

results were presented in Figure 4. Therefore, PBK, TK1,

TACC3, MYBL2, TPX2, DTL, KPNA2, KIF2C, CKS2,

ASF1B, SPAG5 and NCAPH were verified as hub genes

in hypomethylation-upregulated genes module. And EIF4B,

EIF3L, EIF3A, RPS7, RPL22, RSL1D1, RPS23, RPL11 and

FBL were selected as hub genes in the hypermethylation-

downregulated genes module.

Survival analysis

Significant survival outcomes of hub genes in the PPI

network were displayed in Figure 5. According to the

expression of each gene, overall survival for SKCM patients

was acquired. We found that high mRNA expression of CKS2

(p = 0.033) was closely related to worse prognosis for SKCM as

well as DTL (p = 0.00096), KIF2C (p = 0.01), KPNA2 (p =

0.0017), MYBL2 (p = 0.0022), TPX2 (p = 0.0074), FBL (p =

0.0013).

Hub genes verification

Subsequently, we used the Oncomine database to further

validate the expression of seven hub genes. The different

expression levels of six hypomethylated upregulated hub genes

and one hypermethylated downregulated hub genes between

melanoma and nevus samples were significantly obvious

(Figure 6), which were consistent with the results we obtained.

In addition, we used the cBioPortal tool to explore the

genetic alterations of seven hub genes and discovered that

TABLE 1 Gene ontology enrichment analysis of hypomethylated upregulated genes.

Category Term Description Count p.Value

BP GO:0001887 selenium compound metabolic process 3 1.68E-03

BP GO:0016310 phosphorylation 7 2.07E-03

BP GO:0022617 extracellular matrix disassembly 6 3.27E-03

BP GO:0000059 protein import into nucleus, docking 3 4.58E-03

BP GO:0060236 regulation of mitotic spindle organization 3 4.58E-03

BP GO:0006606 protein import into nucleus 5 7.11E-03

BP GO:0016925 protein sumoylation 6 1.93E-02

BP GO:0008283 cell proliferation 11 2.33E-02

BP GO:0051301 cell division 10 4.25E-02

BP GO:0055114 oxidation-reduction process 14 4.98E-02

CC GO:0016020 membrane 59 2.73E-08

CC GO:0070062 extracellular exosome 67 1.96E-07

CC GO:0005829 cytosol 75 2.01E-07

CC GO:0031012 extracellular matrix 15 2.53E-05

CC GO:0005654 nucleoplasm 54 1.16E-03

CC GO:0005783 endoplasmic reticulum 22 1.90E-03

CC GO:0031965 nuclear membrane 10 2.60E-03

CC GO:0005925 focal adhesion 13 4.18E-03

CC GO:0001772 immunological synapse 4 8.90E-03

CC GO:0042470 melanosome 6 9.11E-03

CC GO:0043231 intracellular membrane-bounded organelle 15 1.16E-02

CC GO:0005789 endoplasmic reticulum membrane 19 2.54E-02

CC GO:0005737 cytoplasm 79 4.60E-02

CC GO:0005794 Golgi apparatus 18 4.67E-02

CC GO:0005739 mitochondrion 25 4.91E-02

MF GO:0005515 protein binding 149 7.15E-05

MF GO:0008139 nuclear localization sequence binding 4 6.28E-03

MF GO:0005524 ATP binding 32 1.15E-02

MF GO:0003924 GTPase activity 9 1.47E-02

MF GO:0019899 enzyme binding 11 1.58E-02

MF GO:0051015 actin filament binding 6 3.40E-02
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TABLE 2 Gene ontology enrichment analysis of hypermethylated downregulated genes.

Category Term Description Count p.Value

BP GO:0007155 cell adhesion 15 2.30E-04

BP GO:0001954 positive regulation of cell-matrix adhesion 4 1.34E-03

BP GO:0045944 positive regulation of transcription from RNA polymerase II promoter 21 2.07E-03

BP GO:0050680 negative regulation of epithelial cell proliferation 5 2.42E-03

BP GO:0006366 transcription from RNA polymerase II promoter 13 5.80E-03

BP GO:0090162 establishment of epithelial cell polarity 3 6.22E-03

BP GO:0001942 hair follicle development 4 6.52E-03

BP GO:0001525 angiogenesis 8 7.46E-03

BP GO:0008284 positive regulation of cell proliferation 12 7.63E-03

BP GO:0016477 cell migration 7 7.97E-03

BP GO:0008285 negative regulation of cell proliferation 10 1.90E-02

BP GO:0090090 negative regulation of canonical Wnt signaling pathway 6 2.46E-02

BP GO:0008283 cell proliferation 9 3.21E-02

BP GO:0042493 response to drug 8 3.44E-02

BP GO:0045893 positive regulation of transcription, DNA-templated 11 3.57E-02

CC GO:0016324 apical plasma membrane 13 3.17E-05

CC GO:0005911 cell-cell junction 8 1.57E-03

CC GO:0005737 cytoplasm 70 2.63E-03

CC GO:0005856 cytoskeleton 10 1.12E-02

CC GO:0005829 cytosol 46 1.22E-02

CC GO:0030054 cell junction 11 1.55E-02

CC GO:0031012 extracellular matrix 8 2.73E-02

CC GO:0005886 plasma membrane 52 3.85E-02

CC GO:0005925 focal adhesion 9 3.96E-02

MF GO:0001077 transcriptional activator activity, RNA polymerase II core promoter proximal region sequence-specific binding 10 5.79E-04

MF GO:0005515 protein binding 106 2.94E-03

MF GO:0000989 transcription factor activity, transcription factor binding 3 8.19E-03

MF GO:0008013 beta-catenin binding 5 8.89E-03

MF GO:0043565 sequence-specific DNA binding 12 1.41E-02

MF GO:0003700 transcription factor activity, sequence-specific DNA binding 17 2.88E-02

TABLE 3 Pathway enrichment analysis of MeDEGs.

Category Term Count p.Value

Hypomethylated upregulated genes

KEGG_PATHWAY hsa00450:Selenocompound metabolism 4 2.42E-03

KEGG_PATHWAY hsa05222:Small cell lung cancer 6 1.22E-02

KEGG_PATHWAY hsa04142:Lysosome 6 4.70E-02

Hypermethylated downregulated genes

KEGG_PATHWAY hsa05202:Transcriptional misregulation in cancer 6 3.51E-02

KEGG_PATHWAY hsa04710:Circadian rhythm 3 4.45E-02

KEGG_PATHWAY hsa04530:Tight junction 4 6.89E-02

KEGG_PATHWAY hsa04974:Protein digestion and absorption 4 7.08E-02

KEGG_PATHWAY hsa04390:Hippo signaling pathway 5 8.21E-02
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DTL (17%) and KIF2C (13%) were the most frequently

altered genes among the seven hub genes, including

amplification, fusion, and missense mutations (Figures

7A,B). The alterations of the seven hub genes were 192

(43.24%) of 444 sequenced cases/patients. The correlations

between mRNA and DNA methylation of the seven genes in

the TCGA SKCM patients were demonstrated in Figure 7C.

We found that the correlation was negative, indicating that

methylation regulated the mRNA expression of these genes.

This illustrated that methylation played an important role in

the expression of these genes.

Significant genes and pathways obtained
by gene set enrichment analysis

Transcriptional regulation networks among CKS2, DTL, KIF2C,

KPNA2, MYBL2, TPX2 and FBL were displayed in Figure 8.

FIGURE 4
PPI network and most related modules of methylation-regulated differentiallyexpressed genes. (A) Hypomethylated upregulated genes. (B)
Hypermethylated downregulated genes.
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Significantly involved nodes (including transcription factor regulation-

DNA binding, related lncRNA, targeted miRNA and protein-protein

interaction) were marked in different colors. Subsequently, a total of

100 significant genes were obtained from GSEA, and the genes with

positive correlations were plotted. GSEA analysis, includingCKS2, DTL,

KIF2C, KPNA2, MYBL2, and TPX2 indicated that the most involved

hallmarks pathways were E2F targets, G2M checkpoint and mitotic

spindle. The details were illustrated in Figure 9.

Kinesin family member 2C expression
pattern and its pro-tumorigenic malignant
biological behaviors in skin cutaneous
melanoma

To reveal levels of expression and methylation of KIF2C in

SKCM samples, we first enrolled 33 SKCM tissues and assessed

the protein expression of KIF2C in SKCM using IHC analysis

FIGURE 5
Survival analysis of the hub genes was performed using Kaplan-Meier curve. Each elevated expression in seven hub genes showed markedly
significant worse OS inmelanoma samples (p < 0.05).
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(Supplementary Figure S1A). Methylation-specific PCR was used

to detect the methylation expression of KIF2C. Pearson

correlation analysis suggested showed a significantly negative

association between the protein and methylation expression

(r = −0.362, p < 0.001) (Supplementary Figure S1B). Then,

qRT-PCR was used to detect the knockdown efficacy of

siRNAs silencing the expression of KIF2C in A375 cells.

Significantly, compared with the negative control group,

transcriptional expression of KIF2C was decreased in siRNA1-

and siRNA2-treated groups. Therefore, siRNA1 and

siRNA2 were used for further experiments (Supplementary

Figure S1C). According to the results of the CCK-8 assay, the

down-regulated level of KIF2C expression significantly inhibited

the proliferative ability of SKCM cells (Supplementary Figure

S1D). Transwell cell migration assay indicated that the down-

expression of KIF2C suppressed the metastasis capacity of SKCM

cells (Supplementary Figure S1E).

Discussion

Melanoma is an aggressive and devastating cancer that can be

directly derived from melanocytic nevus. Nowadays, surgery of

tumor resection before metastasis still remains the most effective

FIGURE 6
Validation of the expression of hub genes in Oncomine database. Theexpression level of CKS2, DTL, KIF2C, KPNA2, MYBL2, TPX2 and FBL was
detected in Oncomine database.
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treatment (Gadeliya Goodson and Grossman, 2009). Thus, it is

important to diagnose the high-risk nevus in the early stage.

Identification of novel biomarkers will be greatly helpful to

improve diagnosis and an even better understanding of the

mechanism involved in melanocytic tumorigenesis that

potentially contributes to novel therapy. Hence, highly

effective biomarkers for diagnosis and treatment are urgently

required.

The initiation and progression involved in melanoma is a

complicated and multistage process regulated by both genetic

and epigenetic alterations. Increasing evidence has shown the

essential roles of epigenetic modifications, especially DNA

methylation, in SKCM (Schinke et al., 2010; Berger et al., 2012;

Goran Micevic et al., 2017). However, most of these studies are

limited to melanoma metastases and lack primary melanomas,

which made it difficult to identify early biological progress

during melanoma development (Weiyang Cai et al., 2018).

Furthermore, separate analyses of gene expression and

methylation from one study are limited (Wouters et al.,

2017), while integrating multiple available datasets may

help us find more accurate and reliable evidence through

comprehensive bioinformatics analysis. Yet, conjoint

analysis including both gene expression and methylation

profiling microarray datasets is largely insufficient in

SKCM. Therefore, we conducted an integrated

bioinformatics analysis based on both gene expression and

gene methylation profiling to identify the new prognostic

biomarkers and therapeutic targets in SKCM for future

research.

In the present study, we identified a total of

237 hypomethylated, upregulated genes and

182 hypermethylated, downregulated genes by overlapping the

DEGs and DMGs. For the hypomethylation-upregulated genes,

functional enrichment analysis indicated that changes in the

biological processes were mainly enriched in the oxidation-

reduction process, cell proliferation, cell division,

phosphorylation, extracellular matrix disassembly and protein

sumoylation. GO cell component analysis showed that the

upregulated genes were significantly enriched in cytosol,

extracellular exosome, membrane and nucleoplasm. In

addition, for molecular function, the hypomethylation-

upregulated genes were significantly enriched in protein

binding, ATP binding, enzyme binding and GTPase activity.

KEGG pathway enrichment analysis suggested significant

FIGURE 7
Genetic alteration of seven hub genes and the relationship betweenmRNAexpression and DNAmethylation in the TCGA SKCM study using the
cBioPortaldatabase. (A) Alteration frequency of hub genes. (B) A visual summary of alteration based on a query of seven hub genes, whichwas altered
in 192 (43.24%) of 444 sequenced cases/patients. (C) The relationship between mRNA expression and DNA methylation in the seven hub genes.
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enrichment in pathways including selenocompound metabolism,

small cell lung cancer and lysosome. Notably, GSEA results

showed that E2F targets, G2M checkpoint and mitotic spindle

were the most involved hallmarks in SKCM. These findings are

reasonable because it is universally acknowledged that the above

processes are closely related to tumor initiation and progression,

including melanoma (Hanahan and Weinberg Robert, 2011).

PPI network of hypomethylation-high expression genes

illustrated the protein-protein interactome of the hub genes,

and then GEPIA was adopted to select the most prognostic

FIGURE 8
Transcription factor regulation network was constructed in CKS2, DTL, KIF2C, KPNA2, MYBL2, TPX2, and FBL. Significant nodes were marked in
different colors in line with hub genes (Transcription factor regulation-DNA binding, Related lncRNA, Targeted miRNA and Protein-protein
interaction).
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FIGURE 9
A total of 100 significant genes were obtained from GSEA with positive and negative correlations. GSEA was used to perform hallmark analyses
in CKS2, DTL, KIF2C, KPNA2, MYBL2 and TPX2, respectively. The most involved significant pathways included E2F targets, G2M checkpoint and
mitotic spindle.
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hub genes, named CKS2, DTL, KIF2C, KPNA2, MYBL2 and

TPX2, which may provide new clues for the therapeutic strategy

in SKCM.

Cyclin-dependent kinases regulatory subunit 2 (CKS2), a

cyclin-dependent kinase-interacting protein, is critical for cell

cycle regulation. Overexpression of CKS2 has been reported to be

associated with several types of cancer, including colorectal

cancer and cervical cancer (Yu et al., 2015; Jonsson et al.,

2019). de Wit et al. (2005) reported that CKS2 could be

considered a candidate player in melanocytic tumor

progression and facilitate early diagnosis of melanocytic

lesions before metastasis. We found that the expression of

CKS2 in SKCM tissues was higher in different datasets, and

survival analysis revealed that the upregulation of CKS2 was

related to a worse prognosis in SKCM, which was consistent with

the results of previous studies.

Denticleless E3 ubiquitin protein ligase homologue (DTL),

also known as DNA replication factor 2, can regulate the

expression of various cell cycle regulatory proteins and

maintain the integrity of DNA replication and repair (Pan

et al., 2006). Elevated expression of DTL has been found to be

related to a variety of cancers, such as breast cancer, Ewing

sarcoma and ovarian cancer (Ueki et al., 2008; Mackintosh et al.,

2012; Pan et al., 2013). Yang et al. (2019) suggested that DTL can

be regarded as an indicator of poor prognosis in acral melanoma

patients. DTL could play an important role in promoting

melanoma cell growth and glucose metabolism, possibly

through activation of the MYC target pathway (Lu et al.,

2022). In the present study, we found that overexpressed DTL

was closely associated with worse survival outcomes in cutaneous

melanoma patients. The rate of DTL mutation was 17%, and this

higher mutation rate may lead to abnormal methylation or

deregulation of DTL.

As a member of the kinesin-13 family, kinesin family

member 2C (KIF2C) uses microtubule depolymerizing activity

to correct improper microtubule attachments at kinetochores,

which plays significant roles during the mitosis process

(Lawrence et al., 2004; Gardner Melissa et al., 2011). KIF2C is

likely to be the essential gene for carcinogenesis and may be

closely involved in tumor-infiltrating lymphocytes of cancer

immunotherapy for patients with metastatic melanoma (Lu

et al., 2014). In our study, we found that the expression of

KIF2C was significantly elevated in SKCM tissues compared

to nevus tissues and associated with poor prognosis in melanoma

patients by bioinformatic research. Importantly, we validated

that the down-regulated level of KIF2C expression significantly

inhibited the proliferative ability and suppressed the metastasis

capacity of SKCM cells.

KPNA2, a member of karyopherin (KPNA) protein family,

is considered as a key role in the malignant transformation of

cells through the transport of tumor suppressors, regulation of

DNA repair proteins as well as activation of apoptosis

pathways (Tseng et al., 2005). Elevated KPNA levels have

been found to predict poor prognosis for multiple tumors,

including breast and cervical cancer (Dahl et al., 2006; van der

Watt et al., 2009). Winnepenninckx et al. (2006) reported that

KPNA2 is closely associated with poor prognosis and tumor

progression in melanoma, which is consistent with our results.

Yang et al. (2020) found that KPNA2 promotes proliferation,

invasion and migration through NF-κB/p65 signaling

pathways in melanoma cells. In this study, we suggested

the possibility of the aberrant methylation of the

KPNA2 promoter.

Myb proto-oncogene like 2 (MYBL2), located on

chromosome 20q13, acts as a transcription factor that plays

a significant role in cell-cycle progression. In the previous

study, overexpression of MYBL2 has been found to be related

to poor prognosis in various cancers, such as prostate and

gallbladder cancer (Bar-Shira et al., 2002; Liang et al., 2017).

Koynovaa et al. (2007) found a higher frequency of low-level

increase of the copy numbers of MYBL2 rather than

amplification in melanoma. Also, evidence showed that

attenuation of miR-29b2~c expression promotes the

development of melanoma by partly depressing MAFG and

MYBL2 (Vera et al., 2021). Taken together, this evidence

indicated that MYBL2 was involved in cell proliferation and

tumorigenesis in melanoma, which is consistent with our

present findings. However, further research is needed to

confirm our hypothesis.

Targeting protein for xenopus kinesin-like protein 2

(TPX2, also known as REPP86) located on chromosome

20q11.2 in humans. TPX2 is a mitotic microtubule-

associated protein that is strictly regulated by the cell

cycle and diffusely distributed during the S and

G2 phases, which help spindle stability (Alfaro-Aco and

Petry, 2017). Ping Wei et al. (2013) demonstrated that

upregulation of TPX2 was associated with the clinical

stage, invasion and metastasis in colon cancer,

participating in the P13K/Akt signaling pathway to reduce

the occurrence as well as the proliferation of colon cancer

cells. Increased expression of TPX2 was also observed in lung

squamous cell carcinoma, ovarian cancer and giant-cell

tumor of the bone (Ignacio Blanco et al., 2015; Laura

et al., 112006; Aguirre-Portoles et al., 2012). Yao et al.

(2018) showed that TPX2 improved the proliferative

ability of melanoma cell lines and functioned as an

oncogene in melanoma. In our study, TPX2 was found to

be a hypomethylated-upregulated gene in melanoma and

associated with the poor prognostic of melanoma patients,

which suggested that TPX2 may be used as a novel prognostic

marker for the development and progression of SKCM. Our

results were consistent with the roles of TPX2 in various

tumors reported in previous studies.

As for the hypermethylation-downregulated genes,

functional enrichment analysis indicated that changes in

biological processes were mainly enriched in the positive
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regulation of transcription from RNA polymerase II promoter,

cell adhesion, cell proliferation, positive regulation of

transcription, DNA-templated and angiogenesis. GO cell

component analysis showed that the downregulated genes

were significantly enriched in the cytoplasm, plasma

membrane, cytosol and cell junction. Besides, for molecular

function, the hypermethylation-downregulated genes were

significantly enriched in protein binding, transcriptional

activator activity, RNA polymerase II core promoter

proximal region sequence-specific binding and transcription

factor activity, and sequence-specific DNA binding. KEGG

pathway enrichment analysis suggested significant

enrichment in pathways including transcriptional

misregulation in cancer, circadian rhythm, tight junction,

protein digestion and absorption and Hippo signaling

pathway. Importantly, growing evidence showed that

numerous genetic changes in melanoma may be linked to in

Hippo signaling pathway (Kim et al., 2013; Feng et al., 2017).

Moreover, Hippo pathway was found to be correlated with the

mitogen-activated protein kinase (MAPK) signaling pathway

which is well known for a vital role in the pathogenesis of

melanoma (Feng et al., 2017).

Then, we performed a PPI network and survival analysis to

identify the prognostic hub gene among the

hypermethylation-downregulated genes. Fibrillarin (FBL) is

an indispensable, highly conserved protein essential in the

processing of pre-rRNAs (Newton et al., 2003). In the previous

study, the expression of FBL can be regulated by p53 in

multiple tumors and was considered as an ideal target to

inhibit the ribosome biogenesis process in cancer therapy

(Marcel et al., 2013; El Hassouni et al., 2019).

Overexpression of FBL was found in breast, prostate

cancers and squamous cell cervical carcinoma (Choi et al.,

2007; Koh et al., 2011; Su et al., 2014). Thus, FBL could have a

role in tumor progression and could affect the clinical

outcome of patients through alteration of translational

regulation in melanoma. In our study, we found that the

low expression of FBL in SKCM tissues compared to nevus

tissues was observed in multiple datasets, and survival analysis

showed that the high expression of FBL was related to a worse

prognosis in SKCM.

The present study constructed a comprehensive network

between nevus and melanoma and identify the prognostic

significance of these hub genes, which may serve as valuable

prognostic indicators of SKCM. However, there are still

some limitations in this study: firstly, the gene

expressions and methylation profiles were from different

studies (Wu et al., 2018); secondly, the survival outcomes

might be heavily contaminated due to cancer subtypes (Ren

et al., 2019), thus the result could be not very stable.

Furthermore in-depth investigation through in vivo and

in vitro experimental designs and analyses are needed in

future work.

Conclusion

In summary, this study identified methylation-regulated

differentially expressed genes and related pathways and

functions in SKCM by using integrated bioinformatics

analysis. In addition, we constructed PPI networks and

performed survival analysis that identified seven prognostic

hub genes. Our findings may deepen the understanding of the

methylation-mediated regulatory mechanisms underlying the

carcinogenesis possibility of melanocytic nevus and melanoma

and provide novel biomarkers and therapeutic targets for further

research.
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SUPPLEMENTARY FIGURE S1
Validation of the KIF2C role in SKCM. (A) IHC analysis was performed to
reveal high expression of KIF2C in SKCM samples. (B) Methylation
specific PCR was used to detect the methylation expression of KIF2C.
Pearson correlation analysis suggested showed significantly negative
association between the protein andmethylation expression (r = −0.362,
p < 0.001). (C) qRT-PCR was used to detect the knockdown efficacy of
siRNAs silencing expression of KIF2C in A375 cells. Significantly,
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compared with the negative control group, transcriptional expression of
KIF2C was decreased in siRNA1- and siRNA2-treated groups. (D)
According to the results of the CCK-8 assay, down-regulated level of

KIF2C expression significantly inhibited the proliferative ability of SKCM
cells. (E) Transwell cell migration assay indicated that the down-
expression of KIF2C suppressed metastasis capacity of SKCM cells.
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